ABSTRACT
Patients with early-onset lysosomal storage diseases are ideal candidates for prenatal therapy because organ damage starts in utero. We report the safety and efficacy results of in utero enzyme-replacement therapy (ERT) in a fetus with CRIM (cross-reactive immunologic material)-negative infantile-onset Pompe's disease. The family history was positive for infantile-onset Pompe's disease with cardiomyopathy in two previously affected deceased siblings. After receiving in utero ERT and standard postnatal therapy, the current patient had normal cardiac and age-appropriate motor function postnatally, was meeting developmental milestones, had normal biomarker levels, and was feeding and growing well at 13 months of age.
Subject(s)
Glycogen Storage Disease Type II , Humans , Infant , Glycogen Storage Disease Type II/drug therapyABSTRACT
INTRODUCTION: Diseases caused by lysosomal dysfunction often exhibit multisystemic involvement, resulting in substantial morbidity and mortality. Ensuring accurate diagnoses for individuals with lysosomal diseases (LD) is of great importance, especially with the increasing prominence of genetic testing as a primary diagnostic method. As the list of genes associated with LD continues to expand due to the use of more comprehensive tests such as exome and genome sequencing, it is imperative to understand the clinical validity of the genes, as well as identify appropriate genes for inclusion in multi-gene testing and sequencing panels. The Clinical Genome Resource (ClinGen) works to determine the clinical importance of genes and variants to support precision medicine. As part of this work, ClinGen has developed a semi-quantitative framework to assess the strength of evidence for the role of a gene in a disease. Given the diversity in gene composition across LD panels offered by various laboratories and the evolving comprehension of genetic variants affecting secondary lysosomal functions, we developed a scoring system to define LD (Lysosomal Disease Scoring System - LDSS). This system sought to aid in the prioritization of genes for clinical validity curation and assess their suitability for LD-targeted sequencing panels. METHODS: Through literature review encompassing terms associated with both classically designated LD and LFRD, we identified 14 criteria grouped into "Overall Definition," "Phenotype," and "Pathophysiology." These criteria included concepts such as the "accumulation of undigested or partially digested macromolecules within the lysosome" and being "associated with a wide spectrum of clinical manifestations impacting multiple organs and systems." The criteria, along with their respective weighted values, underwent refinement through expert panel evaluation differentiating them between "major" and "minor" criteria. Subsequently, the LDSS underwent validation on 12 widely acknowledged LD and was later tested by applying these criteria to the Lysosomal Disease Network's (LDN) official Gene List. RESULTS: The final LDSS comprised 4 major criteria and 10 minor criteria, with a cutoff of 2 major or 1 major and 3 minor criteria established to define LD. Interestingly, when applied to both the LDN list and a comprehensive gene list encompassing genes included in clinical panels and published as LFRD genes, we identified four genes (GRN, SLC29A3, CLN7 and VPS33A) absent from the LDN list, that were deemed associated with LD. Conversely, a subset of non-classic genes included in the LDN list, such as MTOR, OCRL, and SLC9A6, received lower LDSS scores for their associated disease entities. While these genes may not be suitable for inclusion in clinical LD multi-gene panels, they could be considered for inclusion on other, non-LD gene panels. DISCUSSION: The LDSS offers a systematic approach to prioritize genes for clinical validity assessment. By identifying genes with high scores on the LDSS, this method enhanced the efficiency of gene curation by the ClinGen LD GCEP. CONCLUSION: The LDSS not only serves as a tool for gene prioritization prior to clinical validity curation, but also contributes to the ongoing discussion on the definition of LD. Moreover, the LDSS provides a flexible framework adaptable to future discoveries, ensuring its relevance in the ever-expanding landscape of LD research.
Subject(s)
Genetic Testing , Lysosomal Storage Diseases , Humans , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/diagnosis , Genetic Testing/methods , Genetic Testing/standards , Lysosomes/genetics , Lysosomes/metabolism , Databases, Genetic , Genetic Predisposition to DiseaseABSTRACT
Hepatic glycogen storage disease type IX γ2 (GSD IX γ2) is a severe, liver-specific subtype of GSD IX. While all patients with hepatic GSD IX present with similar symptoms, over 95 % of patients with GSD IX γ2 progress to liver fibrosis and cirrhosis. Despite disease severity, the long-term natural history of GSD IX γ2 liver disease progression is not known. Our lab previously characterized the Phkg2-/- mouse model at 3 months of age, demonstrating that the mouse recapitulates the early liver disease phenotype of GSD IX γ2. To understand how liver disease progresses in GSD IX γ2, we characterized the mouse model through 24 months of age. Our study showed for the first time that GSD IX γ2 mice develop liver fibrosis that progresses to cirrhosis. Importantly, we observed that the progression of liver fibrosis is associated with an initial elevation and subsequent decrease of key GSD biomarkers - the latter being a finding that is often considered to be an improvement of disease in patients. In recognition of the unique liver fibrosis pattern and to support future therapeutic investigations using this model, we developed a novel scoring system for GSD IX γ2 mouse liver pathology. Lastly, this work introduces evidence of a dysregulated glycogen metabolism pathway which can serve as an endpoint for future therapeutic evaluation. As we await longitudinal clinical natural history data, these findings greatly expand our understanding of liver disease manifestations in GSD IX γ2 and have notable clinical applications.
ABSTRACT
Lysosomal diseases (LDs) are a heterogeneous group of rare genetic disorders that result in impaired lysosomal function, leading to progressive multiorgan system dysfunction. Accurate diagnosis is paramount to initiating targeted therapies early in the disease process in addition to providing prognostic information and appropriate support for families. In recent years, genomic sequencing technologies have become the first-line approach in the diagnosis of LDs. Understanding the clinical validity of the role of a gene in a disease is critical for the development of genomic technologies, such as which genes to include on next generation sequencing panels, and the interpretation of results from exome and genome sequencing. To this aim, the ClinGen Lysosomal Diseases Gene Curation Expert Panel utilized a semi-quantitative framework incorporating genetic and experimental evidence to assess the clinical validity of the 56 LD-associated genes on the Lysosomal Disease Network's list. Here, we describe the results, and the key themes and challenges encountered.
ABSTRACT
Gene therapy with an adeno-associated virus serotype 8 (AAV8) vector (AAV8-LSPhGAA) could eliminate the need for enzyme replacement therapy (ERT) by creating a liver depot for acid α-glucosidase (GAA) production. We report initial safety and bioactivity of the first dose (1.6 × 1012 vector genomes/kg) cohort (n = 3) in a 52-week open-label, single-dose, dose-escalation study (NCT03533673) in patients with late-onset Pompe disease (LOPD). Subjects discontinued biweekly ERT after week 26 based on the detection of elevated serum GAA activity and the absence of clinically significant declines per protocol. Prednisone (60 mg/day) was administered as immunoprophylaxis through week 4, followed by an 11-week taper. All subjects demonstrated sustained serum GAA activities from 101% to 235% of baseline trough activity 2 weeks following the preceding ERT dose. There were no treatment-related serious adverse events. No subject had anti-capsid T cell responses that decreased transgene expression. Muscle biopsy at week 24 revealed unchanged muscle glycogen content in two of three subjects. At week 52, muscle GAA activity for the cohort was significantly increased (p < 0.05). Overall, these initial data support the safety and bioactivity of AAV8-LSPhGAA, the safety of withdrawing ERT, successful immunoprophylaxis, and justify continued clinical development of AAV8-LSPhGAA therapy in Pompe disease.
Subject(s)
Glycogen Storage Disease Type II , Humans , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolism , Antibodies/genetics , Enzyme Replacement Therapy/methods , Genetic Therapy/methods , Glycogen Storage Disease Type II/therapy , Glycogen Storage Disease Type II/drug therapy , Liver/metabolismABSTRACT
Glycogen storage disease type IV (GSD IV) is an ultra-rare autosomal recessive disorder caused by pathogenic variants in GBE1 which results in reduced or deficient glycogen branching enzyme activity. Consequently, glycogen synthesis is impaired and leads to accumulation of poorly branched glycogen known as polyglucosan. GSD IV is characterized by a remarkable degree of phenotypic heterogeneity with presentations in utero, during infancy, early childhood, adolescence, or middle to late adulthood. The clinical continuum encompasses hepatic, cardiac, muscular, and neurologic manifestations that range in severity. The adult-onset form of GSD IV, referred to as adult polyglucosan body disease (APBD), is a neurodegenerative disease characterized by neurogenic bladder, spastic paraparesis, and peripheral neuropathy. There are currently no consensus guidelines for the diagnosis and management of these patients, resulting in high rates of misdiagnosis, delayed diagnosis, and lack of standardized clinical care. To address this, a group of experts from the United States developed a set of recommendations for the diagnosis and management of all clinical phenotypes of GSD IV, including APBD, to support clinicians and caregivers who provide long-term care for individuals with GSD IV. The educational resource includes practical steps to confirm a GSD IV diagnosis and best practices for medical management, including (a) imaging of the liver, heart, skeletal muscle, brain, and spine, (b) functional and neuromusculoskeletal assessments, (c) laboratory investigations, (d) liver and heart transplantation, and (e) long-term follow-up care. Remaining knowledge gaps are detailed to emphasize areas for improvement and future research.
Subject(s)
Glycogen Storage Disease Type IV , Glycogen Storage Disease , Neurodegenerative Diseases , Child, Preschool , Humans , Glycogen Storage Disease Type IV/diagnosis , Glycogen Storage Disease Type IV/genetics , Glycogen Storage Disease Type IV/therapy , Glycogen Storage Disease/diagnosis , Glycogen Storage Disease/genetics , Glycogen Storage Disease/therapy , GlycogenABSTRACT
Accurate determination of the clinical significance of genetic variants is critical to the integration of genomics in medicine. To facilitate this process, the NIH-funded Clinical Genome Resource (ClinGen) has assembled Variant Curation Expert Panels (VCEPs), groups of experts and biocurators which provide gene- and disease- specifications to the American College of Medical Genetics & Genomics and Association for Molecular Pathology's (ACMG/AMP) variation classification guidelines. With the goal of classifying the clinical significance of GAA variants in Pompe disease (Glycogen storage disease, type II), the ClinGen Lysosomal Diseases (LD) VCEP has specified the ACMG/AMP criteria for GAA. Variant classification can play an important role in confirming the diagnosis of Pompe disease as well as in the identification of carriers. Furthermore, since the inclusion of Pompe disease on the Recommended Uniform Screening Panel (RUSP) for newborns in the USA in 2015, the addition of molecular genetic testing has become an important component in the interpretation of newborn screening results, particularly for asymptomatic individuals. To date, the LD VCEP has submitted classifications and supporting data on 243 GAA variants to public databases, specifically ClinVar and the ClinGen Evidence Repository. Here, we describe the ACMG/AMP criteria specification process for GAA, an update of the GAA-specific variant classification guidelines, and comparison of the ClinGen LD VCEP's GAA variant classifications with variant classifications submitted to ClinVar. The LD VCEP has added to the publicly available knowledge on the pathogenicity of variants in GAA by increasing the number of expert-curated GAA variants present in ClinVar, and aids in resolving conflicting classifications and variants of uncertain clinical significance.
Subject(s)
Genetic Variation , Glycogen Storage Disease Type II , Infant, Newborn , Humans , United States , Genetic Testing/methods , Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/genetics , Genome, Human , Genomics/methodsABSTRACT
Lysosomal storage disorders (LSDs) are a group of monogenic condition, with many characterized by an enzyme deficiency leading to the accumulation of an undegraded substrate within the lysosomes. For those LSDs, postnatal enzyme replacement therapy (ERT) represents the standard of care, but this treatment has limitations when administered only postnatally because, at that point, prenatal disease sequelae may be irreversible. Furthermore, most forms of ERT, specifically those administered systemically, are currently unable to access certain tissues, such as the central nervous system (CNS), and furthermore, may initiate an immune response. In utero enzyme replacement therapy (IUERT) is a novel approach to address these challenges evaluated in a first-in-human clinical trial for IUERT in LSDs (NCT04532047). IUERT has numerous advantages: in-utero intervention may prevent early pathology; the CNS can be accessed before the blood-brain barrier forms; and the unique fetal immune system enables exposure to new proteins with the potential to prevent an immune response and may induce sustained tolerance. However, there are challenges and limitations for any fetal procedure that involves two patients. This article reviews the current state of IUERT for LSDs, including its advantages, limitations, and potential future directions for definitive therapies.
Subject(s)
Enzyme Replacement Therapy , Lysosomal Storage Diseases , Pregnancy , Female , Humans , Enzyme Replacement Therapy/methods , Lysosomal Storage Diseases/therapy , Lysosomal Storage Diseases/complications , Central Nervous System , LysosomesABSTRACT
INTRODUCTION: Liver Glycogen Storage Disease IX is a rare metabolic disorder of glycogen metabolism caused by deficiency of the phosphorylase kinase enzyme (PhK). Variants in the PHKG2 gene, encoding the liver-specific catalytic γ2 subunit of PhK, are associated with a liver GSD IX subtype known as PHKG2 GSD IX or GSD IX γ2. There is emerging evidence that patients with GSD IX γ2 can develop severe and progressive liver disease, yet research regarding the disease has been minimal to date. Here we characterize the first mouse model of liver GSD IX γ2. METHODS: A Phkg2-/- mouse model was generated via targeted removal of the Phkg2 gene. Knockout (Phkg2-/-, KO) and wild type (Phkg2+/+, WT) mice up to 3 months of age were compared for morphology, Phkg2 transcription, PhK enzyme activity, glycogen content, histology, serum liver markers, and urinary glucose tetrasaccharide Glcα1-6Glcα1-4Glcα1-4Glc (Glc4). RESULTS: When compared to WT controls, KO mice demonstrated significantly decreased liver PhK enzyme activity, increased liver: body weight ratio, and increased glycogen in the liver, with no glycogen accumulation observed in the brain, quadricep, kidney, and heart. KO mice demonstrated elevated liver blood markers as well as elevated urine Glc4, a commonly used biomarker for glycogen storage disease. KO mice demonstrated features of liver structural damage. Hematoxylin & Eosin and Masson's Trichrome stained KO mice liver histology slides revealed characteristic GSD hepatocyte architectural changes and early liver fibrosis, as have been reported in liver GSD patients. DISCUSSION: This study provides the first evidence of a mouse model that recapitulates the liver-specific pathology of patients with GSD IX γ2. The model will provide the first platform for further study of disease progression in GSD IX γ2 as well as for the evaluation of novel therapeutics.
Subject(s)
Disease Models, Animal , Glycogen Storage Disease/physiopathology , Glycogen/metabolism , Liver Diseases/physiopathology , Liver/physiopathology , Mice , Phosphorylase Kinase/genetics , Animals , Female , Glycogen Storage Disease/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Phosphorylase Kinase/deficiencyABSTRACT
Pompe's disease occurs due to an autosomal recessive trait resulting from numerous distinctive mutations in the GAA gene. It manifests as a broad spectrum of clinical phenotypes with progressive weakness that impairs motor and respiratory functions being common for all its forms. Cardiac hypertrophy is a prominent feature of its classic infantile form. To date, the pathogenic variant c.2015G > A (p.Arg672Gln) in exon 14 of the GAA gene has been described in 10 children of different ethnic groups, with variable phenotypic presentations. This work describes three children from two unrelated families of Arab ethnicity who presented with infantile-onset Pompe's disease as a result of a c.2015G > A (p.Arg672Gln) mutation. The clinical course of the children we report was more severe than previous reports. This further emphasizes the lack of a strict genotype-phenotype correlation in regard to the unique c.2015G > A (p.R672Q) mutation that causes Pompe's disease. This information contributes to the knowledge of the phenotypic expression of the specific mutation c.2015G > A (p.Arg672Gln) that causes Pompe's disease.
Subject(s)
Glycogen Storage Disease Type II , alpha-Glucosidases , Disease Progression , Genetic Association Studies , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/metabolism , Humans , Mutation , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolismABSTRACT
Whole-exome sequencing (WES) has increasingly enabled new pathogenic gene variant identification for undiagnosed neurodevelopmental disorders and provided insights into both gene function and disease biology. Here, we describe seven children with a neurodevelopmental disorder characterized by microcephaly, profound developmental delays and/or intellectual disability, cataracts, severe epilepsy including infantile spasms, irritability, failure to thrive, and stereotypic hand movements. Brain imaging in these individuals reveals delay in myelination and cerebral atrophy. We observe an identical recurrent de novo heterozygous c.892C>T (p.Arg298Trp) variant in the nucleus accumbens associated 1 (NACC1) gene in seven affected individuals. One of the seven individuals is mosaic for this variant. NACC1 encodes a transcriptional repressor implicated in gene expression and has not previously been associated with germline disorders. The probability of finding the same missense NACC1 variant by chance in 7 out of 17,228 individuals who underwent WES for diagnoses of neurodevelopmental phenotypes is extremely small and achieves genome-wide significance (p = 1.25 × 10-14). Selective constraint against missense variants in NACC1 makes this excess of an identical missense variant in all seven individuals more remarkable. Our findings are consistent with a germline recurrent mutational hotspot associated with an allele-specific neurodevelopmental phenotype in NACC1.
Subject(s)
Cataract/genetics , Genetic Variation , Intellectual Disability/genetics , Neoplasm Proteins/genetics , Repressor Proteins/genetics , Spasms, Infantile/genetics , Alleles , Amino Acid Sequence , Brain/diagnostic imaging , Cataract/diagnostic imaging , Child , Child, Preschool , Female , Genome-Wide Association Study , Humans , Infant , Intellectual Disability/diagnostic imaging , Magnetic Resonance Imaging , Male , Microcephaly/genetics , Mutation, Missense , Pedigree , Phenotype , Spasms, Infantile/diagnostic imagingABSTRACT
PURPOSE: Successful diagnosis of Fabry disease is often delayed or missed in patients, especially females, due to clinical heterogeneity and a lack of disease awareness. We present our experience testing for Fabry disease in high risk populations and discuss the relative sensitivities of α-galactosidase A (α-Gal A) enzyme activity in blood, plasma lyso-globotriaosylceramide (lyso-Gb3) biomarker, and GLA gene sequencing as diagnostic tests for Fabry disease in both males and females. METHODS: Patients with a clinical suspicion of Fabry disease were evaluated with enzyme analysis, biomarker analysis, and GLA sequencing. All three assays were performed from a single tube of EDTA blood. α-Gal A activity was determined in dried blood spots using a fluorometric assay, plasma lyso-Gb3 by UPLC-MS/MS, and GLA analysis by Sanger sequencing. RESULTS: Peripheral blood samples were received from 94 males and 200 females, of which 29% of males and 22% of females had a positive family history of Fabry disease. A likely pathogenic or pathogenic variant was identified in 87 (30%) patients (50 males, 37 females), confirming a diagnosis of Fabry disease. Of the remaining patients, 178 (61%) were determined to be unaffected based on normal enzyme activity (males) or normal lyso-Gb3 and negative sequencing results (females). A VUS was identified in 29 (10%) patients. The positive and negative predictive value of plasma lyso-Gb3 was 100% and 97% in males and 100% and 99% in females, respectively. This compares with 84% and 100% in males, and 58% and 50% in females for α-Gal A activity testing, respectively. CONCLUSIONS: Plasma lyso-Gb3 has high sensitivity and specificity for Fabry disease in males and females, and provides supportive diagnostic information when gene sequencing results are negative or inconclusive. α-Gal A activity in dried blood spots (DBS) has high sensitivity, but lower specificity for Fabry disease in males, as not all males with low α-Gal A activities were confirmed to have Fabry disease. Therefore, reflexing to gene sequencing and plasma lyso-Gb3 is useful for disease confirmation in males. For females, we found that first tier testing consisting of GLA sequencing and plasma lyso-Gb3 analysis provided the greatest sensitivity and specificity. Enzyme testing has lower sensitivity in females and is therefore less useful as a first-tier test. Enzyme analysis in females may still be helpful as a second-tier test in cases where molecular testing and plasma lyso-Gb3 analysis are uninformative and in vitro enzyme activity is low. SUMMARY: Sex-specific testing algorithms that prioritize tests with high specificity and sensitivity offer an effective means of identifying individuals with Fabry disease.
Subject(s)
Algorithms , Biomarkers/blood , Fabry Disease/diagnosis , Glycolipids/blood , Sphingolipids/blood , alpha-Galactosidase/metabolism , Fabry Disease/metabolism , Female , Humans , Infant, Newborn , Male , Mutation , Retrospective Studies , alpha-Galactosidase/geneticsABSTRACT
This 24-week, Phase I/II, double-blind, randomized, placebo-controlled study investigated the safety and efficacy of extended-release albuterol in late-onset Pompe disease stably treated with enzyme replacement therapy at the standard dose for 4.9 (1.0-9.4) years and with no contraindications to intake of albuterol. Twelve of 13 participants completed the study. No serious adverse events were related to albuterol, and transient minor drug-related adverse events included muscle spasms and tremors. For the albuterol group, forced vital capacity in the supine position increased by 10% (p < .005), and forced expiratory volume in one second increased by 8% (p < .05); the six-minute walk test increased 25 m (p < .05; excluding one participant unable to complete muscle function testing); the Gross Motor Function Measure increased by 8% (p < .005) with the greatest increases in the Standing (18%; p < .05) and Walking, Running, and Jumping (11%; p < .005) subtests. No significant improvements would be expected in patients with late-onset Pompe disease who were stably treated with enzyme replacement therapy. The placebo group demonstrated no significant increases in performance on any measure. These data support a potential benefit of extended-release albuterol as adjunctive therapy in carefully selected patients with late-onset Pompe disease based on ability to take albuterol on enzyme replacement therapy (NCT01885936).
Subject(s)
Albuterol/administration & dosage , Glycogen Storage Disease Type II/drug therapy , Late Onset Disorders/drug therapy , Muscle, Skeletal/drug effects , Adult , Double-Blind Method , Enzyme Replacement Therapy , Female , Forced Expiratory Volume , Humans , Male , Middle Aged , Muscle, Skeletal/physiology , Treatment Outcome , Vital Capacity , Walk TestABSTRACT
OBJECTIVES: To evaluate the clinical and molecular spectrum, and factors affecting clinical outcome of patients in India diagnosed with infantile-onset Pompe disease (IOPD). STUDY DESIGN: In this multicenter, cross-sectional study, we evaluated the records of 77 patients with IOPD to analyze their clinical course, outcomes, and factors influencing the outcomes. RESULTS: Of the 77 patients with IOPD, phenotype data were available in 59; 46 (78%) had the classic phenotype. Overall, 58 of 77 (75%) and 19 of 77 (25%) patients were symptomatic before and after age 6 months, respectively. Alpha-glucosidase gene variant analysis available for 48 patients (96 alleles) showed missense variants in 49 alleles. Cross-reactive immunologic material (CRIM) status could be determined or predicted in 44 of 48 patients. In total, 32 of 44 patients (72%) were CRIM-positive, and 12 of 44 patients (27%) were CRIM-negative. Thirty-nine cases received enzyme-replacement therapy (ERT), alglucosidase alfa, and 38 patients never received ERT. Median age at initiation of ERT was 6.5 months. Response to ERT was better in babies who had CRIM-positive, non-classic IOPD. CONCLUSIONS: This study highlights the clinical spectrum of IOPD in India and provides an insight on various factors, such as undernutrition, feeding difficulties, and recurrent respiratory infection, as possible factors influencing clinical outcomes in these patients. The study also reiterates the importance of raising awareness among clinicians about the need for early diagnosis and timely treatment of IOPD.
Subject(s)
Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/physiopathology , Age of Onset , Cross-Sectional Studies , Female , Glycogen Storage Disease Type II/mortality , Glycogen Storage Disease Type II/therapy , Humans , India/epidemiology , Infant , Infant, Newborn , Male , Phenotype , Retrospective Studies , Treatment OutcomeABSTRACT
PURPOSE: In glycogen storage disease type III (GSD III), liver aminotransferases tend to normalize with age giving an impression that hepatic manifestations improve with age. However, despite dietary treatment, long-term liver complications emerge. We present a GSD III liver natural history study in children to better understand changes in hepatic parameters with age. METHODS: We reviewed clinical, biochemical, histological, and radiological data in pediatric patients with GSD III, and performed a literature review of GSD III hepatic findings. RESULTS: Twenty-six patients (median age 12.5 years, range 2-22) with GSD IIIa (n = 23) and IIIb (n = 3) were enrolled in the study. Six of seven pediatric patients showed severe fibrosis on liver biopsy (median [range] age: 1.25 [0.75-7] years). Markers of liver injury (aminotransferases), dysfunction (cholesterol, triglycerides), and glycogen storage (glucose tetrasaccharide, Glc4) were elevated at an early age, and decreased significantly thereafter (p < 0.001). Creatine phosphokinase was also elevated with no significant correlation with age (p = 0.4). CONCLUSION: Liver fibrosis can occur at an early age, and may explain the decrease in aminotransferases and Glc4 with age. Our data outlines the need for systematic follow-up and specific biochemical and radiological tools to monitor the silent course of the liver disease process.
Subject(s)
Glycogen Storage Disease Type III/pathology , Liver Cirrhosis/pathology , Adolescent , Biomarkers , Child , Child, Preschool , Cholesterol/analysis , Cholesterol/metabolism , Female , Glycogen , Glycogen Storage Disease/pathology , Glycogen Storage Disease Type I/pathology , Glycogen Storage Disease Type III/metabolism , Humans , Liver/pathology , Liver Cirrhosis/metabolism , Liver Diseases , Male , Oligosaccharides/analysis , Oligosaccharides/metabolism , Transaminases/analysis , Transaminases/metabolism , Triglycerides/analysis , Triglycerides/metabolism , Young AdultABSTRACT
PURPOSE: Glycogen storage disease (GSD) types VI and IX are rare diseases of variable clinical severity affecting primarily the liver. GSD VI is caused by deficient activity of hepatic glycogen phosphorylase, an enzyme encoded by the PYGL gene. GSD IX is caused by deficient activity of phosphorylase kinase (PhK), the enzyme subunits of which are encoded by various genes: É (PHKA1, PHKA2), ß (PHKB), É£ (PHKG1, PHKG2), and δ (CALM1, CALM2, CALM3). Glycogen storage disease types VI and IX have a wide spectrum of clinical manifestations and often cannot be distinguished from each other, or from other liver GSDs, on clinical presentation alone. Individuals with GSDs VI and IX can present with hepatomegaly with elevated serum transaminases, ketotic hypoglycemia, hyperlipidemia, and poor growth. This guideline for the management of GSDs VI and IX was developed as an educational resource for health-care providers to facilitate prompt and accurate diagnosis and appropriate management of patients. METHODS: A national group of experts in various aspects of GSDs VI and IX met to review the limited evidence base from the scientific literature and provided their expert opinions. Consensus was developed in each area of diagnosis, treatment, and management. Evidence bases for these rare disorders are largely based on expert opinion, particularly when targeted therapeutics that have to clear the US Food and Drug Administration (FDA) remain unavailable. RESULTS: This management guideline specifically addresses evaluation and diagnosis across multiple organ systems involved in GSDs VI and IX. Conditions to consider in a differential diagnosis stemming from presenting features and diagnostic algorithms are discussed. Aspects of diagnostic evaluation and nutritional and medical management, including care coordination, genetic counseling, and prenatal diagnosis are addressed. CONCLUSION: A guideline that will facilitate the accurate diagnosis and optimal management of patients with GSDs VI and IX was developed. This guideline will help health-care providers recognize patients with GSDs VI and IX, expedite diagnosis, and minimize adverse sequelae from delayed diagnosis and inappropriate management. It will also help identify gaps in scientific knowledge that exist today and suggest future studies.
Subject(s)
Genomics , Glycogen Storage Disease/genetics , Hypoglycemia/genetics , Phosphorylase Kinase/genetics , Disease Management , Genetics, Medical/trends , Glycogen/genetics , Glycogen/metabolism , Glycogen Storage Disease/diagnosis , Glycogen Storage Disease/epidemiology , Glycogen Storage Disease/therapy , Guidelines as Topic , Humans , Hypoglycemia/metabolism , Hypoglycemia/therapy , Liver/metabolism , Liver/pathology , Mutation , Phosphorylase Kinase/chemistry , United States/epidemiologyABSTRACT
OBJECTIVE: To evaluate the performance of a 2-tiered newborn screening method for mucopolysaccharidosis type I (MPS I) in North Carolina. STUDY DESIGN: The screening algorithm included a flow injection analysis-tandem mass spectrometry assay as a first-tier screening method to measure α-L-iduronidase (IDUA) enzyme activity and Sanger sequencing of the IDUA gene on dried blood spots as a second-tier assay. The screening algorithm was revised to incorporate the Collaborative Laboratory Integrated Reports, an analytical interpretive tool, to reduce the false-positive rate. A medical history, physical examination, IDUA activity, and urinary glycosaminoglycan (GAG) analysis were obtained on all screen-positive infants. RESULTS: A total of 62 734 specimens were screened with 54 screen-positive samples using a cut-off of 15% of daily mean IDUA activity. The implementation of Collaborative Laboratory Integrated Reports reduced the number of specimens that screened positive to 19 infants. Of the infants identified as screen-positive, 1 had elevated urinary GAGs and a homozygous pathogenic variant associated with the severe form of MPS I. All other screen-positive infants had normal urinary GAG analysis; 13 newborns had pseudodeficiency alleles, 3 newborns had variants of unknown significance, and 2 had heterozygous pathogenic variants. CONCLUSIONS: An infant with severe MPS I was identified and referred for a hematopoietic stem cell transplant. Newborn IDUA enzyme deficiency is common in North Carolina, but most are due to pseudodeficiency alleles in infants with normal urinary GAG analysis and no evidence of disease. The pilot study confirmed the need for second-tier testing to reduce the follow-up burden.
Subject(s)
Mucopolysaccharidosis I/diagnosis , Neonatal Screening , Algorithms , Dermatan Sulfate/urine , Genetic Testing , Genetic Variation , Glycosaminoglycans/urine , Heparitin Sulfate/urine , Humans , Iduronidase/blood , Iduronidase/genetics , Infant, Newborn , Mucopolysaccharidosis I/genetics , North Carolina , Referral and Consultation/statistics & numerical data , Sequence Analysis , Tandem Mass SpectrometryABSTRACT
This 52-week, phase I/II double-blind, randomized, placebo-controlled study investigated the novel use of clenbuterol in late-onset Pompe disease (LOPD) stably treated with ERT. Eleven of thirteen participants completed the study. No serious adverse events were related to clenbuterol, and transient minor adverse events included mild elevations of creatine kinase, muscle spasms, and tremors. At week 52, the 6-min walk test distance increased by a mean of 16 m (p = 0.08), or a mean of 3% of predicted performance (p = 0.03), and the maximum inspiratory pressure increased 8% (p = 0.003) for the clenbuterol group. The quick motor function test score improved by a mean of seven points (p = 0.007); and the gait, stairs, gower, chair test improved by a mean of two points (p = 0.004). Clenbuterol decreased glycogen content in the vastus lateralis by 50% at week 52. Transcriptome analysis revealed more normal muscle gene expression for 38 of 44 genes related to Pompe disease following clenbuterol. The placebo group demonstrated no significant changes over the course of the study. This study provides initial evidence for safety and efficacy of adjunctive clenbuterol in patients with LOPD (NCT01942590).
Subject(s)
Clenbuterol/therapeutic use , Glycogen Storage Disease Type II/drug therapy , Glycogen Storage Disease Type II/physiopathology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Adult , Aged , Double-Blind Method , Female , Glycogen/metabolism , Humans , Male , Middle Aged , Muscle, Skeletal/metabolism , Quadriceps Muscle/drug effects , Quadriceps Muscle/metabolismABSTRACT
Pompe disease is a metabolic myopathy with a wide spectrum of clinical presentation. The gold-standard diagnostic test is acid alpha-glucosidase assay on skin fibroblasts, muscle or blood. Identification of two GAA pathogenic variants in-trans is confirmatory. Optimal effectiveness of enzyme replacement therapy hinges on early diagnosis, which is challenging in late-onset form of the disease due to non-specific presentation. Next-generation sequencing-based panels effectively facilitate diagnosis, but the sensitivity of whole-exome sequencing (WES) in detecting pathogenic GAA variants remains unknown. We analyzed WES data from 93 patients with confirmed Pompe disease and GAA genotypes based on PCR/Sanger sequencing. After ensuring that the common intronic variant c.-32-13T>G is not filtered out, whole-exome sequencing identified both GAA pathogenic variants in 77/93 (83%) patients. However, one variant was missed in 14/93 (15%), and both variants were missed in 2/93 (2%). One complex indel leading to a severe phenotype was incorrectly called a nonsynonymous substitution c.-32-13T>C due to misalignment. These results demonstrate that WES may fail to diagnose Pompe disease. Clinicians need to be aware of limitations of WES, and consider tests specific to Pompe disease when WES does not provide a diagnosis in patients with proximal myopathy, progressive respiratory failure or other subtle symptoms.
Subject(s)
Exome Sequencing/methods , Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/genetics , Late Onset Disorders/diagnosis , Late Onset Disorders/genetics , alpha-Glucosidases/genetics , Diagnosis, Differential , Enzyme Replacement Therapy , Genotype , Glycogen Storage Disease Type II/complications , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation , Phenotype , Sensitivity and Specificity , alpha-Glucosidases/analysis , alpha-Glucosidases/bloodABSTRACT
PRKAG2 encodes the γ2 subunit of AMP-activated protein kinase (AMPK), which is an important regulator of cardiac metabolism. Mutations in PRKAG2 cause a cardiac syndrome comprising ventricular hypertrophy, pre-excitation, and progressive conduction-system disease, which is typically not diagnosed until adolescence or young adulthood. However, significant variability exists in the presentation and outcomes of patients with PRKAG2 mutations, with presentation in infancy being underrecognized. The diagnosis of PRKAG2 can be challenging in infants, and we describe our experience with three patients who were initially suspected to have Pompe disease yet ultimately diagnosed with mutations in PRKAG2. A disease-causing PRKAG2 mutation was identified in each case, with a novel missense mutation described in one patient. We highlight the potential for patients with PRKAG2 mutations to mimic Pompe disease in infancy and the need for confirmatory testing when diagnosing Pompe disease.