Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Main subject
Language
Journal subject
Affiliation country
Publication year range
1.
Cereb Cortex ; 34(13): 94-103, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696597

ABSTRACT

Autism (or autism spectrum disorder) was initially defined as a psychiatric disorder, with the likely cause maternal behavior (the very destructive "refrigerator mother" theory). It took several decades for research into brain mechanisms to become established. Both neuropathological and imaging studies found differences in the cerebellum in autism spectrum disorder, the most widely documented being a decreased density of Purkinje cells in the cerebellar cortex. The popular interpretation of these results is that cerebellar neuropathology is a critical cause of autism spectrum disorder. We challenge that view by arguing that if fewer Purkinje cells are critical for autism spectrum disorder, then any condition that causes the loss of Purkinje cells should also cause autism spectrum disorder. We will review data on damage to the cerebellum from cerebellar lesions, tumors, and several syndromes (Joubert syndrome, Fragile X, and tuberous sclerosis). Collectively, these studies raise the question of whether the cerebellum really has a role in autism spectrum disorder. Autism spectrum disorder is now recognized as a genetically caused developmental disorder. A better understanding of the genes that underlie the differences in brain development that result in autism spectrum disorder is likely to show that these genes affect the development of the cerebellum in parallel with the development of the structures that do underlie autism spectrum disorder.


Subject(s)
Cerebellum , Humans , Cerebellum/pathology , Autism Spectrum Disorder/pathology , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/diagnostic imaging , Animals , Autistic Disorder/pathology , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Purkinje Cells/pathology
2.
Front Neuroanat ; 18: 1331230, 2024.
Article in English | MEDLINE | ID: mdl-38425805

ABSTRACT

Introduction: Auditory information is relayed from the cochlea via the eighth cranial nerve to the dorsal and ventral cochlear nuclei (DCN, VCN). The organization, neurochemistry and circuitry of the cochlear nuclei (CN) have been studied in many species. It is well-established that glycine is an inhibitory transmitter in the CN of rodents and cats, with glycinergic cells in the DCN and VCN. There are, however, major differences in the laminar and cellular organization of the DCN between humans (and other primates) and rodents and cats. We therefore asked whether there might also be differences in glycinergic neurotransmission in the CN. Methods: We studied brainstem sections from humans, chimpanzees, and cats. We used antibodies to glycine receptors (GLYR) to identify neurons receiving glycinergic input, and antibodies to the neuronal glycine transporter (GLYT2) to immunolabel glycinergic axons and terminals. We also examined archival sections immunostained for calretinin (CR) and nonphosphorylated neurofilament protein (NPNFP) to try to locate the octopus cell area (OCA), a region in the VCN that rodents has minimal glycinergic input. Results: In humans and chimpanzees we found widespread immunolabel for glycine receptors in DCN and in the posterior (PVCN) and anterior (AVCN) divisions of the VCN. We found a parallel distribution of GLYT2-immunolabeled fibers and puncta. The data also suggest that, as in rodents, a region containing octopus cells in cats, humans and chimpanzees has little glycinergic input. Discussion: Our results show that glycine is a major transmitter in the human and chimpanzee CN, despite the species differences in DCN organization. The sources of the glycinergic input to the CN in humans and chimpanzees are not known.

SELECTION OF CITATIONS
SEARCH DETAIL