Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Publication year range
1.
Hum Mol Genet ; 31(21): 3597-3612, 2022 10 28.
Article in English | MEDLINE | ID: mdl-35147173

ABSTRACT

Mitochondrial diseases are a group of inherited diseases with highly varied and complex clinical presentations. Here, we report four individuals, including two siblings, affected by a progressive mitochondrial encephalopathy with biallelic variants in the cardiolipin biosynthesis gene CRLS1. Three affected individuals had a similar infantile presentation comprising progressive encephalopathy, bull's eye maculopathy, auditory neuropathy, diabetes insipidus, autonomic instability, cardiac defects and early death. The fourth affected individual presented with chronic encephalopathy with neurodevelopmental regression, congenital nystagmus with decreased vision, sensorineural hearing loss, failure to thrive and acquired microcephaly. Using patient-derived fibroblasts, we characterized cardiolipin synthase 1 (CRLS1) dysfunction that impaired mitochondrial morphology and biogenesis, providing functional evidence that the CRLS1 variants cause mitochondrial disease. Lipid profiling in fibroblasts from two patients further confirmed the functional defect demonstrating reduced cardiolipin levels, altered acyl-chain composition and significantly increased levels of phosphatidylglycerol, the substrate of CRLS1. Proteomic profiling of patient cells and mouse Crls1 knockout cell lines identified both endoplasmic reticular and mitochondrial stress responses, and key features that distinguish between varying degrees of cardiolipin insufficiency. These findings support that deleterious variants in CRLS1 cause an autosomal recessive mitochondrial disease, presenting as a severe encephalopathy with multi-systemic involvement. Furthermore, we identify key signatures in cardiolipin and proteome profiles across various degrees of cardiolipin loss, facilitating the use of omics technologies to guide future diagnosis of mitochondrial diseases.


Subject(s)
Brain Diseases , Mitochondrial Diseases , Animals , Mice , Brain Diseases/genetics , Brain Diseases/metabolism , Cardiolipins/genetics , Cardiolipins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Proteomics
2.
Genet Med ; : 101271, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39305161

ABSTRACT

PURPOSE: Families living with mitochondrial diseases (MD) often endure prolonged diagnostic journeys and invasive testing, yet many remain without a molecular diagnosis. The Australian Genomics Mitochondrial Flagship, comprising clinicians, diagnostic, and research scientists, conducted a prospective national study to identify the diagnostic utility of singleton genomic sequencing using blood samples. METHODS: A total of 140 children and adults living with suspected MD were recruited using modified Nijmegen criteria (MNC) and randomized to either exome + mitochondrial DNA (mtDNA) sequencing or genome sequencing. RESULTS: Diagnostic yield was 55% (n = 77) with variants in nuclear (n = 37) and mtDNA (n = 18) MD genes, as well as phenocopy genes (n = 22). A nuclear gene etiology was identified in 77% of diagnoses, irrespective of disease onset. Diagnostic rates were higher in pediatric-onset (71%) than adult-onset (31%) cases and comparable in children with non-European (78%) vs European (67%) ancestry. For children, higher MNC scores correlated with increased diagnostic yield and fewer diagnoses in phenocopy genes. Additionally, 3 adult patients had a mtDNA deletion discovered in skeletal muscle that was not initially identified in blood. CONCLUSION: Genomic sequencing from blood can simplify the diagnostic pathway for individuals living with suspected MD, especially those with childhood onset diseases and high MNC scores.

3.
Genet Med ; 24(1): 130-145, 2022 01.
Article in English | MEDLINE | ID: mdl-34906502

ABSTRACT

PURPOSE: Genetic variants causing aberrant premessenger RNA splicing are increasingly being recognized as causal variants in genetic disorders. In this study, we devise standardized practices for polymerase chain reaction (PCR)-based RNA diagnostics using clinically accessible specimens (blood, fibroblasts, urothelia, biopsy). METHODS: A total of 74 families with diverse monogenic conditions (31% prenatal-congenital onset, 47% early childhood, and 22% teenage-adult onset) were triaged into PCR-based RNA testing, with comparative RNA sequencing for 19 cases. RESULTS: Informative RNA assay data were obtained for 96% of cases, enabling variant reclassification for 75% variants that can be used for genetic counseling (71%), to inform clinical care (32%) and prenatal counseling (41%). Variant-associated mis-splicing was highly reproducible for 28 cases with samples from ≥2 affected individuals or heterozygotes and 10 cases with ≥2 biospecimens. PCR amplicons encompassing another segregated heterozygous variant was vital for clinical interpretation of 22 of 79 variants to phase RNA splicing events and discern complete from partial mis-splicing. CONCLUSION: RNA diagnostics enabled provision of a genetic diagnosis for 64% of recruited cases. PCR-based RNA diagnostics has capacity to analyze 81.3% of clinically significant genes, with long amplicons providing an advantage over RNA sequencing to phase RNA splicing events. The Australasian Consortium for RNA Diagnostics (SpliceACORD) provide clinically-endorsed, standardized protocols and recommendations for interpreting RNA assay data.


Subject(s)
RNA Splicing , RNA , Adolescent , Adult , Child, Preschool , Humans , Mutation , RNA/genetics , RNA Splicing/genetics , Sequence Analysis, RNA , Exome Sequencing
4.
Mol Genet Metab ; 135(1): 63-71, 2022 01.
Article in English | MEDLINE | ID: mdl-34991945

ABSTRACT

Several studies have shown serum fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) levels are elevated in patients with mitochondrial disease (MD) where myopathy is a feature. In this study we investigated the utility of FGF21 and GDF15 as biomarkers for MD in a phenotypically and genotypically diverse pediatric cohort with suspected MD against a panel of healthy controls and non-mitochondrial disease controls with some overlapping clinical features. Serum was collected from 56 children with MD, 104 children with non-mitochondrial disease (27 neuromuscular, 26 cardiac, 21 hepatic, 30 renal) and 30 pediatric controls. Serum FGF21 and GDF15 concentrations were measured using ELISA, and their ability to detect MD was determined. Median FGF21 and GDF15 serum concentrations were elevated 17-fold and 3-fold respectively in pediatric MD patients compared to the healthy control group. Non-mitochondrial disease controls had elevated serum GDF15 concentrations while FGF21 concentrations were in the normal range. Elevation of GDF15 in a range of non-mitochondrial pediatric disorders limits its use as a MD biomarker. FGF21 was elevated in MD patients with a spectrum of clinical phenotypes, including those without myopathy. Serum FGF21 had an area under the receiver operating characteristic curve of 0.87, indicating good ability to discriminate between pediatric MD and healthy and non-mitochondrial disease controls. Triaging of pediatric MD patients by clinical phenotyping and serum FGF21 testing, followed by massively parallel sequencing, may enable more rapid diagnosis of pediatric MD.


Subject(s)
Growth Differentiation Factor 15 , Mitochondrial Diseases , Biomarkers , Child , Fibroblast Growth Factors/genetics , Growth Differentiation Factor 15/genetics , Humans , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics
5.
Intern Med J ; 52(1): 110-120, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34505344

ABSTRACT

This document provides consensus-based recommendations for general physicians and primary care physicians who diagnose and manage patients with mitochondrial diseases (MD). It builds on previous international guidelines, with particular emphasis on clinical management in the Australian setting. This statement was prepared by a working group of medical practitioners, nurses and allied health professionals with clinical expertise and experience in managing Australian patients with MD. As new treatments and management plans emerge, these consensus-based recommendations will continue to evolve, but current standards of care are summarised in this document.


Subject(s)
Mitochondrial Diseases , Standard of Care , Australia/epidemiology , Consensus , Guidelines as Topic , Humans , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/therapy , Societies, Medical
6.
Hum Mutat ; 42(2): 135-141, 2021 02.
Article in English | MEDLINE | ID: mdl-33169484

ABSTRACT

COX16 is involved in the biogenesis of cytochrome-c-oxidase (complex IV), the terminal complex of the mitochondrial respiratory chain. We present the first report of two unrelated patients with the homozygous nonsense variant c.244C>T(p. Arg82*) in COX16 with hypertrophic cardiomyopathy, encephalopathy and severe fatal lactic acidosis, and isolated complex IV deficiency. The absence of COX16 protein expression leads to a complete loss of the holo-complex IV, as detected by Western blot in patient fibroblasts. Lentiviral transduction of patient fibroblasts with wild-type COX16 complementary DNA rescued complex IV biosynthesis. We hypothesize that COX16 could play a role in the copper delivery route of the COX2 module as part of the complex IV assembly. Our data provide clear evidence for the pathogenicity of the COX16 variant as a cause for the observed clinical features and the isolated complex IV deficiency in these two patients and that COX16 deficiency is a cause for mitochondrial disease.


Subject(s)
Acidosis, Lactic , Brain Diseases , Cardiomyopathies , Cytochrome-c Oxidase Deficiency , Liver Diseases , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Acidosis, Lactic/genetics , Cardiomyopathies/genetics , Cytochrome-c Oxidase Deficiency/genetics , Humans , Infant, Newborn , Mitochondrial Proteins/metabolism
7.
Genet Med ; 22(7): 1254-1261, 2020 07.
Article in English | MEDLINE | ID: mdl-32313153

ABSTRACT

PURPOSE: The utility of genome sequencing (GS) in the diagnosis of suspected pediatric mitochondrial disease (MD) was investigated. METHODS: An Australian cohort of 40 pediatric patients with clinical features suggestive of MD were classified using the modified Nijmegen mitochondrial disease severity scoring into definite (17), probable (17), and possible (6) MD groups. Trio GS was performed using DNA extracted from patient and parent blood. Data were analyzed for single-nucleotide variants, indels, mitochondrial DNA variants, and structural variants. RESULTS: A definitive MD gene molecular diagnosis was made in 15 cases and a likely MD molecular diagnosis in a further five cases. Causative mitochondrial DNA (mtDNA) variants were identified in four of these cases. Three potential novel MD genes were identified. In seven cases, causative variants were identified in known disease genes with no previous evidence of causing a primary MD. Diagnostic rates were higher in patients classified as having definite MD. CONCLUSION: GS efficiently identifies variants in MD genes of both nuclear and mitochondrial origin. A likely molecular diagnosis was identified in 67% of cases and a definitive molecular diagnosis achieved in 55% of cases. This study highlights the value of GS for a phenotypically and genetically heterogeneous disorder like MD.


Subject(s)
Genome, Mitochondrial , Mitochondrial Diseases , Australia , Child , Chromosome Mapping , DNA, Mitochondrial/genetics , Genome, Mitochondrial/genetics , Humans , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mutation
8.
J Inherit Metab Dis ; 43(6): 1382-1391, 2020 11.
Article in English | MEDLINE | ID: mdl-32418222

ABSTRACT

Inherited cutis laxa, or inelastic, sagging skin is a genetic condition of premature and generalised connective tissue ageing, affecting various elastic components of the extracellular matrix. Several cutis laxa syndromes are inborn errors of metabolism and lead to severe neurological symptoms. In a patient with cutis laxa, a choreoathetoid movement disorder, dysmorphic features and intellectual disability we performed exome sequencing to elucidate the underlying genetic defect. We identified the amino acid substitution R275W in phosphatidylinositol 4-kinase type IIα, caused by a homozygous missense mutation in the PI4K2A gene. We used lipidomics, complexome profiling and functional studies to measure phosphatidylinositol 4-phosphate synthesis in the patient and evaluated PI4K2A deficient mice to define a novel metabolic disorder. The R275W residue, located on the surface of the protein, is involved in forming electrostatic interactions with the membrane. The catalytic activity of PI4K2A in patient fibroblasts was severely reduced and lipid mass spectrometry showed that particular acyl-chain pools of PI4P and PI(4,5)P2 were decreased. Phosphoinositide lipids play a major role in intracellular signalling and trafficking and regulate the balance between proliferation and apoptosis. Phosphatidylinositol 4-kinases such as PI4K2A mediate the first step in the main metabolic pathway that generates PI4P, PI(4,5)P2 and PI(3,4,5)P3 . Although neurologic involvement is common, cutis laxa has not been reported previously in metabolic defects affecting signalling. Here we describe a patient with a complex neurological phenotype, premature ageing and a mutation in PI4K2A, illustrating the importance of this enzyme in the generation of inositol lipids with particular acylation characteristics.


Subject(s)
Cutis Laxa/genetics , Minor Histocompatibility Antigens/genetics , Mutation, Missense , Phosphotransferases (Alcohol Group Acceptor)/genetics , Skin/pathology , Amino Acid Sequence , Animals , Child , Cutis Laxa/pathology , Female , Glycosylation , Homozygote , Humans , Mice , Mice, Knockout , Pedigree , Phosphatidylinositols/metabolism , Phosphotransferases (Alcohol Group Acceptor)/deficiency
9.
Am J Hum Genet ; 99(6): 1229-1244, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27817865

ABSTRACT

Mitochondrial fatty acid synthesis (mtFAS) is an evolutionarily conserved pathway essential for the function of the respiratory chain and several mitochondrial enzyme complexes. We report here a unique neurometabolic human disorder caused by defective mtFAS. Seven individuals from five unrelated families presented with childhood-onset dystonia, optic atrophy, and basal ganglia signal abnormalities on MRI. All affected individuals were found to harbor recessive mutations in MECR encoding the mitochondrial trans-2-enoyl-coenzyme A-reductase involved in human mtFAS. All six mutations are extremely rare in the general population, segregate with the disease in the families, and are predicted to be deleterious. The nonsense c.855T>G (p.Tyr285∗), c.247_250del (p.Asn83Hisfs∗4), and splice site c.830+2_830+3insT mutations lead to C-terminal truncation variants of MECR. The missense c.695G>A (p.Gly232Glu), c.854A>G (p.Tyr285Cys), and c.772C>T (p.Arg258Trp) mutations involve conserved amino acid residues, are located within the cofactor binding domain, and are predicted by structural analysis to have a destabilizing effect. Yeast modeling and complementation studies validated the pathogenicity of the MECR mutations. Fibroblast cell lines from affected individuals displayed reduced levels of both MECR and lipoylated proteins as well as defective respiration. These results suggest that mutations in MECR cause a distinct human disorder of the mtFAS pathway. The observation of decreased lipoylation raises the possibility of a potential therapeutic strategy.


Subject(s)
Dystonic Disorders/genetics , Fatty Acids/biosynthesis , Mitochondria/metabolism , Mutation , Optic Atrophy/genetics , Oxidoreductases Acting on CH-CH Group Donors/genetics , Basal Ganglia/metabolism , Cells, Cultured , Child , Child, Preschool , Female , Fibroblasts , Genetic Complementation Test , Humans , Infant , Male , Mitochondrial Diseases/genetics , Models, Molecular , Mutation, Missense/genetics , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Pedigree , RNA Splice Sites/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
10.
J Inherit Metab Dis ; 42(4): 608-619, 2019 07.
Article in English | MEDLINE | ID: mdl-30680745

ABSTRACT

Riboflavin (vitamin B2), a water-soluble vitamin, is an essential nutrient in higher organisms as it is not endogenously synthesised, with requirements being met principally by dietary intake. Tissue-specific transporter proteins direct riboflavin to the intracellular machinery responsible for the biosynthesis of the flavocoenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These flavocoenzymes play a vital role in ensuring the functionality of a multitude of flavoproteins involved in bioenergetics, redox homeostasis, DNA repair, chromatin remodelling, protein folding, apoptosis, and other physiologically relevant processes. Hence, it is not surprising that the impairment of flavin homeostasis in humans may lead to multisystem dysfunction including neuromuscular disorders, anaemia, abnormal fetal development, and cardiovascular disease. In this review, we provide an overview of riboflavin absorption, transport, and metabolism. We then focus on the clinical and biochemical features associated with biallelic FLAD1 mutations leading to FAD synthase deficiency, the only known primary defect in flavocoenzyme synthesis, in addition to providing an overview of clinical disorders associated with nutritional deficiency of riboflavin and primary defects of riboflavin transport. Finally, we give a brief overview of disorders of the cellular flavoproteome. Because riboflavin therapy may be beneficial in a number of primary or secondary disorders of the cellular flavoproteome, early recognition and prompt management of these disorders is imperative.


Subject(s)
Membrane Transport Proteins/metabolism , Metabolic Networks and Pathways/genetics , Nucleotidyltransferases/deficiency , Riboflavin/metabolism , Animals , Biological Transport/genetics , Flavin-Adenine Dinucleotide/metabolism , Homeostasis , Humans , Membrane Transport Proteins/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism
11.
Ann Neurol ; 82(6): 1004-1015, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29205472

ABSTRACT

OBJECTIVE: 3-Methylglutaconic aciduria, dystonia-deafness, hepatopathy, encephalopathy, Leigh-like syndrome (MEGDHEL) syndrome is caused by biallelic variants in SERAC1. METHODS: This multicenter study addressed the course of disease for each organ system. Metabolic, neuroradiological, and genetic findings are reported. RESULTS: Sixty-seven individuals (39 previously unreported) from 59 families were included (age range = 5 days-33.4 years, median age = 9 years). A total of 41 different SERAC1 variants were identified, including 20 that have not been reported before. With the exception of 2 families with a milder phenotype, all affected individuals showed a strikingly homogeneous phenotype and time course. Severe, reversible neonatal liver dysfunction and hypoglycemia were seen in >40% of all cases. Starting at a median age of 6 months, muscular hypotonia (91%) was seen, followed by progressive spasticity (82%, median onset = 15 months) and dystonia (82%, 18 months). The majority of affected individuals never learned to walk (68%). Seventy-nine percent suffered hearing loss, 58% never learned to speak, and nearly all had significant intellectual disability (88%). Magnetic resonance imaging features were accordingly homogenous, with bilateral basal ganglia involvement (98%); the characteristic "putaminal eye" was seen in 53%. The urinary marker 3-methylglutaconic aciduria was present in virtually all patients (98%). Supportive treatment focused on spasticity and drooling, and was effective in the individuals treated; hearing aids or cochlear implants did not improve communication skills. INTERPRETATION: MEGDHEL syndrome is a progressive deafness-dystonia syndrome with frequent and reversible neonatal liver involvement and a strikingly homogenous course of disease. Ann Neurol 2017;82:1004-1015.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Deaf-Blind Disorders/diagnostic imaging , Deaf-Blind Disorders/genetics , Disease Progression , Dystonia/diagnostic imaging , Dystonia/genetics , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Mutation/genetics , Optic Atrophy/diagnostic imaging , Optic Atrophy/genetics , Adolescent , Adult , Amino Acid Sequence , Child , Child, Preschool , Cohort Studies , Deaf-Blind Disorders/therapy , Dystonia/therapy , Female , Humans , Infant , Infant, Newborn , Intellectual Disability/therapy , Male , Optic Atrophy/therapy , Young Adult
12.
J Inherit Metab Dis ; 40(2): 261-269, 2017 03.
Article in English | MEDLINE | ID: mdl-27995398

ABSTRACT

SLC39A8 variants have recently been reported to cause a type II congenital disorder of glycosylation (CDG) in patients with intellectual disability and cerebellar atrophy. Here we report a novel SLC39A8 variant in siblings with features of Leigh-like mitochondrial disease. Two sisters born to consanguineous Lebanese parents had profound developmental delay, dystonia, seizures and failure to thrive. Brain MRI of both siblings identified bilateral basal ganglia hyperintensities on T2-weighted imaging and cerebral atrophy. CSF lactate was elevated in patient 1 and normal in patient 2. Respiratory chain enzymology was only performed on patient 1 and revealed complex IV and II + III activity was low in liver, with elevated complex I activity. Complex IV activity was borderline low in patient 1 muscle and pyruvate dehydrogenase activity was reduced. Whole genome sequencing identified a homozygous Chr4(GRCh37):g.103236869C>G; c.338G>C; p.(Cys113Ser) variant in SLC39A8, located in one of eight regions identified by homozygosity mapping. SLC39A8 encodes a manganese and zinc transporter which localises to the cell and mitochondrial membranes. Patient 2 blood and urine manganese levels were undetectably low. Transferrin electrophoresis of patient 2 serum revealed a type II CDG defect. Oral supplementation with galactose and uridine led to improvement of the transferrin isoform pattern within 14 days of treatment initiation. Oral manganese has only recently been added to the treatment. These results suggest SLC39A8 deficiency can cause both a type II CDG and Leigh-like syndrome, possibly via reduced activity of the manganese-dependent enzymes ß-galactosyltransferase and mitochondrial manganese superoxide dismutase.


Subject(s)
Cation Transport Proteins/genetics , Genetic Variation/genetics , Manganese/deficiency , Mitochondrial Diseases/genetics , Child , Congenital Disorders of Glycosylation/genetics , Female , Glycosylation , Humans , Infant , Leigh Disease/genetics
13.
Mol Genet Metab ; 115(1): 41-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25892708

ABSTRACT

Mucopolysaccharidosis VI (MPS VI, Maroteaux-Lamy syndrome) is caused by deficient activity of the enzyme, N-acetylgalactosamine-4-sulfatase, resulting in impaired degradation of the glycosaminoglycan dermatan sulfate. Patients experience a range of manifestations including joint contractures, short stature, dysostosis multiplex, coarse facial features, decreased pulmonary function, cardiac abnormalities, corneal clouding and shortened life span. Recently, clinicians from institutions in the Asia-Pacific region met to discuss the occurrence and implications of delayed diagnosis and misdiagnosis of MPS VI in the patients they have managed. Eighteen patients (44% female) were diagnosed. The most common sign presented by the patients was bone deformities in 11 patients (65%). Delays to diagnosis occurred due to the lack of or distance to diagnostic facilities for four patients (31%), alternative diagnoses for two patients (15%), and misleading symptoms experienced by two patients (15%). Several patients experienced manifestations that were subtler than would be expected and were subsequently overlooked. Several cases highlighted the unique challenges associated with diagnosing MPS VI from the perspective of different specialties and provide insights into how these patients initially present, which may help to elucidate strategies to improve the diagnosis of MPS VI.


Subject(s)
Mucopolysaccharidosis VI/diagnosis , Asia , Bone and Bones/diagnostic imaging , Brain/diagnostic imaging , Delayed Diagnosis/prevention & control , Diagnosis, Differential , Diagnostic Errors/prevention & control , Female , Health Personnel/education , Humans , Male , Pacific States , Radiography , Referral and Consultation
14.
Am J Med Genet A ; 167(6): 1330-6, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25899669

ABSTRACT

Isolated mitochondrial respiratory chain complex III deficiency has been described in a heterogeneous group of clinical presentations in children and adults. It has been associated with mutations in MT-CYB, the only mitochondrial DNA encoded subunit, as well as in nine nuclear genes described thus far: BCS1L, TTC19, UQCRB, UQCRQ, UQCRC2, CYC1, UQCC2, LYRM7, and UQCC3. BCS1L, TTC19, UQCC2, LYRM7, and UQCC3 are complex III assembly factors. We report on an 8-year-old girl born to consanguineous Iraqi parents presenting with slowly progressive encephalomyopathy, severe failure to thrive, significant delays in verbal and communicative skills and bilateral retinal cherry red spots on fundoscopy. SNP array identified multiple regions of homozygosity involving 7.5% of the genome. Mutations in the TTC19 gene are known to cause complex III deficiency and TTC19 was located within the regions of homozygosity. Sequencing of TTC19 revealed a homozygous nonsense mutation at exon 6 (c.937C > T; p.Q313X). We reviewed the phenotypes and genotypes of all 11 patients with TTC19 mutations leading to complex III deficiency (including our case). The consistent features noted are progressive neurodegeneration with Leigh-like brain MRI abnormalities. Significant variability was observed however with the age of symptom onset and rate of disease progression. The bilateral retinal cherry red spots and failure to thrive observed in our patient are unique features, which have not been described, in previously reported patients with TTC19 mutations. Interestingly, all reported TTC19 mutations are nonsense mutations. The severity of clinical manifestations however does not specifically correlate with the residual complex III enzyme activities.


Subject(s)
Codon, Nonsense , Electron Transport Complex III/deficiency , Failure to Thrive/genetics , Language Development Disorders/genetics , Membrane Proteins/genetics , Mitochondrial Diseases/genetics , Mitochondrial Encephalomyopathies/genetics , Mitochondrial Proteins/genetics , Adolescent , Adult , Child , Consanguinity , Disease Progression , Electron Transport Complex III/genetics , Failure to Thrive/pathology , Failure to Thrive/physiopathology , Female , Genetic Variation , Genotype , Homozygote , Humans , Infant , Language Development Disorders/pathology , Language Development Disorders/physiopathology , Male , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Diseases/pathology , Mitochondrial Diseases/physiopathology , Mitochondrial Encephalomyopathies/pathology , Mitochondrial Encephalomyopathies/physiopathology , Pedigree , Phenotype , Retina/metabolism , Retina/pathology
15.
Am J Hum Genet ; 89(4): 507-15, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21963049

ABSTRACT

Four inborn errors of metabolism (IEMs) are known to cause hypermethioninemia by directly interfering with the methionine cycle. Hypermethioninemia is occasionally discovered incidentally, but it is often disregarded as an unspecific finding, particularly if liver disease is involved. In many individuals the hypermethioninemia resolves without further deterioration, but it can also represent an early sign of a severe, progressive neurodevelopmental disorder. Further investigation of unclear hypermethioninemia is therefore important. We studied two siblings affected by severe developmental delay and liver dysfunction. Biochemical analysis revealed increased plasma levels of methionine, S-adenosylmethionine (AdoMet), and S-adenosylhomocysteine (AdoHcy) but normal or mildly elevated homocysteine (Hcy) levels, indicating a block in the methionine cycle. We excluded S-adenosylhomocysteine hydrolase (SAHH) deficiency, which causes a similar biochemical phenotype, by using genetic and biochemical techniques and hypothesized that there was a functional block in the SAHH enzyme as a result of a recessive mutation in a different gene. Using exome sequencing, we identified a homozygous c.902C>A (p.Ala301Glu) missense mutation in the adenosine kinase gene (ADK), the function of which fits perfectly with this hypothesis. Increased urinary adenosine excretion confirmed ADK deficiency in the siblings. Four additional individuals from two unrelated families with a similar presentation were identified and shown to have a homozygous c.653A>C (p.Asp218Ala) and c.38G>A (p.Gly13Glu) mutation, respectively, in the same gene. All three missense mutations were deleterious, as shown by activity measurements on recombinant enzymes. ADK deficiency is a previously undescribed, severe IEM shedding light on a functional link between the methionine cycle and adenosine metabolism.


Subject(s)
Adenosine Kinase/deficiency , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases/metabolism , Liver Diseases/pathology , Methionine/genetics , Methionine/metabolism , Adult , Amino Acid Metabolism, Inborn Errors/diagnosis , Brain Diseases/genetics , Child , Developmental Disabilities/genetics , Family Health , Female , Fibroblasts/metabolism , Homocysteine/blood , Homocysteine/genetics , Humans , Liver Diseases/genetics , Male , Methionine/blood , S-Adenosylhomocysteine/blood , S-Adenosylmethionine/blood , S-Adenosylmethionine/genetics
16.
J Inherit Metab Dis ; 37(5): 669-86, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24972650

ABSTRACT

Inborn errors of purine metabolism exhibit broad neurological, immunological, haematological and renal manifestations. Limited awareness of the phenotypic spectrum, the recent descriptions of newer disorders and considerable genetic heterogeneity, have contributed to long diagnostic odysseys for affected individuals. These enzymes are widely but not ubiquitously distributed in human tissues and are crucial for synthesis of essential nucleotides, such as ATP, which form the basis of DNA and RNA, oxidative phosphorylation, signal transduction and a range of molecular synthetic processes. Depletion of nucleotides or accumulation of toxic intermediates contributes to the pathogenesis of these disorders. Maintenance of cellular nucleotides depends on the three aspects of metabolism of purines (and related pyrimidines): de novo synthesis, catabolism and recycling of these metabolites. At present, treatments for the clinically significant defects of the purine pathway are restricted: purine 5'-nucleotidase deficiency with uridine; familial juvenile hyperuricaemic nephropathy (FJHN), adenine phosphoribosyl transferase (APRT) deficiency, hypoxanthine phosphoribosyl transferase (HPRT) deficiency and phosphoribosyl-pyrophosphate synthetase superactivity (PRPS) with allopurinol; adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) deficiencies have been treated by bone marrow transplantation (BMT), and ADA deficiency with enzyme replacement with polyethylene glycol (PEG)-ADA, or erythrocyte-encapsulated ADA; myeloadenylate deaminase (MADA) and adenylosuccinate lyase (ADSL) deficiencies have had trials of oral ribose; PRPS, HPRT and adenosine kinase (ADK) deficiencies with S-adenosylmethionine; and molybdenum cofactor deficiency of complementation group A (MOCODA) with cyclic pyranopterin monophosphate (cPMP). In this review we describe the known inborn errors of purine metabolism, their phenotypic presentations, established diagnostic methodology and recognised treatment options.


Subject(s)
Purine-Pyrimidine Metabolism, Inborn Errors/therapy , Purines/metabolism , Humans , Purine-Pyrimidine Metabolism, Inborn Errors/diagnosis , Purine-Pyrimidine Metabolism, Inborn Errors/epidemiology , Purine-Pyrimidine Metabolism, Inborn Errors/genetics
17.
J Inherit Metab Dis ; 37(5): 687-98, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25030255

ABSTRACT

Inborn errors involving enzymes essential for pyrimidine nucleotide metabolism have provided new insights into their fundamental physiological roles as vital constituents of nucleic acids as well as substrates of lipid and carbohydrate metabolism and in oxidative phosphorylation. Genetic aberrations of pyrimidine pathways lead to diverse clinical manifestations including neurological, immunological, haematological, renal impairments, adverse reactions to analogue therapy and association with malignancies. Maintenance of cellular nucleotides depends on the three aspects of metabolism of pyrimidines: de novo synthesis, catabolism and recycling of these metabolites. Of the ten recognised disorders of pyrimidine metabolism treatment is currently restricted to only two disorders: hereditary orotic aciduria (oral uridine therapy) and mitochondrial neurogastrointestinal encephalomyopathy (MNGIE; allogeneic hematopoetic stem cell transplant and enzyme replacement). The ubiquitous role that pyrimidine metabolism plays in human life highlights the importance of improving diagnostic evaluation in suggestive clinical settings, which will contribute to the elucidation of new defects, future development of novel drugs and therapeutic strategies. Limited awareness of the expanding phenotypic spectrum, with relatively recent descriptions of newer disorders, compounded by considerable genetic heterogeneity has often contributed to the delays in the diagnosis of this group of disorders. The lack of an easily recognisable, easily measurable end product, akin to uric acid in purine metabolism, has contributed to the under-recognition of these disorders.This review describes the currently known inborn errors of pyrimidine metabolism, their variable phenotypic presentations, established diagnostic methodology and recognised treatment options.


Subject(s)
Purine-Pyrimidine Metabolism, Inborn Errors/therapy , Pyrimidines/metabolism , Humans , Purine-Pyrimidine Metabolism, Inborn Errors/diagnosis , Purine-Pyrimidine Metabolism, Inborn Errors/epidemiology , Purine-Pyrimidine Metabolism, Inborn Errors/genetics
18.
Eur J Hum Genet ; 32(8): 947-953, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38816490

ABSTRACT

The sodium-dependent multivitamin transporter encoded by SLC5A6 is responsible for uptake of biotin, pantothenic acid, and α-lipoic acid. Thirteen individuals from eight families are reported with pathogenic biallelic SLC5A6 variants. Phenotype ranges from multisystem metabolic disorder to childhood-onset peripheral motor neuropathy. We report three additional affected individuals with biallelic SLC5A6 variants. In Family A, a male proband (AII:1) presenting in early childhood with gross motor regression, motor axonal neuropathy, recurrent cytopenia and infections, and failure to thrive was diagnosed at 12 years of age via genome sequencing (GS) with a paternal NM_021095.4:c.393+2T>C variant and a maternal c.1285A>G p.(Ser429Gly) variant. An uncle with recurrent cytopenia and peripheral neuropathy was subsequently found to have the same genotype. We also report an unrelated female with peripheral neuropathy homozygous for the c.1285A>G p.(Ser429Gly) recurrent variant identified in seven reported cases, including this study. RT-PCR studies on blood mRNA from AII:1 showed c.393+2T>C caused mis-splicing with all canonically spliced transcripts in AII:1 containing the c.1285A>G variant. SLC5A6 mRNA expression in AII:1 fibroblasts was ~50% of control levels, indicative of nonsense-mediated decay of mis-spliced transcripts. Biotin uptake studies on AII:1 fibroblasts, expressing the p.(Ser429Gly) variant, showed an ~90% reduction in uptake compared to controls. Targeted treatment of AII:1 with biotin, pantothenic acid, and lipoic acid resulted in clinical improvement. Health Economic analyses showed implementation of GS as an early investigation could have saved $ AUD 105,988 and shortened diagnostic odyssey and initiation of treatment by up to 7 years.


Subject(s)
Symporters , Child , Humans , Male , Basal Ganglia Diseases , Biotin/therapeutic use , Mutation , Organic Anion Transporters, Sodium-Dependent/genetics , Pedigree , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/diagnosis , Symporters/genetics , Thioctic Acid/therapeutic use , Whole Genome Sequencing , Female
19.
Brain Dev ; 45(9): 523-531, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37156708

ABSTRACT

BACKGROUND: Hyperphenylalaninemia is a biomarker for several monogenic neurotransmitter disorders where the body cannot metabolise phenylalanine to tyrosine. Biallelic pathogenic variants in DNAJC12, co-chaperone of phenylalanine, tyrosine, and tryptophan hydroxylases, leads to hyperphenylalaninemia and biogenic amines deficiency. METHODS AND RESULTS: A male firstborn to non-consanguineous Sudanese parents had hyperphenylalaninemia 247 µmol/L [reference interval (RI) < 200 µmol/L] at newborn screening. Dried blood spot dihydropteridine reductase (DHPR) assay and urine pterins were normal. He had severe developmental delay and autism spectrum disorder without a notable movement disorder. A low phenylalanine diet was introduced at two years without any clinical improvements. Cerebrospinal fluid (CSF) neurotransmitters at five years demonstrated low homovanillic acid (HVA) 0.259 µmol/L (reference interval (RI) 0.345-0.716) and 5-hydroxyindoleaetic acid (5HIAA) levels 0.024 µmol/L (reference interval (RI) 0.100-0.245). Targeted neurotransmitter gene panel analysis identified a homozygous c.78 + 1del variant in DNAJC12. At six years, he was commenced on 5-hydroxytryptophan 20 mg daily, and his protein-restricted diet was liberalised, with continued good control of phenylalanine levels. Sapropterin dihydrochloride 7.2 mg/kg/day was added the following year with no observable clinical benefits. He remains globally delayed with severe autistic traits. CONCLUSIONS: Urine, CSF neurotransmitter studies, and genetic testing will differentiate between phenylketonuria, tetrahydrobiopterin or DNAJC12 deficiency, with the latter characterised by a clinical spectrum ranging from mild autistic features or hyperactivity to severe intellectual disability, dystonia, and movement disorder, normal DHPR, reduced CSF HIAA and HVA. DNAJC12 deficiency should be considered early in the differential workup of hyperphenylalaninemia identified from newborn screening, with its genotyping performed once deficiencies of phenylalanine hydroxylase (PAH) and tetrahydrobiopterin (BH4) have been biochemically or genetically excluded.


Subject(s)
Autism Spectrum Disorder , Movement Disorders , Phenylketonurias , Infant, Newborn , Humans , Male , Phenylketonurias/genetics , Tyrosine , Homovanillic Acid/metabolism , Phenylalanine/genetics , Phenylalanine/metabolism , Biopterins/metabolism , Neurotransmitter Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL