Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Development ; 151(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38646855

ABSTRACT

Ecdysone-induced protein 93 (E93), known as the 'adult-specifier' transcription factor in insects, triggers metamorphosis in both hemimetabolous and holometabolous insects. Although E93 is conserved in ametabolous insects, its spatiotemporal expression and physiological function remain poorly understood. In this study, we first discover that, in the ametabolous firebrat Thermobia domestica, the previtellogenic ovary exhibits cyclically high E93 expression, and E93 mRNA is broadly distributed in previtellogenic ovarioles. E93 homozygous mutant females of T. domestica exhibit severe fecundity deficiency due to impaired previtellogenic development of the ovarian follicles, likely because E93 induces the expression of genes involved in ECM (extracellular matrix)-receptor interactions during previtellogenesis. Moreover, we reveal that in the hemimetabolous cockroach Blattella germanica, E93 similarly promotes previtellogenic ovarian development. In addition, E93 is also essential for vitellogenesis that is necessary to guarantee ovarian maturation and promotes the vitellogenesis-previtellogenesis switch in the fat body of adult female cockroaches. Our findings deepen the understanding of the roles of E93 in controlling reproduction in insects, and of E93 expression and functional evolution, which are proposed to have made crucial contributions to the origin of insect metamorphosis.


Subject(s)
Metamorphosis, Biological , Ovary , Reproduction , Animals , Female , Reproduction/genetics , Metamorphosis, Biological/genetics , Ovary/metabolism , Gene Expression Regulation, Developmental , Vitellogenesis/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics
2.
Development ; 149(15)2022 08 01.
Article in English | MEDLINE | ID: mdl-35815651

ABSTRACT

In insects, the loss of flight typically involves a dispersal-reproduction transition, but the underlying molecular mechanisms remain poorly understood. In the parthenogenetic pea aphid Acyrthosiphon pisum, winged females undergo flight-muscle degeneration after flight and feeding on new host plants. Similarly, topical application of a juvenile hormone (JH) mimic to starved aphids also induces flight-muscle degeneration. We found that feeding preferentially upregulated the expression of the JH receptor gene Met and a JH-inducible gene, Kr-h1, in the flight muscles, and, thus, enhanced tissue-specific JH sensitivity and signaling. RNAi-mediated knockdown of Kr-h1 prevented flight-muscle degeneration. Likewise, blocking nutritional signals by pharmacological inhibition of the target of rapamycin complex 1 (TORC1) impaired JH sensitivity of the flight muscles in feeding aphids and subsequently delayed muscle degeneration. RNA-sequencing analysis revealed that enhanced JH signaling inhibited the transcription of genes involved in the tricarboxylic acid cycle, likely resulting in reduction of the energy supply, mitochondrial dysfunction and muscle-fiber breakdown. This study shows that nutrient-dependent hormone sensitivity regulates developmental plasticity in a tissue-specific manner, emphasizing a relatively underappreciated mechanism of hormone sensitivity in modulating hormone signaling.


Subject(s)
Aphids , Juvenile Hormones , Animals , Aphids/metabolism , Female , Insect Proteins/metabolism , Juvenile Hormones/metabolism , Muscles/metabolism , Reproduction , Wings, Animal/metabolism
3.
Ecotoxicol Environ Saf ; 252: 114584, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36724709

ABSTRACT

The green peach aphid, Myzus persicae (Sulzer), is a significant global pest in horticultural and field crops. Afidopyropen is a novel systemic insecticide with high efficacy against sucking pests, and it is suitable for the management of M. persicae. However, the persistent toxicity and dissipation dynamics of afidopyropen in vegetables remain unknown. In this study, we determined the residual activity and dissipation dynamics of afidopyropen against M. persicae on cabbage and chili. The data showed that the toxicity of afidopyropen against M. persicae lasted more than 30 days; the corrected mortality was greater than 80% 10 days after application and was 50-60% 30 days post-application. The afidopyropen residues on cabbage and chili plants were quantified using ultrahigh-pressure liquid chromatography-tandem mass spectrometry. The dissipation half-lives of afidopyropen on cabbage and chili plants ranged from 1.45 to 2.34 days and 3.98-5.98 days at different recommended dosages, respectively. Our findings provide valuable data for the maximum residue limits of afidopyropen on vegetables and will help growers determine the frequency and timing of its application on cabbage and chili.


Subject(s)
Aphids , Brassica , Insecticides , Animals , Insecticides/toxicity , Heterocyclic Compounds, 4 or More Rings/analysis
4.
PLoS One ; 17(12): e0269736, 2022.
Article in English | MEDLINE | ID: mdl-36454720

ABSTRACT

The green peach aphid, Myzus persicae (Sulzer) is a generalist pest of various host plants, whose feeding preference and growth performance mainly depends on the quantity and quality of nutrients and defensive metabolites in host plants. Here, we studied the preference and performance of M. persicae on three major Brassicaceae vegetables in China and measured nutrient (amino acids) and defensive metabolites (glucosinolates) in these plants. We found that M. persicae preferred and performed better on Chinese cabbage than cabbage and radish, which may be due to the relatively higher concentration of amino acids and lower levels of indole glucosinolates in their leaves. The glucosinolates level in cabbage leaves was ten times higher than the other two plants, while the amino acid concentration in radish was only half of the cabbage or Chinese cabbage. The higher concentration of indole glucosinolates in cabbage and lower levels of amino acids in radish may account for the poorer preference and growth of M. persicae on these two plants. These results suggest that both amino acids and glucosinolates in plants may play important roles in the preference and performance of M. persicae, which provide new knowledge for the cultivation and breeding of Brassicaceae vegetables.


Subject(s)
Antifibrinolytic Agents , Aphids , Brassicaceae , Raphanus , Animals , Glucosinolates , Vegetables , Amino Acids , Plant Breeding , Indoles
SELECTION OF CITATIONS
SEARCH DETAIL