Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Affiliation country
Publication year range
1.
Hum Genet ; 140(11): 1619-1624, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34287710

ABSTRACT

Microarray analysis is an efficient approach for screening and identifying cytogenetic imbalances in humans. SNP arrays, in particular, are a powerful way to identify copy-number gains and losses representing aneuploidy and aneusomy, but moreover, allow for the direct assessment of individual genotypes in known disease loci. Using these approaches, trisomies, monosomies, and mosaicism of whole chromosomes have been identified in human microarray studies. For canines, this approach is not widely used in clinical laboratory diagnostic practice. In our laboratory, we have implemented the use of a proprietary SNP array that represents approximately 650,000 loci across the domestic dog genome. During the validation of this microarray prior to clinical use, we identified three cases of aneuploidy after screening 2053 dogs of various breeds including monosomy X, trisomy X, and an apparent mosaic trisomy of canine chromosome 38 (CFA38). This study represents the first use of microarrays for copy-number evaluation to identify cytogenetic anomalies in canines. As microarray analysis becomes more routine in canine genetic testing, more cases of chromosome aneuploidy are likely to be uncovered.


Subject(s)
Aneuploidy , Chromosome Disorders/veterinary , Dog Diseases/genetics , Dogs/genetics , Animals , Chromosome Disorders/genetics , Chromosomes, Human, X/genetics , Female , Male , Microarray Analysis , Mosaicism , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Sex Chromosome Aberrations/veterinary , Sex Chromosome Disorders of Sex Development/genetics , Sex Chromosome Disorders of Sex Development/veterinary , Trisomy/genetics , Turner Syndrome/genetics , Turner Syndrome/veterinary
2.
Hum Genet ; 140(11): 1517-1523, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34599367

ABSTRACT

Hair length can be a highly variable trait within the Felis catus species, varying between and within different cat breeds. Previous research has demonstrated this variability is due to recessive mutations within the fibroblast growth factor 5 (FGF5) gene. Following a genetic screen, four longhaired Maine Coons were identified that had only one copy of a known FGF5 mutation. We performed DNA sequencing on samples from two of these Maine Coons and identified a missense mutation in FGF5 c.577G > A p.Ala193Thr. Genetic screening via restriction digest was then performed on samples from the other two Maine Coons and an additional 273 cats of various breeds. This screening found that only the two additional Maine Coons were heterozygous for the novel variant. Furthermore, the novel variant was not identified after in silico analysis of 68 whole genome cat sequences from various breeds, demonstrating that this novel mutation is most likely a breed-specific variant for the Maine Coon, contributing to the longhair phenotype in about 3% of these cats.


Subject(s)
Animal Fur/anatomy & histology , Cats/genetics , Fibroblast Growth Factor 5/genetics , Mutation, Missense , Animals , Cats/anatomy & histology , Female , Fibroblast Growth Factor 5/chemistry , Heterozygote , Male , Pedigree
3.
Hum Genet ; 140(11): 1581-1591, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34370083

ABSTRACT

One of the most unique coat color patterns in the domestic dog is merle (also known as dapple in the dachshund breed), characterized by patches of normal pigmentation surrounded by diluted eumelanin pigment. In dogs, this striking variegated pattern is caused by an insertion of a SINE element into the PMEL gene. Differences in the length of the SINE insertion [due to a variable-length poly(A)-tail] has been associated with variation in the merle coat color and patterning. We previously performed a systematic evaluation of merle in 175 Australian shepherds and related breeds and correlated the length of the merle insertion variants with four broad phenotypic clusters designated as "cryptic", "atypical", "classic", and "harlequin" merle. In this study, we evaluated the SINE insertions in 140 dachshunds and identified the same major merle phenotypic clusters with only slight variation between breeds. Specifically, we identified numerous cases of true "hidden" merle in dachshunds with light/red (pheomelanin) coats with little to no black/brown pigment (eumelanin) and thus minimal or no observable merle phenotype. In addition, we identified somatic and gonadal mosaicism, with one dog having a large insertion in the harlequin size range of M281 that had no merle phenotype and unintentionally produced a double merle puppy with anophthalmia. The frequent identification of cryptic, hidden, and mosaic merle variants, which can be undetectable by phenotypic inspection, should be of particular concern to breeders and illustrates the critical need for genetic testing for merle prior to breeding to avoid producing dogs with serious health problems.


Subject(s)
Animal Fur/anatomy & histology , Dogs/genetics , Genetic Testing/veterinary , Hair Color/genetics , gp100 Melanoma Antigen/genetics , Alleles , Animals , Breeding , Dogs/anatomy & histology , Female , Genetic Association Studies , Genotype , Male , Melanins/genetics , Mosaicism , Mutation , Pedigree , Phenotype , Short Interspersed Nucleotide Elements
4.
Hum Genet ; 138(5): 501-508, 2019 May.
Article in English | MEDLINE | ID: mdl-30982136

ABSTRACT

There is currently no oversight for canine clinical genetic testing laboratories. We published an initial set of standards and guidelines with the goal of providing a basis for which canine testing laboratories could evaluate their quality assurance programs. To further those standards and guidelines, we have developed a checklist that can be used as a self-evaluation to identify gaps in their programs for continual quality improvement over time. Because there is currently no organization willing to oversee an external proficiency program, the checklist provides the first step toward an internal, self-assessment that can be used periodically to monitor improvements. In addition, we attempt to address concerns from the canine community regarding rare or private mutations, genetic screening using array-based technologies, non-peer reviewed tests that are being offered, and the clinical validity of certain mutations in particular breeds. Through coordination, conversation and hard work, the canine genetic testing community can strive to organize to improve testing and to provide more transparency to consumers and better outcomes for dogs.


Subject(s)
Animal Experimentation/standards , Genetic Testing/veterinary , Guidelines as Topic , Quality Control , Animals , Checklist , Disease Models, Animal , Dogs , Molecular Diagnostic Techniques/standards , Mutation/genetics
5.
Hum Genet ; 138(5): 493-499, 2019 May.
Article in English | MEDLINE | ID: mdl-30426199

ABSTRACT

This publication represents a proposed approach to quality standards and guidelines for canine clinical genetic testing laboratories. Currently, there are no guidelines for laboratories performing clinical testing on dogs. Thus, there is no consensus set of protocols that set the minimal standards of quality among these laboratories, potentially causing variable results between laboratories, inconsistencies in reporting, and the inability to share information that could impact testing among organizations. A minimal standard for quality in testing is needed as breeders use the information from genetic testing to make breeding choices and irreversible decisions regarding spay, neuter or euthanasia. Incorrect results can have significant impact on the health of the dogs being tested and on their subsequent progeny. Because of the potentially serious consequences of an incorrect result or incorrect interpretation, results should be reviewed by and reported by individuals who meet a minimum standard of qualifications. Quality guidelines for canine genetic testing laboratories should include not only the analytical phase, but also the preanalytical and postanalytical phases, as this document attempts to address.


Subject(s)
Animal Experimentation/standards , Genetic Testing/veterinary , Guidelines as Topic , Quality Control , Animals , Disease Models, Animal , Dogs
6.
Cytogenet Genome Res ; 156(1): 22-34, 2018.
Article in English | MEDLINE | ID: mdl-30071510

ABSTRACT

Merle is a distinct coat color and pattern found in numerous species, including the domestic dog, characterized by patches of diluted eumelanin (black pigment) interspersed among areas of normal pigmentation. In dogs, this variegated pattern is caused by an insertion of a SINE element into the canine PMEL gene. Although variation in the length of the SINE insertion - due to a variable-length poly(A) tail - has been observed to be associated with variation in merle coat color and patterning, no systematic evaluation of this correlation has been conducted and published in the scientific literature. We performed high-resolution analysis of the SINE insertion lengths in 175 dogs (99 Australian shepherds, 45 miniature Australian shepherds, and 31 miniature American shepherds) and compared the genotypes with the coat phenotypes (when available). SINE insertion lengths varied from 201 to 277 bp, indicating that merle insertion variants can occur in virtually any size along the entire continuum. Genotype-phenotype correlation of 126 dogs with only a single SINE insertion (m/M) identified at least 4 major phenotypic clusters designated as "cryptic," "atypical," "classic," and "harlequin" merle. However, we found several phenotypic outliers that did not cluster within these major groupings, suggesting that insertion size is not the only factor responsible for merle phenotypic variability. In addition, we detected 25 dogs with 2 SINE insertions (M/M) and 24 dogs with more than 2 PMEL (merle) alleles, indicating mosaicism. Genotype-phenotype correlation of M/M dogs suggests that cryptic merle alleles often act like non-merle (m) alleles when combined with atypical, classic, and harlequin-sized alleles. The finding of mosaicism has important implications for the dog's phenotype and the ability to potentially transmit various alleles to its offspring. Furthermore, we identified examples of the SINE insertion poly(A)-tail expansion and contraction between generations, which also has important implications for breeding practices and determining mating pairs to avoid producing double merle dogs. These data demonstrate that there is a continuum of merle insertion lengths associated with a spectrum of coat color and patterns and that genotype-phenotype exceptions and overlap make it difficult to strictly assign certain insertion sizes with an expected coat color, although some generalizations are possible.

7.
Cytogenet Genome Res ; 153(4): 198-204, 2017.
Article in English | MEDLINE | ID: mdl-29421799

ABSTRACT

Genetic diseases occur in breeds used for law enforcement. As important team members, dogs are expected to operate at peak performance for several years and are significant investments for both the initial purchase and extensive, specialized training. Previous studies have not focused on causes for retirement or euthanasia as genetic (inherited) versus acquired (environmental). We performed direct mutational analysis for breed-specific conditions on samples from 304 dogs including 267 law enforcement (122 US, 87 Israeli, and 58 Polish) and 37 search and rescue dogs. Genetic testing identified 29% (n = 89) of the dogs tested to be carriers of a genetic mutation and 6% (n = 19) to be at risk for a debilitating inherited condition that may eventually impair the dog's ability to work. At-risk dogs included Labrador Retrievers (n = 4) with exercise-induced collapse, Bloodhounds (n = 2) with degenerative myelopathy (DM), and German Shepherd dogs with DM (n = 12) or leukocyte adhesion deficiency, type III (n = 1). A substantial number of working dogs were shown to be at risk for genetic conditions that may shorten the dog's career. The loss of dogs, due to early retirement or euthanasia, as a result of preventable genetic conditions has an emotional cost to handlers and financial cost to service organizations that can be avoided with genetic screening prior to breeding, buying, or training.


Subject(s)
Dog Diseases/epidemiology , Dogs/genetics , Genetic Diseases, Inborn/veterinary , Animals , Breeding , Dog Diseases/genetics , Genetic Carrier Screening , Genetic Diseases, Inborn/epidemiology , Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease , Genotype , Health Surveys , Israel/epidemiology , Poland/epidemiology , Species Specificity , United States/epidemiology
8.
PLoS Genet ; 10(1): e1004139, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24497845

ABSTRACT

Inverted duplications are a common type of copy number variation (CNV) in germline and somatic genomes. Large duplications that include many genes can lead to both neurodevelopmental phenotypes in children and gene amplifications in tumors. There are several models for inverted duplication formation, most of which include a dicentric chromosome intermediate followed by breakage-fusion-bridge (BFB) cycles, but the mechanisms that give rise to the inverted dicentric chromosome in most inverted duplications remain unknown. Here we have combined high-resolution array CGH, custom sequence capture, next-generation sequencing, and long-range PCR to analyze the breakpoints of 50 nonrecurrent inverted duplications in patients with intellectual disability, autism, and congenital anomalies. For half of the rearrangements in our study, we sequenced at least one breakpoint junction. Sequence analysis of breakpoint junctions reveals a normal-copy disomic spacer between inverted and non-inverted copies of the duplication. Further, short inverted sequences are present at the boundary of the disomic spacer and the inverted duplication. These data support a mechanism of inverted duplication formation whereby a chromosome with a double-strand break intrastrand pairs with itself to form a "fold-back" intermediate that, after DNA replication, produces a dicentric inverted chromosome with a disomic spacer corresponding to the site of the fold-back loop. This process can lead to inverted duplications adjacent to terminal deletions, inverted duplications juxtaposed to translocations, and inverted duplication ring chromosomes.


Subject(s)
Autistic Disorder/genetics , DNA Copy Number Variations/genetics , Intellectual Disability/genetics , Segmental Duplications, Genomic/genetics , Autistic Disorder/pathology , Chromosome Breakpoints , Comparative Genomic Hybridization , DNA Replication/genetics , Gene Amplification , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , In Situ Hybridization, Fluorescence , Intellectual Disability/pathology
9.
Proc Natl Acad Sci U S A ; 110(37): 14990-4, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-23980137

ABSTRACT

Obesity is a highly heritable condition and a risk factor for other diseases, including type 2 diabetes, cardiovascular disease, hypertension, and cancer. Recently, genomic copy number variation (CNV) has been implicated in cases of early onset obesity that may be comorbid with intellectual disability. Here, we describe a recurrent CNV that causes a syndrome associated with intellectual disability, seizures, macrocephaly, and obesity. This unbalanced chromosome translocation leads to duplication of over 100 genes on chromosome 12, including the obesity candidate gene G protein ß3 (GNB3). We generated a transgenic mouse model that carries an extra copy of GNB3, weighs significantly more than its wild-type littermates, and has excess intraabdominal fat accumulation. GNB3 is highly expressed in the brain, consistent with G-protein signaling involved in satiety and/or metabolism. These functional data connect GNB3 duplication and overexpression to elevated body mass index and provide evidence for a genetic syndrome caused by a recurrent CNV.


Subject(s)
Gene Duplication , Heterotrimeric GTP-Binding Proteins/genetics , Pediatric Obesity/genetics , Adolescent , Adult , Animals , Brain/metabolism , Child , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 12/genetics , Chromosomes, Human, Pair 8/genetics , Disease Models, Animal , Female , GTP-Binding Proteins/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Male , Mice , Mice, Transgenic , Pediatric Obesity/metabolism , Pediatric Obesity/pathology , Pedigree , Syndrome , Translocation, Genetic
10.
Nat Genet ; 39(9): 1071-3, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17704777

ABSTRACT

We have identified a recurrent de novo pericentromeric deletion in 16p11.2-p12.2 in four individuals with developmental disabilities by microarray-based comparative genomic hybridization analysis. The identification of common clinical features in these four individuals along with the characterization of complex segmental duplications flanking the deletion regions suggests that nonallelic homologous recombination mediated these rearrangements and that deletions in 16p11.2-p12.2 constitute a previously undescribed syndrome.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 16/genetics , Adolescent , Child , Child, Preschool , Chromosome Aberrations , Chromosome Disorders/genetics , Chromosome Disorders/pathology , Female , Genome, Human , Humans , In Situ Hybridization, Fluorescence , Nucleic Acid Hybridization/methods , Syndrome
11.
N Engl J Med ; 367(23): 2175-84, 2012 Dec 06.
Article in English | MEDLINE | ID: mdl-23215555

ABSTRACT

BACKGROUND: Chromosomal microarray analysis has emerged as a primary diagnostic tool for the evaluation of developmental delay and structural malformations in children. We aimed to evaluate the accuracy, efficacy, and incremental yield of chromosomal microarray analysis as compared with karyotyping for routine prenatal diagnosis. METHODS: Samples from women undergoing prenatal diagnosis at 29 centers were sent to a central karyotyping laboratory. Each sample was split in two; standard karyotyping was performed on one portion and the other was sent to one of four laboratories for chromosomal microarray. RESULTS: We enrolled a total of 4406 women. Indications for prenatal diagnosis were advanced maternal age (46.6%), abnormal result on Down's syndrome screening (18.8%), structural anomalies on ultrasonography (25.2%), and other indications (9.4%). In 4340 (98.8%) of the fetal samples, microarray analysis was successful; 87.9% of samples could be used without tissue culture. Microarray analysis of the 4282 nonmosaic samples identified all the aneuploidies and unbalanced rearrangements identified on karyotyping but did not identify balanced translocations and fetal triploidy. In samples with a normal karyotype, microarray analysis revealed clinically relevant deletions or duplications in 6.0% with a structural anomaly and in 1.7% of those whose indications were advanced maternal age or positive screening results. CONCLUSIONS: In the context of prenatal diagnostic testing, chromosomal microarray analysis identified additional, clinically significant cytogenetic information as compared with karyotyping and was equally efficacious in identifying aneuploidies and unbalanced rearrangements but did not identify balanced translocations and triploidies. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT01279733.).


Subject(s)
Chromosome Aberrations , Chromosome Disorders/diagnosis , Genetic Testing/methods , Karyotyping , Oligonucleotide Array Sequence Analysis , Prenatal Diagnosis/methods , Adult , Chromosomes, Human/genetics , Down Syndrome/diagnosis , Female , Fetal Diseases/diagnosis , Humans , Karyotype , Maternal Age , Pregnancy , Ultrasonography, Prenatal
12.
N Engl J Med ; 367(14): 1321-31, 2012 Oct 04.
Article in English | MEDLINE | ID: mdl-22970919

ABSTRACT

BACKGROUND: Some copy-number variants are associated with genomic disorders with extreme phenotypic heterogeneity. The cause of this variation is unknown, which presents challenges in genetic diagnosis, counseling, and management. METHODS: We analyzed the genomes of 2312 children known to carry a copy-number variant associated with intellectual disability and congenital abnormalities, using array comparative genomic hybridization. RESULTS: Among the affected children, 10.1% carried a second large copy-number variant in addition to the primary genetic lesion. We identified seven genomic disorders, each defined by a specific copy-number variant, in which the affected children were more likely to carry multiple copy-number variants than were controls. We found that syndromic disorders could be distinguished from those with extreme phenotypic heterogeneity on the basis of the total number of copy-number variants and whether the variants are inherited or de novo. Children who carried two large copy-number variants of unknown clinical significance were eight times as likely to have developmental delay as were controls (odds ratio, 8.16; 95% confidence interval, 5.33 to 13.07; P=2.11×10(-38)). Among affected children, inherited copy-number variants tended to co-occur with a second-site large copy-number variant (Spearman correlation coefficient, 0.66; P<0.001). Boys were more likely than girls to have disorders of phenotypic heterogeneity (P<0.001), and mothers were more likely than fathers to transmit second-site copy-number variants to their offspring (P=0.02). CONCLUSIONS: Multiple, large copy-number variants, including those of unknown pathogenic significance, compound to result in a severe clinical presentation, and secondary copy-number variants are preferentially transmitted from maternal carriers. (Funded by the Simons Foundation Autism Research Initiative and the National Institutes of Health.).


Subject(s)
Congenital Abnormalities/genetics , DNA Copy Number Variations , Developmental Disabilities/genetics , Genetic Heterogeneity , Intellectual Disability/genetics , Phenotype , Autistic Disorder/genetics , Child , Comparative Genomic Hybridization , Female , Genome, Human , Humans , Male , Oligonucleotide Array Sequence Analysis , Sex Factors
13.
Am J Med Genet A ; 167A(2): 345-53, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25756153

ABSTRACT

Uniparental disomy (UPD) for imprinted chromosomes can cause abnormal phenotypes due to absent or overexpression of imprinted genes. UPD(14)pat causes a unique constellation of features including thoracic skeletal anomalies, polyhydramnios, placentomegaly, and limited survival; its hypothesized cause is overexpression of paternally expressed RTL1, due to absent regulatory effects of maternally expressed RTL1as. UPD(14)mat causes a milder condition with hypotonia, growth failure, and precocious puberty; its hypothesized cause is absence of paternally expressed DLK1. To more clearly establish how gains and losses of imprinted genes can cause disease, we report six individuals with copy number variations of the imprinted 14q32 region identified through clinical microarray-based comparative genomic hybridization. Three individuals presented with UPD(14)mat-like phenotypes (Temple syndrome) and had apparently de novo deletions spanning the imprinted region, including DLK1. One of these deletions was shown to be on the paternal chromosome. Two individuals with UPD(14)pat-like phenotypes had 122-154kb deletions on their maternal chromosomes that included RTL1as but not the differentially methylated regions that regulate imprinted gene expression, providing further support for RTL1 overexpression as a cause for the UPD(14)pat phenotype. The sixth individual is tetrasomic for a 1.7Mb segment, including the imprinted region, and presents with intellectual disability and seizures but lacks significant phenotypic overlap with either UPD(14) syndrome. Therefore, the 14q32 imprinted region is dosage sensitive, with deletions of different critical regions causing UPD(14)mat- and UPD(14)pat-like phenotypes, while copy gains are likely insufficient to recapitulate these phenotypes.


Subject(s)
Chromosomes, Human, Pair 14 , DNA Copy Number Variations , Genetic Association Studies , Multigene Family , Phenotype , Adolescent , Adult , Child , Child, Preschool , Chromosome Deletion , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Chromosome Duplication , Comparative Genomic Hybridization , Facies , Female , Genetic Loci , Genomic Imprinting , Humans , Infant , Infant, Newborn , Male , Middle Aged , Uniparental Disomy , Young Adult
14.
Proc Natl Acad Sci U S A ; 109(35): 14035-40, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22904188

ABSTRACT

Congenital heart disease (CHD) occurs in ∼1% of newborns. CHD arises from many distinct etiologies, ranging from genetic or genomic variation to exposure to teratogens, which elicit diverse cell and molecular responses during cardiac development. To systematically explore the relationships between CHD risk factors and responses, we compiled and integrated comprehensive datasets from studies of CHD in humans and model organisms. We examined two alternative models of potential functional relationships between genes in these datasets: direct convergence, in which CHD risk factors significantly and directly impact the same genes and molecules and functional convergence, in which risk factors significantly impact different molecules that participate in a discrete heart development network. We observed no evidence for direct convergence. In contrast, we show that CHD risk factors functionally converge in protein networks driving the development of specific anatomical structures (e.g., outflow tract, ventricular septum, and atrial septum) that are malformed by CHD. This integrative analysis of CHD risk factors and responses suggests a complex pattern of functional interactions between genomic variation and environmental exposures that modulate critical biological systems during heart development.


Subject(s)
Environment , Genetic Predisposition to Disease/epidemiology , Hand Deformities, Congenital/epidemiology , Hand Deformities, Congenital/genetics , Protein Interaction Maps/genetics , Databases, Genetic , Heart/embryology , Humans , Infant, Newborn , Risk Factors , Statistics, Nonparametric , Transcriptome
15.
Genome Res ; 21(4): 535-44, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21383316

ABSTRACT

Insertions occur when a segment of one chromosome is translocated and inserted into a new region of the same chromosome or a non-homologous chromosome. We report 71 cases with unbalanced insertions identified using array CGH and FISH in 4909 cases referred to our laboratory for array CGH and found to have copy-number abnormalities. Although the majority of insertions were non-recurrent, several recurrent unbalanced insertions were detected, including three der(Y)ins(Y;18)(q?11.2;p11.32p11.32)pat inherited from parents carrying an unbalanced insertion. The clinical significance of these recurrent rearrangements is unclear, although the small size, limited gene content, and inheritance pattern of each suggests that the phenotypic consequences may be benign. Cryptic, submicroscopic duplications were observed at or near the insertion sites in two patients, further confounding the clinical interpretation of these insertions. Using FISH, linear amplification, and array CGH, we identified a 126-kb duplicated region from 19p13.3 inserted into MECP2 at Xq28 in a patient with symptoms of Rett syndrome. Our results demonstrate that although the interpretation of most non-recurrent insertions is unclear without high-resolution insertion site characterization, the potential for an otherwise benign duplication to result in a clinically relevant outcome through the disruption of a gene necessitates the use of FISH to determine whether copy-number gains detected by array CGH represent tandem duplications or unbalanced insertions. Further follow-up testing using techniques such as linear amplification or sequencing should be used to determine gene involvement at the insertion site after FISH has identified the presence of an insertion.


Subject(s)
Comparative Genomic Hybridization , DNA Copy Number Variations/genetics , In Situ Hybridization, Fluorescence , Mutagenesis, Insertional/genetics , Translocation, Genetic , Base Sequence , Chromosome Breakpoints , Chromosomes, Human/genetics , Female , Gene Order , Humans , Male , Molecular Sequence Data , Rett Syndrome/genetics , Sequence Alignment
16.
Am J Med Genet A ; 164A(1): 62-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24243649

ABSTRACT

A syndrome associated with 19q13.11 microdeletions has been proposed based on seven previous cases that displayed developmental delay, intellectual disability, speech disturbances, pre- and post-natal growth retardation, microcephaly, ectodermal dysplasia, and genital malformations in males. A 324-kb critical region was previously identified as the smallest region of overlap (SRO) for this syndrome. To further characterize this microdeletion syndrome, we present five patients with deletions within 19q12q13.12 identified using a whole-genome oligonucleotide microarray. Patients 1 and 2 possess deletions overlapping the SRO, and Patients 3-5 have deletions proximal to the SRO. Patients 1 and 2 share significant phenotypic overlap with previously reported cases, providing further definition of the 19q13.11 microdeletion syndrome phenotype, including the first presentation of ectrodactyly in the syndrome. Patients 3-5, whose features include developmental delay, growth retardation, and feeding problems, support the presence of dosage-sensitive genes outside the SRO that may contribute to the abnormal phenotypes observed in this syndrome. Multiple genotype-phenotype correlations outside the SRO are explored, including further validation of the deletion of WTIP as a candidate for male hypospadias observed in this syndrome. We postulate that unique patient-specific deletions within 19q12q13.1 may explain the phenotypic variability observed in this emerging contiguous gene deletion syndrome.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 19 , Phenotype , Abnormalities, Multiple/genetics , Adolescent , Child , Child, Preschool , Comparative Genomic Hybridization , Facies , Female , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Humans , Infant , Male , Syndrome
17.
Neurogenetics ; 14(2): 99-111, 2013 May.
Article in English | MEDLINE | ID: mdl-23389741

ABSTRACT

MEF2C haploinsufficiency syndrome is an emerging neurodevelopmental disorder associated with intellectual disability, autistic features, epilepsy, and abnormal movements. We report 16 new patients with MEF2C haploinsufficiency, including the oldest reported patient with MEF2C deletion at 5q14.3. We detail the neurobehavioral phenotype, epilepsy, and abnormal movements, and compare our subjects with those previously reported in the literature. We also investigate Mef2c expression in the developing mouse forebrain. A spectrum of neurofunctional deficits emerges, with hyperkinesis a consistent finding. Epilepsy varied from absent to severe, and included intractable myoclonic seizures and infantile spasms. Subjects with partial MEF2C deletion were statistically less likely to have epilepsy. Finally, we confirm that Mef2c is present both in dorsal primary neuroblasts and ventral gamma-aminobutyric acid(GABA)ergic interneurons in the forebrain of the developing mouse. Given interactions with several key neurodevelopmental genes such as ARX, FMR1, MECP2, and TBR1, it appears that MEF2C plays a role in several developmental stages of both dorsal and ventral neuronal cell types.


Subject(s)
Child , Epilepsy/genetics , Haploinsufficiency/genetics , Hyperkinesis/genetics , Interneurons/metabolism , Nerve Net/growth & development , Adolescent , Adult , Animals , Child, Preschool , Developmental Disabilities/genetics , Female , Gene Deletion , Humans , Infant , MEF2 Transcription Factors/genetics , Male , Mice , Mice, Inbred C57BL , Middle Aged , Phenotype , Young Adult
18.
Hum Mol Genet ; 20(19): 3769-78, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21729882

ABSTRACT

Chromosome rearrangements are a significant cause of intellectual disability and birth defects. Subtelomeric rearrangements, including deletions, duplications and translocations of chromosome ends, were first discovered over 40 years ago and are now recognized as being responsible for several genetic syndromes. Unlike the deletions and duplications that cause some genomic disorders, subtelomeric rearrangements do not typically have recurrent breakpoints and involve many different chromosome ends. To capture the molecular mechanisms responsible for this heterogeneous class of chromosome abnormality, we coupled high-resolution array CGH with breakpoint junction sequencing of a diverse collection of subtelomeric rearrangements. We analyzed 102 breakpoints corresponding to 78 rearrangements involving 28 chromosome ends. Sequencing 21 breakpoint junctions revealed signatures of non-homologous end-joining, non-allelic homologous recombination between interspersed repeats and DNA replication processes. Thus, subtelomeric rearrangements arise from diverse mutational mechanisms. In addition, we find hotspots of subtelomeric breakage at the end of chromosomes 9q and 22q; these sites may correspond to genomic regions that are particularly susceptible to double-strand breaks. Finally, fine-mapping the smallest subtelomeric rearrangements has narrowed the critical regions for some chromosomal disorders.


Subject(s)
Chromosome Aberrations , Chromosome Disorders/genetics , Gene Rearrangement , Mutation , Telomere/genetics , Base Sequence , Chromosome Breakage , Chromosome Disorders/metabolism , Chromosome Disorders/pathology , Humans , Male , Molecular Sequence Data , Recombination, Genetic , Telomere/metabolism
19.
Am J Hum Genet ; 86(3): 454-61, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20206336

ABSTRACT

Segmental duplications, which comprise approximately 5%-10% of the human genome, are known to mediate medically relevant deletions, duplications, and inversions through nonallelic homologous recombination (NAHR) and have been suggested to be hot spots in chromosome evolution and human genomic instability. We report seven individuals with microdeletions at 17q23.1q23.2, identified by microarray-based comparative genomic hybridization (aCGH). Six of the seven deletions are approximately 2.2 Mb in size and flanked by large segmental duplications of >98% sequence identity and in the same orientation. One of the deletions is approximately 2.8 Mb in size and is flanked on the distal side by a segmental duplication, whereas the proximal breakpoint falls between segmental duplications. These characteristics suggest that NAHR mediated six out of seven of these rearrangements. These individuals have common features, including mild to moderate developmental delay (particularly speech delay), microcephaly, postnatal growth retardation, heart defects, and hand, foot, and limb abnormalities. Although all individuals had at least mild dysmorphic facial features, there was no characteristic constellation of features that would elicit clinical suspicion of a specific disorder. The identification of common clinical features suggests that microdeletions at 17q23.1q23.2 constitute a novel syndrome. Furthermore, the inclusion in the minimal deletion region of TBX2 and TBX4, transcription factors belonging to a family of genes implicated in a variety of developmental pathways including those of heart and limb, suggests that these genes may play an important role in the phenotype of this emerging syndrome.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 17/genetics , Heart Defects, Congenital/genetics , Limb Deformities, Congenital/genetics , Segmental Duplications, Genomic , Adolescent , Child, Preschool , Comparative Genomic Hybridization , Craniofacial Abnormalities/genetics , Developmental Disabilities/genetics , Female , Humans , In Situ Hybridization, Fluorescence , Infant , Male , Oligonucleotide Array Sequence Analysis , Phenotype , Recombination, Genetic , Syndrome , T-Box Domain Proteins/genetics
20.
Am J Med Genet A ; 161A(4): 717-31, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23495017

ABSTRACT

Deletions at 2p16.3 involving exons of NRXN1 are associated with susceptibility for autism and schizophrenia, and similar deletions have been identified in individuals with developmental delay and dysmorphic features. We have identified 34 probands with exonic NRXN1 deletions following referral for clinical microarray-based comparative genomic hybridization. To more firmly establish the full phenotypic spectrum associated with exonic NRXN1 deletions, we report the clinical features of 27 individuals with NRXN1 deletions, who represent 23 of these 34 families. The frequency of exonic NRXN1 deletions among our postnatally diagnosed patients (0.11%) is significantly higher than the frequency among reported controls (0.02%; P = 6.08 × 10(-7) ), supporting a role for these deletions in the development of abnormal phenotypes. Generally, most individuals with NRXN1 exonic deletions have developmental delay (particularly speech), abnormal behaviors, and mild dysmorphic features. In our cohort, autism spectrum disorders were diagnosed in 43% (10/23), and 16% (4/25) had epilepsy. The presence of NRXN1 deletions in normal parents and siblings suggests reduced penetrance and/or variable expressivity, which may be influenced by genetic, environmental, and/or stochastic factors. The pathogenicity of these deletions may also be affected by the location of the deletion within the gene. Counseling should appropriately represent this spectrum of possibilities when discussing recurrence risks or expectations for a child found to have a deletion in NRXN1.


Subject(s)
Cell Adhesion Molecules, Neuronal/genetics , Gene Deletion , Nerve Tissue Proteins/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Adolescent , Adult , Autistic Disorder/genetics , Calcium-Binding Proteins , Child , Child, Preschool , Comparative Genomic Hybridization , Developmental Disabilities/genetics , Exons , Facies , Female , Gene-Environment Interaction , Genome-Wide Association Study , Humans , Infant , Intellectual Disability/genetics , Male , Middle Aged , Neural Cell Adhesion Molecules , Penetrance , Phenotype , Schizophrenia/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL