Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 384
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Immunol ; 212(4): 645-662, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38180157

ABSTRACT

Collectin is a crucial component of the innate immune system and plays a vital role in the initial line of defense against pathogen infection. In mammals, collectin kidney 1 (CL-K1) is a soluble collectin that has recently been identified to have significant functions in host defense. However, the evolutionary origins of immune defense of CL-K1 and its mechanism in clearance of pathogenic microorganisms remain unclear, especially in early vertebrates. In this study, the Oreochromis niloticus CL-K1 (OnCL-K1) protein was purified and identified, which was capable of binding to two important pathogens of tilapia, Streptococcus agalactiae and Aeromonas hydrophila. Interestingly, OnCL-K1 exhibited direct bactericidal activity by binding to lipoteichoic acid or LPS on cell walls, disrupting the permeability and integrity of the bacterial membrane in vitro. Upon bacterial challenge, OnCL-K1 significantly inhibited the proliferation of pathogenic bacteria, reduced the inflammatory response, and improved the survival of tilapia. Further research revealed that OnCL-K1 could associate with OnMASPs to initiate and regulate the lectin complement pathway. Additionally, OnCD93 reduced the complement-mediated hemolysis by competing with OnMASPs for binding to OnCL-K1. More importantly, OnCL-K1 could facilitate phagocytosis by collaborating with cell surface CD93 in a lectin pathway-independent manner. Moreover, OnCL-K1 also promoted the formation of phagolysosomes, which degraded and killed ingested bacteria. Therefore, this study reveals the antibacterial response mechanism of CL-K1 in primitive vertebrates, including promoting complement activation, enhancing opsonophagocytosis, and killing of macrophages, as well as its internal links, all of which provide (to our knowledge) new insights into the understanding of the evolutionary origins and regulatory roles of the collectins in innate immunity.


Subject(s)
Macrophages , Opsonization , Animals , Macrophages/metabolism , Complement Activation , Kidney/metabolism , Vertebrates , Collectins/metabolism , Fish Proteins/metabolism , Mammals/metabolism
2.
Proc Natl Acad Sci U S A ; 120(8): e2216641120, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36780517

ABSTRACT

Microchromosomes are prevalent in nonmammalian vertebrates [P. D. Waters et al., Proc. Natl. Acad. Sci. U.S.A. 118 (2021)], but a few of them are missing in bird genome assemblies. Here, we present a new chicken reference genome containing all autosomes, a Z and a W chromosome, with all gaps closed except for the W. We identified ten small microchromosomes (termed dot chromosomes) with distinct sequence and epigenetic features, among which six were newly assembled. Those dot chromosomes exhibit extremely high GC content and a high level of DNA methylation and are enriched for housekeeping genes. The pericentromeric heterochromatin of dot chromosomes is disproportionately large and continues to expand with the proliferation of satellite DNA and testis-expressed genes. Our analyses revealed that the 41-bp CNM repeat frequently forms higher-order repeats (HORs) at the centromeres of acrocentric chromosomes. The centromere core regions where the kinetochore attaches often encompass telomeric sequence (TTAGGG)n, and in a one of the dot chromosomes, the centromere core recruits an endogenous retrovirus (ERV). We further demonstrate that the W chromosome shares some common features with dot chromosomes, having large arrays of hypermethylated tandem repeats. Finally, using the complete chicken chromosome models, we reconstructed a fine picture of chordate karyotype evolution, revealing frequent chromosomal fusions before and after vertebrate whole-genome duplications. Our sequence and epigenetic characterization of chicken chromosomes shed insights into the understanding of vertebrate genome evolution and chromosome biology.


Subject(s)
Centromere , Chickens , Animals , Male , Chickens/genetics , Centromere/genetics , Telomere , Heterochromatin , Tandem Repeat Sequences
3.
Small ; : e2309431, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38402425

ABSTRACT

Clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) is a promising gene editing tool to treat diseases at the genetic level. Nonetheless, the challenge of the safe and efficient delivery of CRISPR/Cas9 to host cells constrains its clinical applicability. In the current study, a facile, redox-responsive CRISPR/Cas9-Ribonucleoprotein (RNP) delivery system by combining iron-coordinated aggregation with liposomes (Fe-RNP@L) is reported. The Fe-RNP is formed by the coordination of Fe3+ with amino and carboxyl groups of Cas9, which modifies the lipophilicity and surface charge of RNP and alters cellular uptake from primary endocytosis to endocytosis and cholesterol-dependent membrane fusion. RNP can be rapidly and reversibly released from Fe-RNP in response to glutathione without loss of structural integrity and enzymatic activity. In addition, iron coordination also improves the stability of RNP and substantially mitigates cytotoxicity. This construct enabled highly efficient cytoplasmic/nuclear delivery (≈90%) and gene-editing efficiency (≈70%) even at low concentrations. The high payload content, high editing efficiency, good stability, low immunogenicity, and ease of production and storage, highlight its potential for diverse genome editing and clinical applications.

4.
BMC Cancer ; 24(1): 715, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862908

ABSTRACT

BACKGROUND: Resistance to immune checkpoint inhibitors (ICIs) represents a major unmet medical need in non-small cell lung cancer (NSCLC) patients. Vascular endothelial growth factor (VEGF) inhibition may reverse a suppressive microenvironment and recover sensitivity to subsequent ICIs. METHODS: This phase Ib/IIa, single-arm study, comprised dose-finding (Part A) and expansion (Part B) cohorts. Patients with ICIs-refractory NSCLC were enrolled to receive anlotinib (a multi-target tyrosine kinase inhibitor) orally (from days 1 to 14 in a 21-day cycle) and nivolumab (360 mg every 3 weeks, intravenously) on a 21-day treatment cycle. The first 21-day treatment cycle was a safety observation period (phase Ib) followed by a phase II expansion cohort. The primary objectives were recommended phase 2 dose (RP2D, part A), safety (part B), and objective response rate (ORR, part B), respectively. RESULTS: Between November 2020 and March 2022, 34 patients were screened, and 21 eligible patients were enrolled (6 patients in Part A). The RP2D of anlotinib is 12 mg/day orally (14 days on and 7 days off) and nivolumab (360 mg every 3 weeks). Adverse events (AEs) of any cause and treatment-related AEs (TRAEs) were reported in all treated patients. Two patients (9.5%) experienced grade 3 TRAE. No grade 4 or higher AEs were observed. Serious AEs were reported in 4 patients. Six patients experienced anlotinib interruption and 4 patients experienced nivolumab interruption due to TRAEs. ORR and disease control rate (DCR) was 19.0% and 76.2%, respectively. Median PFS and OS were 7.4 months (95% CI, 4.3-NE) and 15.2 months (95% CI, 12.1-NE), respectively. CONCLUSION: Our study suggests that anlotinib combined with nivolumab shows manageable safety and promising efficacy signals. Further studies are warranted. TRIAL REGISTRATION: NCT04507906 August 11, 2020.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Non-Small-Cell Lung , Immune Checkpoint Inhibitors , Lung Neoplasms , Nivolumab , Protein Kinase Inhibitors , Adult , Aged , Female , Humans , Male , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/mortality , Drug Resistance, Neoplasm , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/therapeutic use , Indoles/administration & dosage , Indoles/adverse effects , Indoles/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Nivolumab/administration & dosage , Nivolumab/adverse effects , Nivolumab/therapeutic use , Prospective Studies , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Quinolines/administration & dosage , Quinolines/adverse effects , Quinolines/therapeutic use , Adolescent
5.
Scand J Gastroenterol ; 59(2): 239-245, 2024.
Article in English | MEDLINE | ID: mdl-37865826

ABSTRACT

OBJECTIVES: This study aimed to evaluate the clinical and prognostic characteristics of primary gastric gastrointestinal stromal tumors (GIST). METHODS: Patients who underwent resection for primary gastric GIST between January 2002 and December 2017 were included. Recurrence-free survival (RFS) was calculated by Kaplan-Meier analysis, and Cox proportional hazards model was used to identify independent prognostic factors. RESULTS: Altogether, 653 patients were enrolled. The median patient age was 59 years (range 15-86 years). Open, laparoscopic, and endoscopic resections were performed in 394 (60.3%), 105 (16.1%), and 154 (23.6%) patients, respectively. According to the modified NIH consensus classification, 132 (20.2%), 245 (37.5%), 166 (25.4%), and 88 (13.5%) patients were categorized into very low-, low-, intermediate-, and high-risk, respectively. A total of 136 (20.8%) patients received adjuvant imatinib treatment. The median follow-up time was 78 months (range 4-219 months), and the estimated 5-year RFS rate was 93.0%. In all patients, tumor size and rupture, mitotic counts, and adjuvant imatinib treatment were independent prognostic factors. The prognosis of gastric GIST treated with endoscopic resection was not significantly different from that of laparoscopic or open resection after adjusting for covariates using propensity score matching (log-rank p = .558). Adjuvant imatinib treatment (HR = 0.151, 95%CI 0.055-0.417, p < .001) was a favorable prognostic factor for high-risk patients, but was not associated with prognosis in intermediate-risk patients. CONCLUSION: Patients with small gastric GISTs who successfully underwent endoscopic resection may have a favorable prognosis. Adjuvant imatinib treatment improve the prognosis of high-risk gastric GISTs, however, its use in intermediate-risk patients remains controversial.


Subject(s)
Antineoplastic Agents , Gastrointestinal Stromal Tumors , Stomach Neoplasms , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Imatinib Mesylate/therapeutic use , Gastrointestinal Stromal Tumors/surgery , Gastrointestinal Stromal Tumors/drug therapy , Antineoplastic Agents/therapeutic use , Retrospective Studies , Prognosis , Stomach Neoplasms/surgery
6.
J Immunol ; 209(3): 593-605, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35868636

ABSTRACT

Teleost tetramer IgM is the predominant Ig in the immune system and plays essential roles in host defense against microbial infection. Due to variable disulfide polymerization of the monomeric subunits, tetrameric IgM possesses considerable structural diversity. Previous work indicated that the teleost IgM H chain was fully occupied with complex-type N-glycans. However, after challenge with trinitrophenyl (TNP) Ag, the complex N-glycans in the Asn-509 site of Oreochromis niloticus IgM H chain transformed into high mannose. This study, therefore, was conducted to examine the functional roles of the affinity-related high-mannose modification in tilapia IgM. The TNP-specific IgM Ab affinity maturation was revealed in tilapia over the response. A positive correlation between TNP-specific IgM affinity and its disulfide polymerization level of isomeric structure was demonstrated. Mass spectrometric analysis indicated that the relationship between IgM affinity and disulfide polymerization was associated with the Asn-509 site-specific high-mannose modification. Furthermore, the increase of high mannose content promoted the combination of IgM and mannose receptor (MR) on the surface of phagocytes. Moreover, the increased interaction of IgM and MR amplified the phagocytic ability of phagocytes to Streptococcus agalactiae. To our knowledge, this study demonstrates that site-specific high-mannose modification associates with IgM Ab affinity and its structural disulfide polymerization and amplifies the phagocytosis of phagocytes by the combination of IgM and MR. The present study provides evidence for understanding the association of IgM structure and function during the evolution of the immune system.

7.
Macromol Rapid Commun ; 45(5): e2300506, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38134364

ABSTRACT

Condensation of 3,3'-diamino-2,2'-ethylene-bridged azobenzene with 1,2,4,5-tetrakis-(4-formylphenyl) benzene produces a visible light responsive porous 2D covalent organic framework, COF-bAzo-TFPB, with a large surface area, good crystallinity, and thermal and chemical stability. The results demonstrate that the elaborated designed linker can make azo unit on the COF-bAzo-TFPB skeleton undergo reversible photoisomerization. This work expands the application scope of covalent organic frameworks in photo-controlled release, uptake of guest molecules, dynamic photoswitching, and UV-sensitive functions.


Subject(s)
Metal-Organic Frameworks , Azo Compounds , Benzene , Light
8.
Sensors (Basel) ; 24(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38894454

ABSTRACT

The high-speed railway subgrade compaction quality is controlled by the compaction degree (K), with the maximum dry density (ρdmax) serving as a crucial indicator for its calculation. The current mechanisms and methods for determining the ρdmax still suffer from uncertainties, inefficiencies, and lack of intelligence. These deficiencies can lead to insufficient assessments for the high-speed railway subgrade compaction quality, further impacting the operational safety of high-speed railways. In this paper, a novel method for full-section assessment of high-speed railway subgrade compaction quality based on ML-interval prediction theory is proposed. Firstly, based on indoor vibration compaction tests, a method for determining the ρdmax based on the dynamic stiffness Krb turning point is proposed. Secondly, the Pso-OptimalML-Adaboost (POA) model for predicting ρdmax is determined based on three typical machine learning (ML) algorithms, which are back propagation neural network (BPNN), support vector regression (SVR), and random forest (RF). Thirdly, the interval prediction theory is introduced to quantify the uncertainty in ρdmax prediction. Finally, based on the Bootstrap-POA-ANN interval prediction model and spatial interpolation algorithms, the interval distribution of ρdmax across the full-section can be determined, and a model for full-section assessment of compaction quality is developed based on the compaction standard (95%). Moreover, the proposed method is applied to determine the optimal compaction thicknesses (H0), within the station subgrade test section in the southwest region. The results indicate that: (1) The PSO-BPNN-AdaBoost model performs better in the accuracy and error metrics, which is selected as the POA model for predicting ρdmax. (2) The Bootstrap-POA-ANN interval prediction model for ρdmax can construct clear and reliable prediction intervals. (3) The model for full-section assessment of compaction quality can provide the full-section distribution interval for K. Comparing the H0 of 50~60 cm and 60~70 cm, the compaction quality is better with the H0 of 40~50 cm. The research findings can provide effective techniques for assessing the compaction quality of high-speed railway subgrades.

9.
J Environ Manage ; 354: 120452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38401503

ABSTRACT

Loess, a terrestrial clastic sediment, is formed essentially by the accumulation of wind-blown dust, while stone waste (SW) is an industrial waste produced during stone machining. Utilising loess and SW to prepare environmentally-friendly supplementary cementitious materials can not only address environmental issues caused by solid waste landfills but also meet the demand of reinforcement of coal-seam floor aquifer for grouting materials. In this paper, the effects of the loess/SW mass ratio and calcination temperature on the transformation of calcined products are investigated and their pozzolanic activities are evaluated. The workability, environmental impact and cost of grouting materials based on cement and calcined products are also assessed. Experimental results reveal that higher temperatures favour the formation of free lime and periclase, which tend to be involved in solid-state reactions. Higher temperature and loess/SW mass ratio strengthens the diffraction peaks of dodecalcium hepta-aluminate (C12A7), dicalcium ferrite (C2F) and dicalcium silicate (C2S). The clay minerals in loess become completely dehydroxylated before 825 °C, generating amorphous SiO2 and Al2O3. Covalent Si-O bonds are interrupted and that disordered silicate networks are generated in the calcined products, which is confirmed by the increased strength of the Si29 resonance region at -60 ppm to -80 ppm. Although co-calcined loess and SW contain the most four-fold aluminium at 950 °C, recrystallisation depresses the pozzolanic activity. Hence, the loess/SW sample designated LS2-825 exhibits the better hydration activity. Additionally, grouting materials composed of cement and LS2-825 exhibit good setting times, fluidity, strength and a low carbon footprint in practical engineering applications, and they also provide the additional benefit of being cost effective.


Subject(s)
Minerals , Silicon Dioxide , Silicates , Industrial Waste , Clay
10.
Angew Chem Int Ed Engl ; 63(28): e202404186, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38691059

ABSTRACT

The introduction of nitrogen-containing functional groups to chiral polymer backbones enables the tailoring of physical properties and offers opportunities for further post-polymerization modification. However, the substrate scope of such polymers is extremely limited because monomers having nitrogen-containing groups can change coordination state with respect to the metal centers, thus decreasing the activity and enantioselectivity and even poisoning the catalyst completely. In this paper, we report our attempts to carry out the asymmetric copolymerization of meso-epoxide with highly reactive isocyanates. In particular, we found that biphenol-linked bimetallic Co(III) complexes with multiple chiral centers are very efficient in catalyzing this asymmetric copolymerization reaction, affording optically active polyurethanes with a completely alternating nature and a high enantioselectivity of up to 94 % ee. Crucially, we identified that the steric hindrance at the phenolate ortho position of the ligand strongly influences the catalytic activity and product enantioselectivity. In addition, density functional theory calculations revealed that the highly sterically bulky substituents change the mechanism from bimetallic to monometallic, and result in the unexpected inversion of the chiral induction direction. Moreover, the high stereoregularity of the produced polyurethanes enhances their thermal stability, and they can be selectively decomposed into oxazolidinones. This study offers a versatile methodology for the synthesis of chiral polymers containing nitrogen functionalities.

11.
Angew Chem Int Ed Engl ; 63(18): e202401926, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38415944

ABSTRACT

Block copolymers, comprising polyether and polyolefin segments, are an important and promising category of functional materials. However, the lack of efficient strategies for the construction of polyether-b-polyolefin block copolymers have hindered the development of these materials. Herein, we propose a simple and efficient method to obtain various block copolymers through the copolymerization of epoxides and acrylates via bimetallic synergistic catalysis. The copolymerization of epoxides and acrylates proceeds in a sequence-controlled manner, where the epoxides-involved homo- or copolymerization occurs first, followed by the homopolymerization of acrylates initiated by the alkoxide species from the propagating polymer chain, thus yielding copolymers with a block structure. Notably, the high monomer compatibility of this powerful strategy provides a platform for synthesizing various polyacrylate-based block copolymers comprising polyether, polycarbonate, polythiocarbonate, polyester, and polyurethane segments, respectively.

12.
Int J Cancer ; 153(1): 54-63, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36897046

ABSTRACT

Evidence regarding associations of general and abdominal obesity with the risk of conventional adenomas (ADs) and serrated polyps (SPs) from Asian population is scarce. Our study aimed to investigate the independent and joint associations of general obesity assessed by body mass index (BMI) and abdominal obesity assessed by waist circumference (WC) or waist-to-hip ratio (WHR) with the risk of ADs and SPs among 25 222 participants recruited by a population-based screening program. Compared to participants with normal BMI, those with a BMI ≥28 kg/m2 had increased risk of ADs (odds ratio [OR] 1.52, 95% confidence interval [CI]: 1.36-1.70) and SPs (OR 1.69, 95% CI: 1.38-2.07). For participants with a WC ≥102 cm (≥88 cm for females), the risk of ADs (OR 1.37, 95% CI: 1.25-1.51) and SPs (OR 1.81, 95% CI: 1.52-2.16) was higher than that of the reference group. For participants with a WHR ≥0.95 (≥0.90 for females), the risk of ADs (OR 1.26, 95% CI: 1.16-1.36) and SPs (OR 1.46, 95% CI: 1.26-1.69) was higher than that of the reference group. Moreover, participants with both BMI ≥28 kg/m2 and WC ≥102 cm (≥88 cm for females) had 61% and 119% higher risk of ADs (OR 1.61, 95% CI: 1.39-1.85) and SPs (OR 2.19, 95% CI: 1.70-2.82) compared to those with both normal BMI and WC. These findings indicate that both general and abdominal obesity are associated with SPs and ADs, presenting stronger association with SPs than ADs. Moreover, the association is more evident when both obesities exist.


Subject(s)
Adenoma , Obesity, Abdominal , Female , Humans , Obesity, Abdominal/complications , Obesity, Abdominal/epidemiology , Obesity/complications , Obesity/epidemiology , Waist-Hip Ratio , Waist Circumference , Body Mass Index , Asia, Eastern , Adenoma/epidemiology , Adenoma/etiology , Risk Factors
13.
Curr Issues Mol Biol ; 45(10): 7974-7995, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37886947

ABSTRACT

The central player for chromosome segregation in both mitosis and meiosis is the macromolecular kinetochore structure, which is assembled by >100 structural and regulatory proteins on centromere DNA. Kinetochores play a crucial role in cell division by connecting chromosomal DNA and microtubule polymers. This connection helps in the proper segregation and alignment of chromosomes. Additionally, kinetochores can act as a signaling hub, regulating the start of anaphase through the spindle assembly checkpoint, and controlling the movement of chromosomes during anaphase. However, the role of various kinetochore proteins in plant meiosis has only been recently elucidated, and these proteins differ in their functionality from those found in animals. In this review, our current knowledge of the functioning of plant kinetochore proteins in meiosis will be summarized. In addition, the functional similarities and differences of core kinetochore proteins in meiosis between plants and other species are discussed, and the potential applications of manipulating certain kinetochore genes in meiosis for breeding purposes are explored.

14.
Small ; 19(35): e2301144, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37186449

ABSTRACT

Because of its light weight and high strength, bamboo is used in many applications around the world. Natural bamboo is built from fiber-reinforced material and exhibits a porous graded architecture that provides its remarkable mechanical performance. This porosity gradient is generated through the unique distribution of densified vascular bundles. Scientists and engineers have been trying to mimic this architecture for a very long time with much of the work focusing on the effect of fiber reinforcement. However, there still lacks quantitative studies on the role of pore gradient design on mechanical properties, in part because the fabrication of bamboo-inspired graded materials is challenging. Here, the steep and continuous porosity gradient through an ingenious cellular design in Moso bamboo is revealed. The effect of gradient design on the mechanical performance is systematically studied by using 3D-printed models. The results show that not only the magnitude of gradient but also its continuity have a significant effect. By introducing a continuous and large gradient, the maximum flexural load and energy absorption capability can be increased by 40% and 110% when comparing to the structure without gradient. These bamboo-inspired cellular architectures can offer efficient solutions for the design of damage tolerant engineering structures.

15.
Opt Lett ; 48(14): 3813-3816, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37450757

ABSTRACT

In this study, a novel, to the best of our knowledge, dye-doped dual-frequency liquid crystal multi-stable smart window is proposed. A chiral dopant with appropriate content was introduced into dye-doped dual-frequency liquid crystals to achieve an initial 180° twisted state. These liquid crystals can be switched to a nematic phase or a 360° twisted state by controlling the magnitude and frequency of the applied voltage. These nematic phase and 360° twisted states can exist stably for a long time because of the backflow effect and the anisotropic nature of the dual-frequency liquid crystal material. Due to the optical waveguide effect of dye-doped liquid crystals in the long-pitch state, the transmittance was different in nematic phase, 180°, and 360° twisted three zero-field stabilized absorption states. Finally, a multi-stable smart window is developed to switch between three zero-field stabilized absorption and scattering states.

16.
Microb Ecol ; 86(1): 497-508, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35864173

ABSTRACT

Biological soil crusts (biocrusts) are distributed in arid and semiarid regions across the globe. Microorganisms are an essential component in biocrusts. They add and accelerate critical biochemical processes. However, little is known about the functional genes and metabolic processes of microbiomes in lichen and moss biocrust. This study used shotgun metagenomic sequencing to compare the microbiomes of lichen-dominated and moss-dominated biocrust and reveal the microbial genes and metabolic pathways involved in carbon and nitrogen cycling. The results showed that Actinobacteria, Bacteroidetes, and Acidobacteria were more abundant in moss biocrust than lichen biocrust, while Proteobacteria and Cyanobacteria were more abundant in lichen biocrust than moss biocrust. The relative abundance of carbohydrate-active enzymes and enzymes associated with carbon and nitrogen metabolism differed significantly between microbiomes of the two biocrust types. However, in the microbial communities of both biocrust types, respiration pathways dominated over carbon fixation pathways. The genes encoding carbon monoxide dehydrogenase were more abundant than those encoding ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCo) involved in carbon fixation. Similarly, metabolic N-pathway diversity was dominated by nitrogen reduction, followed by denitrification, with nitrogen fixation the lowest proportion. Gene diversity involved in N cycling differed between the microbiomes of the two biocrust types. Assimilatory nitrate reduction genes had higher relative abundance in lichen biocrust, whereas dissimilatory nitrate reduction genes had higher relative abundance in moss biocrust. As dissolved organic carbon and soil organic carbon are considered the main drivers of the community structure in the microbiome of biocrust, these results indicate that biocrust type has a pivotal role in microbial diversity and related biogeochemical cycling.


Subject(s)
Bryophyta , Lichens , Microbiota , Ecosystem , Carbon , Nitrates , Soil/chemistry , Nitrogen Fixation , Soil Microbiology , Nitrogen/chemistry
17.
Inorg Chem ; 62(11): 4558-4569, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36894513

ABSTRACT

In this study, a process based on the molten salt method was proposed to prepare La2Zr2O7 for improving the kinetic conditions of synthesis. Considering that the particle size of raw materials is an important factor that may have an effect on the kinetic process of synthesis, ZrO2 and La2O3 with different particle sizes are used as raw materials, and the synthesis experiment is carried out at 900-1300 °C through the combination of raw materials with different particle sizes. The results show that the particle size of ZrO2 plays an important role in the synthesis of La2Zr2O7. The "dissolution precipitation" mechanism of the synthesis process in the NaCl-KCl molten salt was confirmed by SEM image observation. Furthermore, the influence of the dissolution rate of each raw material on the synthesis reaction was studied by introducing the Noyes-Whitney equation and testing the specific surface area and solubility of each raw material, and it was confirmed that the particle size of ZrO2 was the limiting condition of the synthesis reaction, and use of ZrO2(Z50) with a nominal particle size of 50 nm could significantly improve the kinetic condition of the reaction, thus reducing the synthesis temperature, which can help realize the energy-saving and -efficient synthesis of pyrochlore La2Zr2O7.

18.
Clin Orthop Relat Res ; 481(7): 1399-1411, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36728053

ABSTRACT

BACKGROUND: Ankylosing spondylitis-related cervical spine fracture with neurologic impairment (ASCF-NI) is a rare but often lethal injury. Factors independently associated with survival after treatment remain poorly defined, and identifying patients who are likely to survive the injury remains challenging. QUESTIONS/PURPOSES: (1) What factors are independently associated with survival after treatment among patients with ASCF-NI? (2) Can a nomogram be developed that is sufficiently simple for clinicians to use that can identify patients who are the most likely to survive after injury? METHODS: This retrospective study was conducted based on a multi-institutional group of patients admitted and treated at one of 29 tertiary hospitals in China between March 1, 2003, and July 31, 2019. A total of 363 patients with a mean age of 53 ± 12 years were eventually included, 343 of whom were male. According to the National Household Registration Management System, 17% (61 of 363) died within 5 years of injury. Patients were treated using nonsurgical treatment or surgery, including procedures using the anterior approach, posterior approach, or combined anterior and posterior approaches. Indications for surgery included three-column injury, unstable fracture displacement, neurologic impairment or continuous progress, and intervertebral disc incarceration. By contrast, patients generally received nonsurgical treatment when they had a relatively stable fracture or medical conditions that did not tolerate surgery. Demographic, clinical, and treatment data were collected. The primary study goal was to identify which factors are independently associated with death within 5 years of injury, and the secondary goal was the development of a clinically applicable nomogram. We developed a multivariable Cox hazards regression model, and independent risk factors were defined by backward stepwise selection with the Akaike information criterion. We used these factors to create a nomogram using a multivariate Cox proportional hazards regression analysis. RESULTS: After controlling for potentially confounding variables, we found the following factors were independently associated with a lower likelihood of survival after injury: lower fracture site, more-severe peri-injury complications, poorer American Spinal Injury Association (ASIA) Impairment Scale, and treatment methods. We found that a C5 to C7 or T1 fracture (ref: C1 to C4 and 5; hazard ratio 1.7 [95% confidence interval 0.9 to 3.5]; p = 0.12), moderate peri-injury complications (ref: absence of or mild complications; HR 6.0 [95% CI 2.3 to 16.0]; p < 0.001), severe peri-injury complications (ref: absence of or mild complications; HR 30.0 [95% CI 11.5 to 78.3]; p < 0.001), ASIA Grade A (ref: ASIA Grade D; HR 2.8 [95% CI 1.1 to 7.0]; p = 0.03), anterior approach (ref: nonsurgical treatment; HR 0.5 [95% CI 0.2 to 1.0]; p = 0.04), posterior approach (ref: nonsurgical treatment; HR 0.4 [95% CI 0.2 to 0.8]; p = 0.006), and combined anterior and posterior approach (ref: nonsurgical treatment; HR 0.4 [95% CI 0.2 to 0.9]; p = 0.02) were associated with survival. Based on these factors, a nomogram was developed to predict the survival of patients with ASCF-NI after treatment. Tests revealed that the developed nomogram had good performance (C statistic of 0.91). CONCLUSION: The nomogram developed in this study will allow us to classify patients with different mortality risk levels into groups. This, coupled with the factors we identified, was independently associated with survival, and can be used to guide more appropriate treatment and care strategies for patients with ASCF-NI. LEVEL OF EVIDENCE: Level III, therapeutic study.


Subject(s)
Fractures, Bone , Nervous System Diseases , Spinal Fractures , Spondylitis, Ankylosing , Humans , Male , Adult , Middle Aged , Aged , Female , Nomograms , Spondylitis, Ankylosing/complications , Spondylitis, Ankylosing/diagnosis , Spondylitis, Ankylosing/therapy , Retrospective Studies , Spinal Fractures/diagnostic imaging , Spinal Fractures/etiology , Spinal Fractures/therapy
19.
Anim Biotechnol ; 34(7): 2459-2466, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35816470

ABSTRACT

Duck meat is known for its taste and high nutritive value. To preserve local genetic diversity while maintaining commercial viability, we obtained a crossbreed (CB) between high-performing Cherry Valley (CV) and traditional Chinese crested (CC) ducks. We compared carcass traits and meat quality characteristics of CB and parental breeds. Meat from the above ducks at their respective marketable ages was evaluated for proximate composition, amino acid and fatty acid profiles, and selected mineral content. The live weights, carcass weights, and breast muscle percentage of CB were higher than CC but lower than CV; the leg muscle of CB was lower than CV and CC. CB had higher intramuscular fat content than CV; its collagen content was lower than CC but higher than CV in breast and thigh muscles. Additionally, the saturated fatty acid content of CB muscle was lower than CV and higher than CC. CB contained more monounsaturated fatty acids than CV and CC. Zn content was higher in CB breast than CV and CC. CB, obtained by crossing CV and CC, has partial advantages over both the breeds suggesting that these characteristics aligned with standards to breed ducks with high-quality meat.


Subject(s)
Ducks , Meat , Animals , Amino Acids/analysis , Ducks/genetics , Fatty Acids/analysis , Meat/analysis , Minerals/analysis , Body Composition/genetics , China
20.
Anim Biotechnol ; 34(7): 2527-2536, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35875943

ABSTRACT

With the development of high-throughput sequencing, circular RNA has come into people's vision and attracted more and more attention. Many studies have found that circular RNA plays an important role in a variety of biological processes and the occurrence and development of diseases. According to the previous sequencing results, circRNA_3238 was differentially expressed in ALV-J infected group and the non-infected group was selected for subsequent verification and analysis. We found that circRNA_3238 is a stable, circular transcript, which mainly exists in the cytoplasm. And it is widely expressed in various tissues of chickens, and highly expressed in lung, lymph, and bursa of fabricius. Bioinformatics results show that circRNA_3238 and the predicted target genes enriched MAPK signaling pathway, Notch signaling pathway, and other pathways related to disease or immune, revealing circRNA_3238 may indirectly regulate the process of ALV-J infection by regulating target genes.


Subject(s)
MicroRNAs , RNA, Circular , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , RNA/genetics , Chickens/genetics , Chickens/metabolism , Signal Transduction/genetics , MAP Kinase Signaling System , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL