Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Circulation ; 147(4): 284-295, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36335517

ABSTRACT

BACKGROUND: Sodium-glucose cotransporter 2 inhibitors have been demonstrated to promote reverse cardiac remodeling in people with diabetes or heart failure. Although it has been theorized that sodium-glucose cotransporter 2 inhibitors might afford similar benefits in people without diabetes or prevalent heart failure, this has not been evaluated. We sought to determine whether sodium-glucose cotransporter 2 inhibition with empagliflozin leads to a decrease in left ventricular (LV) mass in people without type 2 diabetes or significant heart failure. METHODS: Between April 2021 and January 2022, 169 individuals, 40 to 80 years of age, without diabetes but with risk factors for adverse cardiac remodeling were randomly assigned to empagliflozin (10 mg/d; n=85) or placebo (n=84) for 6 months. The primary outcome was the 6-month change in LV mass indexed (LVMi) to baseline body surface area as measured by cardiac magnetic resonance imaging. Other measures included 6-month changes in LV end-diastolic and LV end-systolic volumes indexed to baseline body surface area and LV ejection fraction. RESULTS: Among the 169 participants (141 men [83%]; mean age, 59.3±10.5 years), baseline LVMi was 63.2±17.9 g/m2 and 63.8±14.0 g/m2 for the empagliflozin- and placebo-assigned groups, respectively. The difference (95% CI) in LVMi at 6 months in the empagliflozin group versus placebo group adjusted for baseline LVMi was -0.30 g/m2 (-2.1 to 1.5 g/m2; P=0.74). Median baseline (interquartile range) NT-proBNP (N-terminal-pro B-type natriuretic peptide) was 51 pg/mL (20-105 pg/mL) and 55 pg/mL (21-132 pg/mL) for the empagliflozin- and placebo-assigned groups, respectively. The 6-month treatment effect of empagliflozin versus placebo (95% CI) on blood pressure and NT-proBNP (adjusted for baseline values) were -1.3 mm Hg (-5.2 to 2.6 mm Hg; P=0.52), 0.69 mm Hg (-1.9 to 3.3 mm Hg; P=0.60), and -6.1 pg/mL (-37.0 to 24.8 pg/mL; P=0.70) for systolic blood pressure, diastolic blood pressure, and NT-proBNP, respectively. No clinically meaningful between-group differences in LV volumes (diastolic and systolic indexed to baseline body surface area) or ejection fraction were observed. No difference in adverse events was noted between the groups. CONCLUSIONS: Among people with neither diabetes nor significant heart failure but with risk factors for adverse cardiac remodeling, sodium-glucose cotransporter 2 inhibition with empagliflozin did not result in a meaningful reduction in LVMi after 6 months. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT04461041.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Aged , Humans , Male , Middle Aged , Benzhydryl Compounds/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Glucose , Sodium , Stroke Volume , Ventricular Remodeling , Female
2.
Article in English | MEDLINE | ID: mdl-38874618

ABSTRACT

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 (SGLT2) inhibitors are guideline-recommended therapies for the management of type 2 diabetes (T2D), atherosclerotic cardiovascular disease, heart failure and chronic kidney disease. We previously observed in people living with T2D and coronary artery disease that circulating vascular regenerative (VR) progenitor cell content increased following 6-month use of the SGLT2 inhibitor empagliflozin. In this post hoc sub-analysis of the ORIGINS-RCE CardioLink-13 study, we analyzed the circulating VR progenitor cell content of 92 individuals living with T2D, among whom 20 were on a GLP-1RA, 42 were on an SGLT2 inhibitor but not a GLP-1RA, and 30 were on neither of these vascular protective therapies. In the GLP-1RA group, the mean absolute count of circulating VR progenitor cells defined by high aldehyde dehydrogenase (ALDH) activity (ALDHhiSSClow) and VR progenitor cells further characterized by surface expression of the pro-angiogenic marker CD133 (ALDHhiSSClowCD133+) was higher than the group receiving neither a GLP-1RA nor an SGLT2 inhibitor (P=0.02), and comparable to that in the SGLT2 inhibitor group (P=0.25). The absolute count of pro-inflammatory, granulocyte-restricted precursor cells (ALDHhiSSChi) was significantly lower in the GLP-1RA group compared to the group on neither therapy (P=0.031). Augmented vessel repair initiated by VRcells with previously documented pro-angiogenic activity, alongside a reduction in systemic, granulocyte precursor-driven inflammation, may represent novel mechanisms responsible for the cardiovascular-metabolic benefits of GLP-1RA therapy. Prospective, randomized clinical trials are now warranted to establish the value of recovering circulating VR progenitor cell content with blood vessel regenerative functions.

3.
Am J Physiol Heart Circ Physiol ; 326(5): H1159-H1176, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38426865

ABSTRACT

Atherosclerotic cardiovascular disease is a chronic condition that often copresents with type 2 diabetes and obesity. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are incretin mimetics endorsed by major professional societies for improving glycemic status and reducing atherosclerotic risk in people living with type 2 diabetes. Although the cardioprotective efficacy of GLP-1RAs and their relationship with traditional risk factors are well established, there is a paucity of publications that have summarized the potentially direct mechanisms through which GLP-1RAs mitigate atherosclerosis. This review aims to narrow this gap by providing comprehensive and in-depth mechanistic insight into the antiatherosclerotic properties of GLP-1RAs demonstrated across large outcome trials. Herein, we describe the landmark cardiovascular outcome trials that triggered widespread excitement around GLP-1RAs as a modern class of cardioprotective agents, followed by a summary of the origins of GLP-1RAs and their mechanisms of action. The effects of GLP-1RAs at each major pathophysiological milestone of atherosclerosis, as observed across clinical trials, animal models, and cell culture studies, are described in detail. Specifically, this review provides recent preclinical and clinical evidence that suggest GLP-1RAs preserve vessel health in part by preventing endothelial dysfunction, achieved primarily through the promotion of angiogenesis and inhibition of oxidative stress. These protective effects are in addition to the broad range of atherosclerotic processes GLP-1RAs target downstream of endothelial dysfunction, which include systemic inflammation, monocyte recruitment, proinflammatory macrophage and foam cell formation, vascular smooth muscle cell proliferation, and plaque development.


Subject(s)
Atherosclerosis , Endothelium, Vascular , Glucagon-Like Peptide-1 Receptor Agonists , Animals , Humans , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Diabetes Mellitus, Type 2/drug therapy , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Incretins/therapeutic use , Signal Transduction
4.
Am J Physiol Heart Circ Physiol ; 325(5): H1210-H1222, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37773589

ABSTRACT

Sodium glucose-cotransporter 2 (SGLT2) inhibitors have been reported to reduce cardiovascular events and heart failure in people with and without diabetes. These medications have been shown to counter regenerative cell exhaustion in the context of prevalent diabetes. This study sought to determine if empagliflozin attenuates regenerative cell exhaustion in people without diabetes. Peripheral blood mononuclear cells were collected at the baseline and 6-mo visits from individuals randomized to receive empagliflozin (10 mg/day) or placebo who were participating in the EMPA-HEART 2 CardioLink-7 trial. Precursor cell phenotypes were characterized by flow cytometry for cell-surface markers combined with high aldehyde dehydrogenase activity to identify precursor cell subsets with progenitor (ALDHhi) versus mature effector (ALDHlow) cell attributes. Samples from individuals assigned to empagliflozin (n = 25) and placebo (n = 21) were analyzed. At baseline, overall frequencies of primitive progenitor cells (ALDHhiSSClow), monocyte (ALDHhiSSCmid), and granulocyte (ALDHhiSSChi) precursor cells in both groups were similar. At 6 mo, participants randomized to empagliflozin demonstrated increased ALDHhiSSClowCD133+CD34+ proangiogenic cells (P = 0.048), elevated ALDHhiSSCmidCD163+ regenerative monocyte precursors (P = 0.012), and decreased ALDHhiSSCmidCD86 + CD163- proinflammatory monocyte (P = 0.011) polarization compared with placebo. Empagliflozin promoted the recovery of multiple circulating provascular cell subsets in people without diabetes suggesting that the cardiovascular benefits of SGLT2 inhibitors may be attributed in part to the attenuation of vascular regenerative cell exhaustion that is independent of diabetes status.NEW & NOTEWORTHY Using an aldehyde dehydrogenase (ALDH) activity-based flow cytometry assay, we found that empagliflozin treatment for 6 mo was associated with parallel increases in circulating vascular regenerative ALDHhi-CD34/CD133-coexpressing progenitors and decreased proinflammatory ALDHhi-CD14/CD86-coexpressing monocyte precursors in individuals without diabetes but with cardiovascular risk factors. The rejuvenation of the vascular regenerative cell reservoir may represent a mechanism via which sodium glucose-cotransporter 2 (SGLT2) inhibitors limit maladaptive repair and delay the development and progression of cardiovascular diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes Mellitus , Humans , Sodium-Glucose Transporter 2 , Ventricular Remodeling , Leukocytes, Mononuclear/metabolism , Benzhydryl Compounds/therapeutic use , Risk Factors , Antigens, CD34 , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/therapeutic use , Glucose , Sodium , Diabetes Mellitus, Type 2/drug therapy
5.
Curr Opin Cardiol ; 38(6): 546-551, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37668181

ABSTRACT

PURPOSE OF REVIEW: This review will provide an overview of the recent literature linking the pathophysiology of cardiometabolic disease with the depletion and dysfunction of circulating vascular regenerative (VR) cell content. Moreover, we provide rationale for the use of VR cells as a biomarker for cardiovascular risk and the use of pharmacological agents to improve VR cell content. RECENT FINDINGS: Recent studies demonstrate the potential of VR cells as a biomarker of cardiovascular risk and as a therapeutic target. Notably, lipid-lowering agents, antihyperglycemic therapies such as sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists, as well as exercise and weight loss, have all been found to improve VR cell content, providing mechanistic evidence supporting a role in mitigating adverse cardiovascular outcomes in people with cardiometabolic-based disease. SUMMARY: The importance of VR cells as a biomarker in assessing cardiovascular risk is becoming increasingly apparent. This review highlights recent literature supporting the accurate use of VR cell characterization to monitor the capacity for vessel repair and novel strategies to improve vessel health. Future research is required to validate and optimize these emerging approaches.

6.
BMC Cardiovasc Disord ; 23(1): 557, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37964221

ABSTRACT

BACKGROUND: This exploratory sub-analysis of the EMPA-HEART CardioLink-6 trial examined whether the previously reported benefit of the sodium-glucose cotransporter 2 (SGLT2) inhibitor empagliflozin on left ventricular (LV) mass (LVM) regression differs between individuals of South Asian and non-South Asian ethnicity. METHODS: EMPA-HEART CardioLink-6 was a double-blind, placebo-controlled clinical trial that randomised 97 individuals with type 2 diabetes mellitus (T2DM) and coronary artery disease (CAD) to either empagliflozin 10 mg daily or placebo for 6 months. LV parameters and function were assessed using cardiac magnetic resonance imaging. The 6-month changes in LVM and LV volumes, all indexed to baseline body surface area, for South Asian participants were compared to those for non-South Asian individuals. RESULTS: Compared to the non-South Asian group, the South Asian sub-cohort comprised more males, was younger and had a lower median body mass index. The adjusted difference for LVMi change over 6 months was -4.3 g/m2 (95% confidence interval [CI], -7.5, -1.0; P = 0.042) for the South Asian group and -2.3 g/m2 (95% CI, -6.4, 1.9; P = 0.28) for the non-South Asian group (Pinteraction = 0.45). There was no between-group difference for the adjusted differences in baseline body surface area-indexed LV volumes and LV ejection fraction. CONCLUSIONS: There was no meaningful difference in empagliflozin-associated LVM regression between South Asian and non-South Asian individuals living with T2DM and CAD in the EMPA-HEART CardioLink-6 trial. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02998970 (First posted on 21/12/ 2016).


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Male , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Ventricular Remodeling , Treatment Outcome , Coronary Artery Disease/drug therapy , Double-Blind Method
7.
Eur Heart J ; 43(6): 450-459, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34849704

ABSTRACT

Chronic cardiometabolic assaults during type 2 diabetes (T2D) and obesity induce a progenitor cell imbalance in the circulation characterized by overproduction and release of pro-inflammatory monocytes and granulocytes from the bone marrow alongside aberrant differentiation and mobilization of pro-vascular progenitor cells that generate downstream progeny for the coordination of blood vessel repair. This imbalance can be detected in the peripheral blood of individuals with established T2D and severe obesity using multiparametric flow cytometry analyses to discern pro-inflammatory vs. pro-angiogenic progenitor cell subsets identified by high aldehyde dehydrogenase activity, a conserved progenitor cell protective function, combined with lineage-restricted cell surface marker analyses. Recent evidence suggests that progenitor cell imbalance can be reversed by treatment with pharmacological agents or surgical interventions that reduce hyperglycaemia or excess adiposity. In this state-of-the-art review, we present current strategies to assess the progression of pro-vascular regenerative cell depletion in peripheral blood samples of individuals with T2D and obesity and we summarize novel clinical data that intervention using sodium-glucose co-transporter 2 inhibition or gastric bypass surgery can efficiently restore cell-mediated vascular repair mechanisms associated with profound cardiovascular benefits in recent outcome trials. Collectively, this thesis generates a compelling argument for early intervention using current pharmacological agents to prevent or restore imbalanced circulating progenitor content and maintain vascular regenerative cell trafficking to sites of ischaemic damage. This conceptual advancement may lead to the design of novel therapeutic approaches to prevent or reverse the devastating cardiovascular comorbidities currently associated with T2D and obesity.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Cardiovascular Diseases/complications , Cell Differentiation , Diabetes Mellitus, Type 2/complications , Humans , Neovascularization, Physiologic , Stem Cells
8.
Rev Endocr Metab Disord ; 22(4): 1171-1188, 2021 12.
Article in English | MEDLINE | ID: mdl-34228302

ABSTRACT

Type 2 diabetes (T2D) and obesity represent entangled pandemics that accelerate the development of cardiovascular disease (CVD). Given the immense burden of CVD in society, non-invasive prevention and treatment strategies to promote cardiovascular health are desperately needed. During T2D and obesity, chronic dysglycemia and abnormal adiposity result in systemic oxidative stress and inflammation that deplete the vascular regenerative cell reservoir in the bone marrow that impairs blood vessel repair and exacerbates the penetrance of CVD co-morbidities. This novel translational paradigm, termed 'regenerative cell exhaustion' (RCE), can be detected as the depletion and dysfunction of hematopoietic and endothelial progenitor cell lineages in the peripheral blood of individuals with established T2D and/or obesity. The reversal of vascular RCE has been observed after administration of the sodium-glucose cotransporter-2 inhibitor (SGLT2i), empagliflozin, or after bariatric surgery for severe obesity. In this review, we explore emerging evidence that links improved dysglycemia to a reduction in systemic oxidative stress and recovery of circulating pro-vascular progenitor cell content required for blood vessel repair. Given that bariatric surgery consistently increases systemic glucagon-like-peptide 1 (GLP-1) release, we also focus on evidence that the use of GLP-1 receptor agonists (GLP-1RA) during obesity may act to inhibit the progression of systemic dysglycemia and adiposity, and indirectly reduce inflammation and oxidative stress, thereby limiting the impact of RCE. Therefore, therapeutic intervention with currently-available GLP-1RA may provide a less-invasive modality to reverse RCE, bolster vascular repair mechanisms, and improve cardiometabolic risk in individuals living with T2D and obesity.


Subject(s)
Bariatric Surgery , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Cardiovascular Diseases/prevention & control , Chronic Disease , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/surgery , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/therapeutic use , Humans , Hypoglycemic Agents/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
9.
Cardiovasc Res ; 119(18): 2858-2874, 2024 02 17.
Article in English | MEDLINE | ID: mdl-38367275

ABSTRACT

Ischaemic cardiovascular diseases, including peripheral and coronary artery disease, myocardial infarction, and stroke, remain major comorbidities for individuals with type 2 diabetes (T2D) and obesity. During cardiometabolic chronic disease (CMCD), hyperglycaemia and excess adiposity elevate oxidative stress and promote endothelial damage, alongside an imbalance in circulating pro-vascular progenitor cells that mediate vascular repair. Individuals with CMCD demonstrate pro-vascular 'regenerative cell exhaustion' (RCE) characterized by excess pro-inflammatory granulocyte precursor mobilization into the circulation, monocyte polarization towards pro-inflammatory vs. anti-inflammatory phenotype, and decreased pro-vascular progenitor cell content, impairing the capacity for vessel repair. Remarkably, targeted treatment with the sodium-glucose cotransporter-2 inhibitor (SGLT2i) empagliflozin in subjects with T2D and coronary artery disease, and gastric bypass surgery in subjects with severe obesity, has been shown to partially reverse these RCE phenotypes. SGLT2is and glucagon-like peptide-1 receptor agonists (GLP-1RAs) have reshaped the management of individuals with T2D and comorbid obesity. In addition to glucose-lowering action, both drug classes have been shown to induce weight loss and reduce mortality and adverse cardiovascular outcomes in landmark clinical trials. Furthermore, both drug families also act to reduce systemic oxidative stress through altered activity of overlapping oxidase and antioxidant pathways, providing a putative mechanism to augment circulating pro-vascular progenitor cell content. As SGLT2i and GLP-1RA combination therapies are emerging as a novel therapeutic opportunity for individuals with poorly controlled hyperglycaemia, potential additive effects in the reduction of oxidative stress may also enhance vascular repair and further reduce the ischaemic cardiovascular comorbidities associated with T2D and obesity.


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Diabetes Mellitus, Type 2 , Hyperglycemia , Sodium-Glucose Transporter 2 Inhibitors , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/adverse effects , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Coronary Artery Disease/drug therapy , Glucagon-Like Peptide-1 Receptor/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/complications , Obesity/drug therapy , Obesity/complications , Hyperglycemia/complications , Hyperglycemia/drug therapy , Glucose , Regeneration
10.
Med ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38552629

ABSTRACT

BACKGROUND: REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial) showed that icosapent ethyl (IPE) reduced major adverse cardiovascular events by 25%. Since the underlying mechanisms for these benefits are not fully understood, the IPE-PREVENTION CardioLink-14 trial (ClinicalTrials.gov: NCT04562467) sought to determine if IPE regulates vascular regenerative (VR) cell content in people with mild to moderate hypertriglyceridemia. METHODS: Seventy statin-treated individuals with triglycerides ≥1.50 and <5.6 mmol/L and either atherosclerotic cardiovascular disease or type 2 diabetes with additional cardiovascular risk factors were randomized to IPE (4 g/day) or usual care. VR cells with high aldehyde dehydrogenase activity (ALDHhi) were isolated from blood collected at the baseline and 3-month visits and characterized with lineage-specific cell surface markers. The primary endpoint was the change in frequency of pro-vascular ALDHhiside scatter (SSC)lowCD133+ progenitor cells. Change in frequencies of ALDHhiSSCmid monocyte and ALDHhiSSChi granulocyte precursor subsets, reactive oxygen species production, serum biomarkers, and omega-3 levels were also evaluated. FINDINGS: Baseline characteristics, cardiovascular risk factors, and medications were balanced between the groups. Compared to usual care, IPE increased the mean frequency of ALDHhiSSClowCD133+ cells (-1.00% ± 2.45% vs. +7.79% ± 1.70%; p = 0.02), despite decreasing overall ALDHhiSSClow cell frequency. IPE assignment also reduced oxidative stress in ALDHhiSSClow progenitors and increased ALDHhiSSChi granulocyte precursor cell content. CONCLUSIONS: IPE-PREVENTION CardioLink-14 provides the first translational evidence that IPE can modulate VR cell content and suggests a novel mechanism that may underlie the cardioprotective effects observed with IPE in REDUCE-IT. FUNDING: HLS Therapeutics provided the IPE in kind and had no role in the study design, conduct, analyses, or interpretation.

11.
J Am Coll Cardiol ; 83(7): 755-769, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38355246

ABSTRACT

BACKGROUND: South Asian individuals shoulder a disproportionate burden of cardiometabolic diseases. OBJECTIVES: The purpose of this study was to determine if vascular regenerative cell content varies significantly between South Asian and White European people. METHODS: Between January 2022 and January 2023, 60 South Asian and 60 White European adults with either documented cardiovascular disease or established diabetes with ≥1 other cardiovascular risk factor were prospectively enrolled. Vascular regenerative cell content in venous blood was enumerated using a flow cytometry assay that is based on high aldehyde dehydrogenase (ALDHhi) activity and cell surface marker phenotyping. The primary outcome was the difference in frequency of circulating ALDHhi progenitor cells, monocytes, and granulocytes between the 2 groups. RESULTS: Compared with White European participants, those of South Asian ethnicity were younger (69 ± 10 years vs 66 ± 9 years; P < 0.05), had lower weight (88 ± 19 kg vs 75 ± 13 kg; P < 0.001), and exhibited a greater prevalence of type 2 diabetes (62% vs 92%). South Asian individuals had markedly lower circulating frequencies of pro-angiogenic ALDHhiSSClowCD133+ progenitor cells (P < 0.001) and ALDHhiSSCmidCD14+CD163+ monocytes with vessel-reparative capacity (P < 0.001), as well as proportionally more ALDHhi progenitor cells with high reactive oxygen species content (P < 0.05). After correction for sex, age, body mass index, and glycated hemoglobin, South Asian ethnicity was independently associated with lower ALDHhiSSClowCD133+ cell count. CONCLUSIONS: South Asian people with cardiometabolic disease had less vascular regenerative and reparative cells suggesting compromised vessel repair capabilities that may contribute to the excess vascular risk in this population. (The Role of South Asian vs European Origins on Circulating Regenerative Cell Exhaustion [ORIGINS-RCE]; NCT05253521).


Subject(s)
Diabetes Mellitus, Type 2 , Humans
12.
Med ; 4(2): 130-138.e1, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36630964

ABSTRACT

BACKGROUND: South Asians (SAs) represent ∼25% of the world's population and account for >50% of global cardiovascular (CV) deaths, yet they continue to be underrepresented in contemporary clinical trials. The REDUCE-IT study demonstrated in a high-risk and predominantly White population that icosapent ethyl (IPE) lowered major adverse cardiovascular events by 25%. We sought to determine the generalizability of these results to a high-risk population of SAs with established CV disease living in Canada. METHODS: This was a cross-sectional observational study of 200 statin-treated SAs (≥45 years) with atherosclerotic CV disease (ASCVD) (NCT05271591). SA ethnicity was self-identified as being of Anglo-Indian, Bangladeshi, Bengali, Bhutanese, Goan, Gujarati, Indian, Jatt, Kashmiri, Maharashtrian, Malayali, Nepali, Pakistani, Punjabi, Sindhi, Sinhalese, Sri Lankan, Tamil, Telugu, or other SA. ASCVD was defined as the presence of coronary, carotid, or peripheral atherosclerosis. FINDINGS: Mean age of the cohort was 67 years, where 82% were men and 57% had diabetes. The predominant ASCVD phenotype was coronary artery disease (94%). Mean (SD) baseline LDL-C and triglycerides were 1.70 (0.8) mmol/L and 1.42 (1.0) mmol/L, respectively. Three-quarters were on high-intensity statin therapy. According to the Health Canada/Canadian Cardiovascular Society Guidelines and FDA-approved indication, 33% and 25% of the participants were, respectively, eligible for IPE. CONCLUSIONS: A large proportion of high-intensity, statin-treated, high-risk patients with ASCVD and of self-reported SA ethnicity are eligible for IPE. These data have important translational implications for SAs who are at a disproportionately higher risk of CV morbidity and mortality. FUNDING: This study was funded by an unrestricted grant provided by HLS Therapeutics Inc, Canada.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/epidemiology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Bhutan , India/epidemiology , Cross-Sectional Studies , South Asian People , Canada , Atherosclerosis/drug therapy , Atherosclerosis/epidemiology
13.
STAR Protoc ; 2(1): 100311, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33554145

ABSTRACT

The examination of circulating pro-vascular progenitor cell frequency and function is integral in understanding aberrant blood vessel homeostasis in individuals with cardiometabolic disease. Here, we outline the characterization of progenitor cell subsets from peripheral blood using high aldehyde dehydrogenase (ALDH) activity, an intracellular detoxification enzyme previously associated with pro-vascular progenitor cell status. Using this protocol, cells can be examined by flow cytometry for ALDH activity and lineage restricted cell surface markers simultaneously. For complete details on the use and execution of this protocol, please refer to Terenzi et al. (2019) and Hess et al. (2019, 2020).


Subject(s)
Aldehyde Dehydrogenase/analysis , Flow Cytometry/methods , Stem Cells/metabolism , Aldehyde Dehydrogenase/metabolism , Blood Cells/physiology , Cell Count/methods , Cell Differentiation , Cell Proliferation , Cells, Cultured , Humans , Neovascularization, Physiologic , Regeneration , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL