Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Environ Monit Assess ; 195(9): 1130, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653356

ABSTRACT

The present study described the most recent findings concerning the abundance and distribution of plastic in water, sediment, and fauna in the Nile River of Upper Egypt as an interesting research point. The findings revealed that plastics were abundant in the water, sediments, fish, and crayfish throughout the sites. The Nagaa Hammadi site has the highest abundance of meso- and macroplastics in its water and sediment. African catfish had the highest abundance of meso- and macroplastics compared to the other species, while Nile tilapia had no meso- or macroplastics in its alimentary canal or gills in all sites. The Edfu site has the highest abundance of mesoplastics in the alimentary canals of African catfish, while the Nagaa Hammadi site has the highest abundance of mesoplastics in the gills, and macroplastics appeared only in the alimentary canal of African catfish from the El-wasta site. Only mesoplastics were found in the crayfish's alimentary canal, with the Nagaa Hammadi site having the highest abundance. No macroplastics were detected in the crayfish's gills or alimentary canal. Additionally, this work lets us understand how plastics behave in freshwater environments, and it is a step toward decision-makers taking appropriate measures to reduce their risk.


Subject(s)
Catfishes , Water , Animals , Egypt , Microplastics , Rivers , Environmental Monitoring , Plastics
2.
Environ Pollut ; 333: 122074, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37331582

ABSTRACT

Pyrogallol is widely used in several industrial applications and can subsequently contaminate aquatic ecosystems. Here, we report for the first time the presence of pyrogallol in wastewater in Egypt. Currently, there is a complete lack of toxicity and carcinogenicity data for pyrogallol exposure in fish. To address this gap, both acute and sub-acute toxicity experiments were conducted to determine the toxicity of pyrogallol in catfish (Clarias gariepinus). Behavioral and morphological endpoints were evaluated, in addition to blood hematological endpoints, biochemical indices, electrolyte balance, and the erythron profile (poikilocytosis and nuclear abnormalities). In the acute toxicity assay, it was determined that the 96 h median-lethal concentration (96 h-LC50) of pyrogallol for catfish was 40 mg/L. In sub-acute toxicity experiment, fish divided into four groups; Group 1 was the control group. Group 2 was exposed to 1 mg/L of pyrogallol, Group 3 was exposed to 5 mg/L of pyrogallol, and Group 4 was exposed to 10 mg/L of pyrogallol. Fish showed morphological changes such as erosion of the dorsal and caudal fins, skin ulcers, and discoloration following exposure to pyrogallol for 96 h. Exposure to 1, 5, or 10 mg/L pyrogallol caused a significant decrease in hematological indices, including red blood cells (RBCs), hemoglobin, hematocrit, white blood cells (WBC), thrombocytes, and large and small lymphocytes in a dose-dependent manner. Several biochemical parameters (creatinine, uric acid, liver enzymes, lactate dehydrogenase, and glucose) were altered in a concentration dependent manner with short term exposures to pyrogallol. Pyrogallol exposure also caused a significant concentration-dependent rise in the percentage of poikilocytosis and nuclear abnormalities of RBCs in catfish. In conclusion, our data suggest that pyrogallol should be considered further in environmental risk assessments of aquatic species.


Subject(s)
Catfishes , Water Pollutants, Chemical , Animals , Pyrogallol/toxicity , Ecosystem , Erythrocytes , Hemoglobins , Water Pollutants, Chemical/toxicity
3.
Article in English | MEDLINE | ID: mdl-34517132

ABSTRACT

Despite extensive research on the toxic effects of microplastics (MPs), there is no obtainable data on the use of phytobioremediation against MPs toxicity in fish. This study aimed to investigate the protective role of lycopene, citric acid, and chlorella against the toxic effects of MPs in African catfish (Clarias gariepinus) using hematology, biochemical, antioxidants, erythron profiles (poikilocytosis and nuclear abnormalities) and the accumulation of MPs in tissues as biomarkers. Five groups of fish received: normal diet (control); MPs (500 mg/kg diet) (Group 2); MPs (500 mg/kg diet) + lycopene (500 mg/kg diet) (Group 3); MPs (500 mg/kg diet) + citric acid (30 g/kg diet) (Group 4); and MPs (500 mg/kg diet) + chlorella (50 g/kg diet) (Group 5) for 15 days. Group 2 had significantly higher amounts of MPs in the stomach, gills, and feces, electrolyte imbalances (HCO3, Fe, Na+, K+, Ca+2, Cl-, and anion gap, hematobiochemical alterations, and decreases in the activities of superoxide dismutase, catalase, total antioxidant capacity, and glutathione S-transferases compared to the control group. Additionally, Group 2 had significant increase in the percentage of poikilocytosis, and nuclear abnormalities in RBC's compared to the control group. The co-treatment of MPs-exposed fish with lycopene, citric acid, and chlorella-supplemented diets ameliorated the hematological, biochemical, and erythron profile alterations, but only slightly enhanced the antioxidant activity. Overall, lycopene, citric acid, and chlorella can be recommended as a feed supplement to improve hematobiochemical alterations and oxidative damage induced by MPs toxicity in the African catfish (C. gariepinus).


Subject(s)
Catfishes/metabolism , Chlorella/growth & development , Citric Acid/pharmacology , Gills/drug effects , Lycopene/pharmacology , Polyethylene/toxicity , Animals , Antioxidants/pharmacology , Biodegradation, Environmental , Calcium Chelating Agents/pharmacology , Gills/metabolism , Gills/pathology , Oxidative Stress , Protective Agents/pharmacology
4.
Tissue Cell ; 71: 101512, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33647780

ABSTRACT

Although microplastics (MPs) have received increasing focus and currently have become an emerging area of research, there is limited knowledge about their effect on whole body histology of fish. In this study, tilapia (Oreochromis niloticus) early juveniles were exposed to 1, 10, or 100 mg/L of MPs for 15 days and 15 days post-exposure, after which whole body histological examinations were performed. Histological analysis of kidney revealed congestion of blood capillaries, inflammatory cells, loss of basophilic cytoplasm in several tubules, vacuolated tubules, shrinking of convoluted tubules, widening of intertubular space, complete deformation, glomerular atrophy, vacuolated glomerular cells, and signs of fatty tubules. The liver tissue exhibited vacuoles, hydropic degeneration, necrotic area, severe deformation of hepatocytes, pyknotic nuclei, and dilation and congestion of blood sinusoids. The pancreatic tissue revealed shrunken and degenerated acini with pyknotic nuclei, hemorrhage, necrotic area, inflammatory cells, fatty cells, and congested blood capillaries. In the muscle tissue, fiber core dissociation, edema, necrosis, segmented fibers, and inflammatory cells were detected. The gill tissue demonstrated dilation and congestion of blood vessels, complete lamellar fusions, lifting of epithelium, shortening and degeneration of secondary lamellae, hyperplasia, and deposition of MPs between primary lamellae. In the spinal cord and notochord, the effects were degeneration and protrusion of meninges, deformation and deviation of notochord from its central axis, edema, degeneration of notochord (disappearance of vacuolar cells), deviation of spinal cord from the central axis, and loss of vacuolar cells in notochord. The intestinal tissue exhibited degeneration of basement membrane, inflammatory cells, goblet cells, atrophy of submucosa, pyknotic nuclei, hemorrhage, and vacuolization of mucosal cells. The histopathological changes in different organs were noticed even post-exposure in fish exposed to MPs compared to those in control fish and these changes were concentration dependent. In conclusion, these data together with our previous data suggest that MPs can cause different changes, ranging from biochemical alterations in single cells to lesions in the entire tissue, which can affect the vitality and life of fish.


Subject(s)
Cichlids/metabolism , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Animals , Gills/metabolism , Gills/pathology , Intestines/metabolism , Intestines/pathology , Kidney/metabolism , Kidney/pathology , Liver/metabolism , Liver/pathology , Pancreas/metabolism , Pancreas/pathology
5.
Front Physiol ; 12: 742922, 2021.
Article in English | MEDLINE | ID: mdl-34650449

ABSTRACT

This study aims to assess the impact of microplastics (MPs) on erythrocytes using eryptosis (apoptosis) and an erythron profile (poikilocytosis and nuclear abnormalities), considered to be novel biomarkers in Nile tilapia (Oreochromis niloticus). In this study, four groups of fish were used: The first was the control group. In the second group, 1 mg/L of MPs was introduced to the samples. The third group was exposed to 10 mg/L of MPs. Finally, the fourth group was exposed to 100 mg/L of MPs for 15 days, following 15 days of recovery. The fish treated with MPs experienced an immense rise in the eryptosis percentage, poikilocytosis, and nuclear abnormalities of red blood cells (RBCs) compared with the control group in a concentration-dependent manner. Poikilocytosis of MP-exposed groups included sickle cell shape, schistocyte, elliptocyte, acanthocyte, and other shapes. Nuclear abnormalities of the MPs-exposed groups included micronuclei, binucleated erythrocytes, notched, lobed, blebbed, and hemolyzed nuclei. After the recovery period, a greater percentage of eryptosis, poikilocytotic cells, and nuclear abnormalities in RBCs were still evident in the groups exposed to MPs when crosschecked with the control group. The results show concerning facts regarding the toxicity of MPs in tilapia.

6.
Mar Pollut Bull ; 173(Pt A): 112966, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34563956

ABSTRACT

This study records the extent of microplastics (MPs) in the surface water, sediments, and fishes of the Mediterranean and Red seas in Egypt. In sediment and water samples, the Ras Gharib station in the Red sea and Damietta and Port Said stations in the Mediterranean sea exhibited the highest microplastic abundance, while the lowest concentration was found in the Ain Sukhna station in the Red Sea and Marsa Matruh station in the Mediterranean sea. Rayon and polyethylene terephthalate were the most frequently found polymers in fishes. The results highlighted the abundant existence of microplastics in sediments, water, and fishes of the Mediterranean and Red seas, thereby improving our understanding of the environmental risks posed by microplastics to fisheries and marine ecosystems and the need for measures to diminish the flux of plastics to the marine settings.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Ecosystem , Egypt , Environmental Monitoring , Fishes , Geologic Sediments , Mediterranean Sea , Plastics , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL