Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Nat Immunol ; 23(3): 411-422, 2022 03.
Article in English | MEDLINE | ID: mdl-35165446

ABSTRACT

The increasing implication of lymphocytes in general physiology and immune surveillance outside of infection poses the question of how their antigen receptors might be involved. Here, we show that macromolecular aggregates of intraepidermal γδ T cell antigen receptors (TCRs) in the mouse skin aligned with and depended on Skint1, a butyrophilin-like (BTNL) protein expressed by differentiated keratinocytes (KCs) at steady state. Interruption of TCR-mediated 'normality sensing' had no impact on γδ T cell numbers but altered their signature phenotype, while the epidermal barrier function was compromised. In addition to the regulation of steady-state physiology, normality sensing licensed intraepidermal T cells to respond rapidly to subsequent tissue perturbation by using innate tumor necrosis factor (TNF) superfamily receptors. Thus, interfering with Skint1-dependent interactions between local γδ T cells and KCs at steady state increased the susceptibility to ultraviolet B radiation (UVR)-induced DNA damage and inflammation, two cancer-disposing factors.


Subject(s)
Intraepithelial Lymphocytes , Receptors, Antigen, T-Cell, gamma-delta , Animals , Butyrophilins , Epidermis , Intraepithelial Lymphocytes/metabolism , Licensure , Mice , Receptors, Antigen, T-Cell, gamma-delta/metabolism
2.
Br J Cancer ; 121(1): 51-64, 2019 07.
Article in English | MEDLINE | ID: mdl-31114017

ABSTRACT

BACKGROUND: Previous studies suggested that the metabolism is differently reprogrammed in the major subtypes of non-small cell lung cancer (NSCLC), squamous cell carcinomas (SCC) and adenocarcinomas (AdC). However, a comprehensive analysis of this differential metabolic reprogramming is lacking. METHODS: Publicly available gene expression data from human lung cancer samples and cell lines were analysed. Stable isotope resolved metabolomics were performed on SCC and ADC tumours in human patients and in freshly resected tumour slices. RESULTS: Analysis of multiple transcriptomics data from human samples identified a SCC-distinguishing enzyme gene signature. SCC tumours from patients infused with [U-13C]-glucose and SCC tissue slices incubated with stable isotope tracers demonstrated differential glucose and glutamine catabolism compared to AdCs or non-cancerous lung, confirming increased activity through pathways defined by the SCC metabolic gene signature. Furthermore, the upregulation of Notch target genes was a distinguishing feature of SCCs, which correlated with the metabolic signature. Notch and MYC-driven murine lung tumours recapitulated the SCC-distinguishing metabolic reprogramming. However, the differences between SCCs and AdCs disappear in established cell lines in 2D culture. CONCLUSIONS: Our data emphasise the importance of studying lung cancer metabolism in vivo. They also highlight potential targets for therapeutic intervention in SCC patients including differentially expressed enzymes that catalyse reactions in glycolysis, glutamine catabolism, serine, nucleotide and glutathione biosynthesis.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Receptors, Notch/physiology , Adenocarcinoma of Lung/metabolism , Animals , Carcinoma, Squamous Cell/metabolism , Humans , Mice , Proto-Oncogene Proteins c-myc/physiology , Transcriptome , Tumor Microenvironment
3.
Cancer Res ; 84(14): 2231-2246, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38635884

ABSTRACT

Oncogenic KRAS impairs antitumor immune responses. As effective strategies to combine KRAS inhibitors and immunotherapies have so far proven elusive, a better understanding of the mechanisms by which oncogenic KRAS drives immune evasion is needed to identify approaches that could sensitize KRAS-mutant lung cancer to immunotherapy. In vivo CRISPR-Cas9 screening in an immunogenic murine lung cancer model identified mechanisms by which oncogenic KRAS promotes immune evasion, most notably via upregulation of immunosuppressive COX2 in cancer cells. Oncogenic KRAS potently induced COX2 in both mouse and human lung cancer, which was suppressed using KRAS inhibitors. COX2 acted via prostaglandin E2 (PGE2) to promote resistance to immune checkpoint blockade (ICB) in lung adenocarcinoma. Targeting COX2/PGE2 remodeled the tumor microenvironment by inducing proinflammatory polarization of myeloid cells and influx of activated cytotoxic CD8+ T cells, which increased the efficacy of ICB. Restoration of COX2 expression contributed to tumor relapse after prolonged KRAS inhibition. These results provide the rationale for testing COX2/PGE2 pathway inhibitors in combination with KRASG12C inhibition or ICB in patients with KRAS-mutant lung cancer. Significance: COX2 signaling via prostaglandin E2 is a major mediator of immune evasion driven by oncogenic KRAS that promotes immunotherapy and KRAS-targeted therapy resistance, suggesting effective combination treatments for KRAS-mutant lung cancer.


Subject(s)
CRISPR-Cas Systems , Cyclooxygenase 2 , Drug Resistance, Neoplasm , Immunotherapy , Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Animals , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Mice , Proto-Oncogene Proteins p21(ras)/genetics , Humans , Drug Resistance, Neoplasm/genetics , Immunotherapy/methods , Dinoprostone/metabolism , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/therapy , Tumor Microenvironment/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Cell Line, Tumor , Mice, Inbred C57BL , Female
4.
Nat Commun ; 15(1): 4923, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862484

ABSTRACT

Missions into Deep Space are planned this decade. Yet the health consequences of exposure to microgravity and galactic cosmic radiation (GCR) over years-long missions on indispensable visceral organs such as the kidney are largely unexplored. We performed biomolecular (epigenomic, transcriptomic, proteomic, epiproteomic, metabolomic, metagenomic), clinical chemistry (electrolytes, endocrinology, biochemistry) and morphometry (histology, 3D imaging, miRNA-ISH, tissue weights) analyses using samples and datasets available from 11 spaceflight-exposed mouse and 5 human, 1 simulated microgravity rat and 4 simulated GCR-exposed mouse missions. We found that spaceflight induces: 1) renal transporter dephosphorylation which may indicate astronauts' increased risk of nephrolithiasis is in part a primary renal phenomenon rather than solely a secondary consequence of bone loss; 2) remodelling of the nephron that results in expansion of distal convoluted tubule size but loss of overall tubule density; 3) renal damage and dysfunction when exposed to a Mars roundtrip dose-equivalent of simulated GCR.


Subject(s)
Cosmic Radiation , Space Flight , Animals , Humans , Mice , Cosmic Radiation/adverse effects , Rats , Male , Kidney/pathology , Kidney/radiation effects , Kidney/metabolism , Kidney Diseases/pathology , Kidney Diseases/etiology , Weightlessness/adverse effects , Astronauts , Mice, Inbred C57BL , Proteomics , Female , Mars , Weightlessness Simulation/adverse effects
5.
iScience ; 26(2): 106040, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36844450

ABSTRACT

Dietary nutrient availability and gene expression, together, influence tissue metabolic activity. Here, we explore whether altering dietary nutrient composition in the context of mouse liver cancer suffices to overcome chronic gene expression changes that arise from tumorigenesis and western-style diet (WD). We construct a mouse genome-scale metabolic model and estimate metabolic fluxes in liver tumors and non-tumoral tissue after computationally varying the composition of input diet. This approach, called Systematic Diet Composition Swap (SyDiCoS), revealed that, compared to a control diet, WD increases production of glycerol and succinate irrespective of specific tissue gene expression patterns. Conversely, differences in fatty acid utilization pathways between tumor and non-tumor liver are amplified with WD by both dietary carbohydrates and lipids together. Our data suggest that combined dietary component modifications may be required to normalize the distinctive metabolic patterns that underlie selective targeting of tumor metabolism.

6.
Nat Commun ; 13(1): 7338, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443305

ABSTRACT

Transient lysosomal damage after infection with cytosolic pathogens or silica crystals uptake results in protease leakage. Whether limited leakage of lysosomal contents into the cytosol affects the function of cytoplasmic organelles is unknown. Here, we show that sterile and non-sterile lysosomal damage triggers a cell death independent proteolytic remodelling of the mitochondrial proteome in macrophages. Mitochondrial metabolic reprogramming required leakage of lysosomal cathepsins and was independent of mitophagy, mitoproteases and proteasome degradation. In an in vivo mouse model of endomembrane damage, live lung macrophages that internalised crystals displayed impaired mitochondrial function. Single-cell RNA-sequencing revealed that lysosomal damage skewed metabolic and immune responses in alveolar macrophages subsets with increased lysosomal content. Functionally, drug modulation of macrophage metabolism impacted host responses to Mycobacterium tuberculosis infection in an endomembrane damage dependent way. This work uncovers an inter-organelle communication pathway, providing a general mechanism by which macrophages undergo mitochondrial metabolic reprograming after endomembrane damage.


Subject(s)
Mitochondria , Proteome , Animals , Mice , Macrophages , Mitophagy , Peptide Hydrolases , Lysosomes
7.
Nat Commun ; 12(1): 5906, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34625563

ABSTRACT

Mouse models are critical in pre-clinical studies of cancer therapy, allowing dissection of mechanisms through chemical and genetic manipulations that are not feasible in the clinical setting. In studies of the tumour microenvironment (TME), multiplexed imaging methods can provide a rich source of information. However, the application of such technologies in mouse tissues is still in its infancy. Here we present a workflow for studying the TME using imaging mass cytometry with a panel of 27 antibodies on frozen mouse tissues. We optimise and validate image segmentation strategies and automate the process in a Nextflow-based pipeline (imcyto) that is scalable and portable, allowing for parallelised segmentation of large multi-image datasets. With these methods we interrogate the remodelling of the TME induced by a KRAS G12C inhibitor in an immune competent mouse orthotopic lung cancer model, highlighting the infiltration and activation of antigen presenting cells and effector cells.


Subject(s)
Image Cytometry/methods , Oncogenes , Tumor Microenvironment/immunology , Animals , Antibodies , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/immunology , Disease Models, Animal , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Macrophages , Mice , Mice, Inbred C57BL , Oncogenes/drug effects , T-Lymphocytes , Tumor Microenvironment/drug effects
8.
J Clin Invest ; 130(6): 3038-3050, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32364536

ABSTRACT

Acute myeloid leukemia (AML) disrupts the generation of normal blood cells, predisposing patients to hemorrhage, anemia, and infections. Differentiation and proliferation of residual normal hematopoietic stem and progenitor cells (HSPCs) are impeded in AML-infiltrated bone marrow (BM). The underlying mechanisms and interactions of residual hematopoietic stem cells (HSCs) within the leukemic niche are poorly understood, especially in the human context. To mimic AML infiltration and dissect the cellular crosstalk in human BM, we established humanized ex vivo and in vivo niche models comprising AML cells, normal HSPCs, and mesenchymal stromal cells (MSCs). Both models replicated the suppression of phenotypically defined HSPC differentiation without affecting their viability. As occurs in AML patients, the majority of HSPCs were quiescent and showed enrichment of functional HSCs. HSPC suppression was largely dependent on secreted factors produced by transcriptionally remodeled MSCs. Secretome analysis and functional validation revealed MSC-derived stanniocalcin 1 (STC1) and its transcriptional regulator HIF-1α as limiting factors for HSPC proliferation. Abrogation of either STC1 or HIF-1α alleviated HSPC suppression by AML. This study provides a humanized model to study the crosstalk among HSPCs, leukemia, and their MSC niche, and a molecular mechanism whereby AML impairs normal hematopoiesis by remodeling the mesenchymal niche.


Subject(s)
Glycoproteins/metabolism , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/metabolism , Mesenchymal Stem Cells/metabolism , Neoplasm Proteins/metabolism , Animals , Female , Glycoproteins/genetics , HL-60 Cells , Hematopoietic Stem Cells/pathology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Mesenchymal Stem Cells/pathology , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplasm Proteins/genetics , U937 Cells
9.
Cancer Cell ; 35(3): 519-533.e8, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30889383

ABSTRACT

Inhibitors of poly(ADP-ribose) polymerase (PARP) have demonstrated efficacy in women with BRCA-mutant ovarian cancer. However, only 15%-20% of ovarian cancers harbor BRCA mutations, therefore additional therapies are required. Here, we show that a subset of ovarian cancer cell lines and ex vivo models derived from patient biopsies are sensitive to a poly(ADP-ribose) glycohydrolase (PARG) inhibitor. Sensitivity is due to underlying DNA replication vulnerabilities that cause persistent fork stalling and replication catastrophe. PARG inhibition is synthetic lethal with inhibition of DNA replication factors, allowing additional models to be sensitized by CHK1 inhibitors. Because PARG and PARP inhibitor sensitivity are mutually exclusive, our observations demonstrate that PARG inhibitors have therapeutic potential to complement PARP inhibitor strategies in the treatment of ovarian cancer.


Subject(s)
DNA Replication/drug effects , Enzyme Inhibitors/pharmacology , Ovarian Neoplasms/genetics , Cell Line, Tumor , Checkpoint Kinase 1 , Female , Glycoside Hydrolases/antagonists & inhibitors , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/enzymology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Quinazolinones/pharmacology
10.
Cell Rep ; 25(3): 749-760.e6, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30332653

ABSTRACT

Deviating from the normal karyotype dramatically changes gene dosage, in turn decreasing the robustness of biological networks. Consequently, aneuploidy is poorly tolerated by normal somatic cells and acts as a barrier to transformation. Paradoxically, however, karyotype heterogeneity drives tumor evolution and the emergence of therapeutic drug resistance. To better understand how cancer cells tolerate aneuploidy, we focused on the p38 stress response kinase. We show here that p38-deficient cells upregulate glycolysis and avoid post-mitotic apoptosis, leading to the emergence of aneuploid subclones. We also show that p38 deficiency upregulates the hypoxia-inducible transcription factor Hif-1α and that inhibiting Hif-1α restores apoptosis in p38-deficent cells. Because hypoxia and aneuploidy are both barriers to tumor progression, the ability of Hif-1α to promote cell survival following chromosome missegregation raises the possibility that aneuploidy tolerance coevolves with adaptation to hypoxia.


Subject(s)
Aneuploidy , Apoptosis , Chromosomes, Human/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia , Mitogen-Activated Protein Kinase 14/metabolism , CRISPR-Cas Systems , Colonic Neoplasms , Glycolysis , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/genetics , Signal Transduction , Tumor Cells, Cultured
11.
Anticancer Res ; 32(10): 4225-33, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23060542

ABSTRACT

Attacking cancer cell survival defense by targeting B-Cell Lymphoma 2 (BCL2) family of anti-apoptotic proteins may provide a powerful means to improve chemotherapy efficiency. This could be particularly relevant to anti-mitotic-based therapy, where tumor response relates to a competing network between mitotic cell death signaling and mitotic slippage as an adaptative response to a leaky mitotic checkpoint. In this review, we focus on recent findings that point out the major role played by BCL2 family members in response to anti-mitotic agents, which reveal dependence of cancer cell survival on BCL2 homologs during mitotic arrest and after mitotic slippage. Finally, we discuss pre-clinical data combining anti-mitotic agents with BCL2 inhibitors.


Subject(s)
Antimitotic Agents/therapeutic use , Cell Cycle Checkpoints/drug effects , Cell Survival/drug effects , Mitosis/drug effects , Neoplasms/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Animals , Apoptosis/drug effects , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL