Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Fluoresc ; 33(2): 731-737, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36512144

ABSTRACT

In this paper, the novel fluorescence probe XP based on Schiff-base was designed, synthesized and characterized, which could detect Y3+selectively and sensitively. The recognition mechanism of XP toward Y3+ was studied by Job's plot and HRMS. It was investigated that stoichiometric ratio of the probe XP conjugated with Y3+ was 1:2. And the detection limit was calculated as 0.30 µM. In addition, Y3+ was recognized by the test paper made from XP. And the probe XP could detect  Y3+ selectively in Caenorhabditis elegans and the main organs of mice. Thus, XP was considered to have some potential for application in bioimaging.


Subject(s)
Fluorescent Dyes , Yttrium , Mice , Animals , Spectrometry, Fluorescence/methods , Schiff Bases
2.
Anal Chem ; 94(32): 11298-11306, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35926081

ABSTRACT

Herein, a novel strategy was proposed for identifying carbon monoxide (CO), which plays a crucial part in living systems. For the first time, we have managed to design, synthesize, and characterize successfully this new Cu2+-assisted fluorescent probe (DPHP) in detecting CO. Compared with the commonly adopted Pd0-mediated Tsuji-Trost reaction recognition method, such a new strategy did not engage costly palladium (II) salt and generated no leaving group, indicating a satisfactory anti-interference ability. The recognition mechanism was confirmed by IR, 1H NMR titration, HR-MS, cyclic voltammetry, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and optical properties. Surprisingly, it was found that the new method achieved high selectivity and rapid identification of CO with a lower limit of detection (1.7 × 10-8 M). More intriguingly, it could recognize endogenous and exogenous CO in HeLa cells. The cytotoxicity of this new method was so low that it allowed the detection of CO in mice and zebrafish. Basically, our results trigger a novel viewpoint of rationally designing and synthesizing advanced materials for CO detection with unique features, impelling new research in detection chemistry.


Subject(s)
Carbon Monoxide , Fluorescent Dyes , Animals , Fluorescent Dyes/chemistry , Fluorescent Dyes/toxicity , HeLa Cells , Humans , Mice , Optical Imaging/methods , Zebrafish
3.
Molecules ; 20(9): 17208-20, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26393558

ABSTRACT

An efficient multi-component reaction to synthesize multi-substituted 1,3-oxazolidine compounds of high optical purity was described. All the products were well-characterized and the absolute configuration of one chiral center was determined. The plausible mechanism was proposed and a kinetic resolution of epoxides process was confirmed.


Subject(s)
Oxazoles/chemical synthesis , Kinetics , Molecular Structure , Oxazoles/chemistry , Stereoisomerism
4.
Dalton Trans ; 53(9): 4185-4193, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38323430

ABSTRACT

Five new alkylaluminum complexes with different pyridinyl-substituted imines or cyclohexyl-substituted imines were synthesized and characterized successfully. The aluminum complex [FlCHNCH(CH3)Py]AlMe2(Py = 2-pyridyl) (1) was obtained by reacting 9-[2-pyridyl-CH(CH3)-NCH]Fl (Fl = fluorenyl) (L1) and equimolar AlMe3. The reactions of 9-(2-pyridyl-NCH)Fl (L2) and 9-[2-N(CH3)2-cyclohexyl-NCH]Fl (L3) with equimolar AlMe3 or AlEt3 afforded other alkylaluminum complexes [FlCHNPy]AlMe2(Py = 2-pyridyl) (2), [FlCHNPy]AlEt2 (Py = 2-pyridyl) (3), [FlCHNCyN(CH3)2]AlMe2 (Cy = 2-cyclohexyl) (4) and [FlCHNCyN(CH3)2]AlEt2 (Cy = 2-cyclohexyl) (5). All these complexes (1-5) were characterized using NMR spectroscopy, elemental analysis, and X-ray crystal structure analysis. The catalytic properties of these new alkylaluminum complexes for the hydrophosphonylation of aldimines were examined. Complex 5 showed the best catalytic performance under mild reaction conditions with a low catalyst loading (1 mol%), and 20 different substituents of aldimines were isolated with more than 90% yields.

5.
Talanta ; 280: 126734, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39173248

ABSTRACT

Carbon monoxide (CO), a significant gas transmitter, plays a vital role in the intricate functioning of living systems and is intimately linked to a variety of physiological and pathological processes. To comprehensively investigate CO within biological system, researchers have widely adopted CORM-3, a compound capable of releasing CO, which serves as a surrogate for CO. It aids in elucidating the physiological and pathological effects of CO within living organisms and can be employed as a therapeutic drug molecule. Therefore, the pivotal role of CORM-3 necessitates the development of effective probes that can facilitate the visualization and tracking of CORM-3 in living systems. However, creating fluorescent probes for real-time imaging of CORM-3 in living species has proven to be a persisting challenge that arises from factors such as background interference, light scattering and photoactivation. Herein, the BNDN fluorescent probe, a brand-new near-infrared is proposed. Remarkably, the BNDN probe offers several noteworthy advantages, including a substantial Stokes shift (201 nm), heightened sensitivity, exceptional selectivity, and an exceedingly low CORM-3 detection limit (0.7 ppb). Furthermore, the underlying sensing mechanism has been meticulously examined, revealing a process that revives the fluorophore by reducing the complex Cu2+ to Cu+. This distinctive NIR fluorescence "turn-on" character, coupled with its larger Stokes shift, holds great promise for achieving high resolution imaging. Most impressively, this innovative probe has demonstrated its efficacy in detecting exogenous CORM-3 in living animal. It is important to underscore that these endeavors mark a rare instance of a near-infrared probes successfully detecting exogenous CORM-3 in vivo. These exceptional outcomes highlighted the potential of BNDN as a highly promising new tool for in vivo detection of CORM-3. Considering the impressive imaging capabilities demonstrated by BNDN presented in this study, we anticipate that this tool may offer a compelling avenue for shedding light on the roles of CO in future research endeavors.


Subject(s)
Carbon Monoxide , Fluorescent Dyes , Organometallic Compounds , Fluorescent Dyes/chemistry , Animals , Carbon Monoxide/analysis , Humans , Organometallic Compounds/chemistry , Mice , Optical Imaging/methods , Boranes/chemistry , Zebrafish , Limit of Detection , HeLa Cells , Infrared Rays
6.
J Hazard Mater ; 469: 133968, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38452682

ABSTRACT

Pb2+ is a heavy metal ion pollutant that poses a serious threat to human health and ecosystems. The conventional methods for detecting Pb2+ have several limitations. In this study, we introduce a novel fluorescent probe that enables the detection of Pb2+ in the near-infrared region, free from interference from other common ions. A unique characteristic of this probe is its ability to rapidly and accurately identify Pb2+ through ratiometric measurements accompanied by a large Stokes shift of 201 nm. The limit of detection achieved by probe was remarkably low, surpassing the standards set by the World Health Organization, and outperforming previously reported probes. To the best of our knowledge, this is the first organic small-molecule fluorescent probe with both near-infrared emission and ratiometric properties for the detection of Pb2+. We present a triple-mode sensing platform constructed using a probe that allows for the sensitive and selective recognition of Pb2+ in common food items. Furthermore, we successfully conducted high-quality fluorescence imaging of Pb2+ in various samples from common edible plants, HeLa cells, Caenorhabditis elegans, and mice. Importantly, the probe-Pb2+ complex exhibited tumour-targeting capabilities. Overall, this study presents a novel approach for the development of fluorescent probes for Pb2+ detection.


Subject(s)
Fluorescent Dyes , Lead , Humans , Animals , Mice , HeLa Cells , Ecosystem
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124828, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39029204

ABSTRACT

Zn2+ plays a vital role in regulating various life processes, such as gene expression, cell signaling, and brain function. In this study, a near-infrared fluorescent probe AXS was synthesized to detect Zn2+ with good fluorescence specificity, high selectivity, and high sensitivity; the detection limit of Zn2+ was 6.924 × 10-11 M. The mechanism of Zn2+ recognition by the AXS probe was investigated by 1H nuclear magnetic resonance titrations, UV-visible spectroscopy, fluorescence spectroscopy, Fourier-transform infrared spectroscopy, and high-resolution mass spectrometry. Test paper experiments showed that the AXS probe could detect Zn2+ in real samples. In addition, quantitative and qualitative detection of Zn2+ in common foodstuffs was achieved. For portable Zn2+ detection, a smartphone detection platform was also developed based on the AXS probe. Importantly, the AXS probe showed good bioimaging capabilities in Caenorhabditis elegans and mice.


Subject(s)
Caenorhabditis elegans , Fluorescent Dyes , Zinc , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Animals , Zinc/analysis , Mice , Spectrometry, Fluorescence/methods , Limit of Detection , Smartphone , Optical Imaging/methods
8.
Anal Chim Acta ; 1276: 341602, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37573096

ABSTRACT

Conventional ascorbic acid (AA) detection methods such as chromatography, capillary electrophoresis, colorimetry, electrochemical detection, and enzymatic analysis require expensive equipment and complicated operation. Simple, rapid, and accurate AA detection is essential to inspect food quality, diagnose diseases, and assess immunity in humans. In this study, the first near-infrared fluorescence sensor DBHM with aggregation-induced emission was developed to detect AA under the involvement of Cu2+. The DBHM + Cu2+ sensor showed high sensitivity to AA with a limit of detection of 2.37 µM. The AA detection mechanism was investigated by optical studies, 1H NMR titration, high-resolution mass spectrometry, and infrared spectroscopy. AA was detected qualitatively and quantitatively by the DBHM + Cu2+ sensor in beverages, fruits, and Vitamin C tablets using a dual-mode (fluorescence and smartphone app) sensing platform. The new sensing system also showed low toxicity and excellent bioimaging in HeLa cells, C. elegans, and mice. This sensor could advance AA detection technology in the food industry and has potential bioimaging applications.


Subject(s)
Fluorescent Dyes , Quantum Dots , Mice , Humans , Animals , Fluorescent Dyes/toxicity , Fluorescent Dyes/chemistry , Ascorbic Acid/analysis , HeLa Cells , Caenorhabditis elegans , Quantum Dots/chemistry , Limit of Detection , Spectrometry, Fluorescence/methods
9.
ACS Omega ; 6(12): 8616-8624, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33817522

ABSTRACT

A new fluorescent probe LXY based on the rhodamine 6G platforms has been designed, synthesized, and characterized, which could recognize Fe3+ effectively in HEPES buffer (10 mM, pH = 7.4)/CH3CN (2:3, v/v). And the distinct color change and the rapid emergence of fluorescence emission at 550 nm achieved "naked eye" detection of Fe3+. The interaction mode between them was achieved by Job's plot, MS, SEM, and X-ray single-crystal diffraction. Importantly, the crystal structures proved that Fe3+ could induce the rhodamine moiety transform the closed-cycle form to the open-cycle form. But it is interesting that Fe3+ did not appear in the crystal structures. Meanwhile, the limit of detection (LOD) of LXY to Fe3+ was calculated to be 3.47 × 10-9. In addition, the RGB experiment, test papers, and silica gel plates all indicated that the probe LXY could be used to distinguish Fe3+ quantitatively and qualitatively on-site. Moreover, the probe LXY has also been successfully applied to Fe3+ image in Caenorhabditis elegans, adult mice, and plant tissues. Thus, LXY was considered to have some potential for application in bioimaging.

10.
Front Chem ; 8: 800, 2020.
Article in English | MEDLINE | ID: mdl-33134262

ABSTRACT

The fluorescent probe L, based on naphthalimide-modified coumarin, was designed, synthesized, and characterized, which could recognize Cu2+ from other cations selectively and sensitively in HEPES buffer (10 mM, Ph = 7. 4)/CH3CN (1:4, V/V). When the probe L interacted with Cu2+, the color and the fluorescent intensity changed obviously and it provided the naked-eye detection for Cu2+. The recognition mode between them was achieved by Job's plot, IR, MS, SEM, and 1HNMR. In addition, test strips made from L could still interact with Cu2+ in tap water effectively. The limit of detection (LOD) of L was 3.5 × 10-6 M. Additionally, the density functional theory (DFT) calculation method was used to analyze the action mechanism of L toward Cu2+. Importantly, the fluorescent probe L could demonstrate favorable selectivity toward Cu2+ in Caenorhabditis elegans. Thus, L was considered to have some potential for application in bioimaging.

11.
ACS Omega ; 5(5): 2488-2494, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32064409

ABSTRACT

A naked-eye colorimetric chemosensor DK based on benzothiazole could recognize CN- effectively. When DK interacted with CN- in the aqueous solution, the obvious color change of the solution was directly observed by the naked eye. Other anions did not cause any interference. It is interesting that DK could also discriminate Ni2+ from other cations, and the possible interaction mode between them was verified based on the Job's plot, 1H nuclear magnetic resonance titration, infrared , electrospray ionization mass spectrometry, scanning electron microscopy analysis, and density functional theory calculation methods. As a result, it is clear that the mode of action between DK and CN- was different from that between DK and Ni2+. Meanwhile, the limit of detection of DK toward CN- and Ni2+ was calculated to be 1.7 × 10-8 or 7.4 × 10-9 M, respectively. In addition, CN- was recognized qualitatively by a test paper and silica gel plates made from DK. DK was able to detect CN- in tap water quantitatively, rapidly, and on-site by the use of a smartphone APP. All results implied that DK has certain prospects for practical application to identify CN- in water.

12.
Front Chem ; 8: 14, 2020.
Article in English | MEDLINE | ID: mdl-32140458

ABSTRACT

A fluorescent and colorimetric chemosensor L based on rhodamine 6G was designed, synthesized, and characterized. Based on a two-step reaction, the chemosensor L effectively recognized Hg2+. The interaction between the chemosensor and Hg2+ was confirmed by ultraviolet-visible spectrophotometry, fluorescence spectroscopy, electrospray ionization-mass spectrometry, Fourier-transform infrared spectroscopy, and frontier molecular orbital calculations. The chemosensor L was also incorporated into test strips and silica gel plates, which demonstrated good selectivity and high sensitivity for Hg2+.

13.
Article in English | MEDLINE | ID: mdl-30877893

ABSTRACT

A methionine methyl ester-modified coumarin derivative was designed and synthesized, which could discriminate Cu2+ from other metal ions in HEPES buffer (10 mM, pH 7.4)/CH3CN (40:60, V/V). The detection limit of WM toward Cu2+ was 1.84 × 10-7 M, which was lower than the concentration of Cu2+ in drinking water suggested by WHO and EPA. And the proposed coordination mode exhibiting the interaction between WM and Cu2+ was studied by UV-Vis, fluorescence spectrum, ESI-MS and FT-IR. Based on the fluorescent reversibility of WM, WM was considered as a molecular logic gate and molecular keypad lock. In addition, the test strips and the silica gel plates prepared from the solution of WM also demonstrate the favorable selectivity toward Cu2+.


Subject(s)
Copper/analysis , Coumarins/chemical synthesis , Drinking Water/analysis , Fluorescent Dyes/chemical synthesis , Methionine/analogs & derivatives , Water Pollutants, Chemical/analysis , Cations, Divalent/analysis , Colorimetry/methods , Coumarins/chemistry , Fluorescent Dyes/chemistry , Methionine/chemical synthesis , Methionine/chemistry , Models, Molecular , Silica Gel/chemistry
14.
ACS Omega ; 4(11): 14621-14625, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31528817

ABSTRACT

A novel long-wavelength turn-on fluorescent chemosensor CS based on pyrene was synthesized to detect Hg2+. In the presence of other metal ions, CS could effectively recognize Hg2+ and produce the turn-on fluorescent emission at 607 nm. Also, the absorption spectrum exhibited red-shift. Meanwhile, the change of the solution color from yellow to orange was directly observed by the naked eye. The interaction between CS and Hg2+ was confirmed by the Job's plot, electrospray ionization mass spectrometry, scanning electron microscopy, and density functional theory calculations. It was found that the fluorescence of CS could be reversible when I- was added into the solution of CS and Hg2+. CS illustrated high selectivity and good sensitivity for Hg2+ with the limit of detection of 36 nm. Moreover, CS could be utilized as test strips and silica gel plates to identify Hg2+.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 202: 252-259, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-29800888

ABSTRACT

A new rhodamine-6G-based chemosensor X was designed and synthesized for the colorimetric and fluorometric detection of Hg2+. The chemosensor X responsed to Hg2+ had good sensitivity, high selectivity and excellent reversibility in HEPES buffer (10 mM, pH 7.4)/CH3CN (40:60, V/V). The recognition mechanism of X toward Hg2+ was evaluated by Job's plot, IR and MS. Meanwhile, X-Hg2+ fluorescence lifetime was also measured. It was interesting that X displayed favorable reversibility to form an "off-on-off" type signaling behavior with the Hg2+-induced emission spectra being quenched by I-. Furthermore, it could be applied as a molecular logic gate and test strips based on X exhibited a good reversibility selectivity to Hg2+.

16.
Sci Rep ; 6: 20163, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26832822

ABSTRACT

A controlled new oxidant sulfate radical anion (SO4(·-)) was found and it can be easily prepared by mixing Na2S2O4 and TBHP with stirring. In this new metal-free oxidation system (Na2S2O4/TBHP), SO4(·-) can be used as a controllable oxidant to oxidize various aromatic alcohols to the corresponding aldehydes in good yields without any acid formation at room temperature. SO4(·-) was determined by a DMPO (5,5-dimethyl-1-pyrroline-N-oxide) spin-trapping EPR method at room temperature on a Bruker E500 spectrometer and the results suggested that SO4(·-) was generated in this transformation.

17.
Org Lett ; 18(23): 5986-5989, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27934364

ABSTRACT

The first example of a metal-free unactivated C(sp3)-H bond functionalization of alkyl nitriles with terminal vinylarenes to provide γ-ketonitrile derivatives is described. This protocol features simple operations, a broad substrate scope, and atom and step economy. In addition, Cu-catalyzed C(sp3)-H bond functionalization of azodiisobutyronitrile (AIBN) and analogues with terminal vinylarenes to generate γ-ketonitriles was also studied. A preliminary free-radical pathway was confirmed by capturing an alkyl radical, and a conjugate system was found that can stabilize radical intermediates and be in favor of this transformation. Density functional theory (DFT) calculations also provide important evidence of the free-radical pathway.

18.
Sci Rep ; 5: 17458, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26648413

ABSTRACT

A new type of NADH model compound has been synthesized by an efficient and convenient method. This model compound exhibits high reactivity and enantioselectivity in asymmetric reduction reactions. The results show that chiral NADH model S could be effectively combined with Mg(2+) to form ternary complexes. This novel C3 symmetrical NADH model is capable of fluorescence emission at 460 nm when excited at 377 nm.


Subject(s)
Models, Chemical , NAD/chemistry , Models, Molecular , Molecular Conformation , NAD/chemical synthesis
19.
Sci Rep ; 5: 18391, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26681470

ABSTRACT

A novel and convenient copper (II) bromide and 1,8-diazabicyclo[5.4.1]undec-7-ene (DBU) or 1,10-phenanthroline catalysis protocol for the construction of α-alkyl-ß-keto sulfones via C(sp(3))-H bond functionalization followed by C(sp(3))-S bond formation between aryl ketones and sodium sulfinates at room temperature has been developed. This method is applicable to a wide range of aryl ketones and sodium sulfinates. The electronic effects of aryl ketones and ligands effects of the copper salts are crucial for this transformation. Typically, substituted aryl ketones with electron-withdrawing group do not need any ligand to give a good to excellent yield, while substituted aryl ketones with electron-donating group and electron-rich heteroaromatic ketones offer a good to excellent yield only under the nitrogen-based ligands. The practical value of this transformation highlights the efficient and robust one-pot synthesis of α-alkyl-ß-keto sulfones.

20.
Sci Rep ; 5: 15250, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26470633

ABSTRACT

Alcohols and alkenes are the most abundant and commonly used organic building blocks in the large-scale chemical synthesis. Herein, this is the first time to report a novel and operationally simple coupling reaction of vinylarenes and aliphatic alcohols catalyzed by manganese in the presence of TBHP (tert-butyl hydroperoxide). This coupling reaction provides the oxyalkylated products of vinylarenes with good regioselectivity and accomplishes with the principles of step-economies. A possible reaction mechanism has also been proposed.

SELECTION OF CITATIONS
SEARCH DETAIL