ABSTRACT
Spatiotemporally functionalized hydrogels have exciting applications in tissue engineering, but their preparation often relies on radical-based strategies that can be deleterious in biological settings. Herein, the computationally guided design, synthesis, and application of a water-soluble cyclopentadienone-norbornadiene (CPD-NBD) adduct is disclosed as a diene photocage for radical-free Diels-Alder photopatterning. We show that this scalable CPD-NBD derivative is readily incorporated into hydrogel formulations, providing gels that can be patterned with dienophiles upon 365â nm uncaging of cyclopentadiene. Patterning is first visualized through conjugation of cyanine dyes, then biological utility is highlighted by patterning peptides to direct cellular adhesion. Finally, the ease of use and versatility of this CPD-NBD derivative is demonstrated by direct incorporation into a commercial 3D printing resin to enable the photopatterning of structurally complex, printed hydrogels.
ABSTRACT
Aligned liquid crystal polymers are materials of interest for electronic, optic, biological and soft robotic applications. The manufacturing and processing of these materials have been widely explored with mechanical alignment establishing itself as a preferred method due to its ease of use and widespread applicability. However, the fundamental chemistry behind the required two-step polymerization for mechanical alignment has limitations in both fabrication and substrate compatibility. In this work we introduce a new protection-deprotection approach utilizing a two-stage Diels-Alder cyclopentadiene-maleimide step-growth polymerization to enable mild yet efficient, fast, controlled, reproducible and user-friendly polymerizations, broadening the scope of liquid crystal systems. Thorough characterization of the films by DSC, DMA, POM and WAXD show the successful synthesis of a uniaxially aligned liquid crystal network with thermomechanical actuation abilities.
ABSTRACT
Photosurfactants have shown considerable promise for enabling stimuli-responsive control of the properties and motion of fluid interfaces. Recently, a number of photoswitch chemistries have emerged to tailor the photoresponsive properties of photosurfactants. However, systematic studies investigating how photoresponsive surfactant behavior depends on the photochemical and photophysical properties of the switch remain scarce. In this work, we develop synthetic schemes and surfactant designs to produce a well-controlled library of photosurfactants to comparatively assess the behavior of photoswitch chemistry on interfacial behavior. We employ photoinduced spreading of droplets at fluid interfaces as a model for such studies. We show that although photosurfactant response is largely guided by expected trends with changes in polarity of the photoswitch, interfacial behavior also depends nontrivially and sometimes counter-intuitively on the kinetics and mechanisms of photoswitching, particularly at the interface of two solvents, as well as on complex interactions with other surfactants. Understanding these complexities enables the design of new photosurfactant systems and their optimization toward responsive functions including triggered spreading, dewetting, and destabilization of droplets on solid and fluid surfaces.
ABSTRACT
Herein, we report the development of a scalable and synthetically robust building block based on norbornadiene (NBD) that can be broadly incorporated into a variety of macromolecular architectures using traditional living polymerization techniques. By taking advantage of a selective and rapid deprotection with tetrazine, highly reactive "masked" cyclopentadiene (Cp) functionalities can be introduced into synthetic polymers as chain-end groups in a quantitative and efficient manner. The orthogonality of this platform further enables a cascade "click" process where the "unmasked" Cp can rapidly react with dienophiles, such as maleimides, through a conventional Diels-Alder reaction. Coupling proceeds with quantitative conversions allowing high molecular weight star and dendritic block copolymers to be prepared in a single step under ambient conditions.
Subject(s)
Cyclopentanes/chemical synthesis , Norbornanes/chemical synthesis , Polymers/chemical synthesis , Click Chemistry , Cycloaddition Reaction , Cyclopentanes/chemistry , Molecular Weight , Norbornanes/chemistry , Polymerization , Polymers/chemistryABSTRACT
Fast and programmable transport of droplets on a substrate is desirable in microfluidic, thermal, biomedical, and energy devices. Photoresponsive surfactants are promising candidates to manipulate droplet motion due to their ability to modify interfacial tension and generate "photo-Marangoni" flow under light stimuli. Previous works have demonstrated photo-Marangoni droplet migration in liquid media; however, migration on other substrates, including solid and liquid-infused surfaces (LIS), remains an outstanding challenge. Moreover, models of photo-Marangoni migration are still needed to identify optimal photoswitches and assess the feasibility of new applications. In this work, we demonstrate 2D droplet motion on liquid surfaces and on LIS, as well as rectilinear motion in solid capillary tubes. We synthesize photoswitches based on spiropyran and merocyanine, capable of tension changes of up to 5.5 mN/m across time scales as short as 1.7 s. A millimeter-sized droplet migrates at up to 5.5 mm/s on a liquid, and 0.25 mm/s on LIS. We observe an optimal droplet size for fast migration, which we explain by developing a scaling model. The model also predicts that faster migration is enabled by surfactants that maximize the ratio between the tension change and the photoswitching time. To better understand migration on LIS, we visualize the droplet flow using tracer particles, and we develop corresponding numerical simulations, finding reasonable agreement. The methods and insights demonstrated in this study enable advances for manipulation of droplets for microfluidic, thermal and water harvesting devices.
ABSTRACT
Strategies that mimic the spatial complexity of natural tissues can provide cellular scaffolds to probe fundamental questions in cell biology and offer new materials for regenerative medicine. Here, the authors demonstrate a light-guided patterning platform that uses natural engineered extracellular matrix (ECM) proteins as a substrate to program cellular behaviors. A photocaged diene which undergoes Diels-Alder-based click chemistry upon uncaging with 365 nm light is utilized. By interfacing with commercially available maleimide dienophiles, patterning of common ECM proteins (collagen, fibronectin Matrigel, laminin) with readily purchased functional small molecules and growth factors is achieved. Finally, the use of this platform to spatially control ERK activity and migration in mammalian cells is highlighted, demonstrating programmable cell behavior through patterned chemical modification of natural ECM.
Subject(s)
Extracellular Matrix , Regenerative MedicineABSTRACT
An important but often overlooked feature of Diels-Alder (DA) cycloadditions is the ability for DA adducts to undergo mechanically induced cycloreversion when placed under force. Herein, we demonstrate that the commonly employed DA cycloaddition between furan and maleimide to crosslink hydrogels results in slow gelation kinetics and "mechanolabile" crosslinks that relate to reduced material strength. Through rational computational design, "mechanoresistant" DA adducts were identified by constrained geometries simulate external force models and employed to enhance failure strength of crosslinked hydrogels. Additionally, utilization of a cyclopentadiene derivative, spiro[2.4]hepta-4,6-diene, provided mechanoresistant DA adducts and rapid gelation in minutes at room temperature. This study illustrates that strategic molecular-level design of DA crosslinks can provide biocompatible materials with improved processing, mechanical durability, lifetime, and utility.
Subject(s)
Biocompatible Materials , Hydrogels , Cycloaddition Reaction , Cyclopentanes/chemistry , Hydrogels/chemistryABSTRACT
The development of noninvasive and robust strategies for manipulation of droplets and bubbles is crucial in applications such as boiling and condensation, electrocatalysis, and microfluidics. In this work, we realize the swift departure of droplets and bubbles from solid substrates by introducing photoresponsive surfactants and applying asymmetric illumination, thereby inducing a "photo-Marangoni" lift force. Experiments show that a pinned toluene droplet can depart the substrate in only 0.38 s upon illumination, and the volume of an air bubble at departure is reduced by 20%, indicating significantly faster departure. These benefits can be achieved with moderate light intensities and dilute surfactant concentrations, without specially fabricated substrates, which greatly facilitates practical applications. Simulations suggest that the net departure force includes contributions from viscous stresses directly caused by the Marangoni flow, as well as from pressure buildup due to flow stagnation at the contact line. The manipulation scheme proposed here shows potential for applications requiring droplet and bubble removal from working surfaces.
ABSTRACT
A new Diels-Alder (DA)-based photopatterning platform is presented, which exploits the irreversible, light-induced decarbonylation and subsequent cleavage of cyclopentadienone-norbornadiene (CPD-NBD) adducts. A series of CPD-NBD adducts have been prepared and systematically studied toward the use in a polymeric material photopatterning platform. By incorporating an optimized CPD-NBD adduct into polymer networks, it is demonstrated that cyclopentadiene may be unveiled upon 365 nm irradiation and subsequently clicked to a variety of maleimides with spatial control under mild reaction conditions and with fast kinetics. Unlike currently available photoinduced Diels-Alder reactions that rely on trapping transient, photocaged dienes, this platform introduces a persistent, yet highly reactive diene after irradiation, enabling the use of photosensitive species such as cyanine dyes to be patterned. To highlight the potential use of this platform in a variety of material applications, we demonstrate two proof-of-concepts: patterned conjugation of multiple dyes into a polyacrylate network and preprogrammed ligation of streptavidin into poly(ethylene glycol) hydrogels.
ABSTRACT
A novel method for facile postpolymerization functionalization of synthetic polymers using terminal norbornadiene (NBD) building blocks is presented. Incorporation of the NBD functionality streamlines the synthesis of a wide array of block polymers utilizing multistep click chemistry strategies. Previously, the use of NBD-functionalized initiators produced polymers that underwent a cascade of Diels-Alder (DA) reactions to unveil a reactive cyclopentadiene (Cp) chain end. When coupled with a maleimide-bearing counterpart, a highly efficient DA cycloaddition with the terminal Cp can occur. To extend this concept to a range of polyacrylates and commercially available poly(ethylene glycol) systems, we developed a novel NBD acid building block for postpolymerization functionalization. Employing this process, we have demonstrated straightforward access to a library of block polymers that leverage this NBD click platform.
ABSTRACT
The use of trimethylsilyl trifluoromethanesulfonate as a mild means to unite epoxy-carvone silyl ethers with anisole derivatives to yield products that are structurally similar to the CBD scaffold is reported. Importantly, unlike related methods, this process can utilize both epoxy-carvone diastereomers and does not require the use of air/moisture-sensitive organometallic reagents. Several examples of aryl nucleophiles as well as mechanistic insight based on in silico computational analysis are presented.