Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Pharmacol Exp Ther ; 387(2): 188-203, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37679046

ABSTRACT

Pompe disease is a rare glycogen storage disorder caused by a deficiency in the lysosomal enzyme acid α-glucosidase, which leads to muscle weakness, cardiac and respiratory failure, and early mortality. Alglucosidase alfa, a recombinant human acid α-glucosidase, was the first approved treatment of Pompe disease, but its uptake into skeletal muscle via the cation-independent mannose-6-phosphate (M6P) receptor (CIMPR) is limited. Avalglucosidase alfa has received marketing authorization in several countries for infantile-onset and/or late-onset Pompe disease. This recently approved enzyme replacement therapy (ERT) was glycoengineered to maximize CIMPR binding through high-affinity interactions with ∼7 bis-M6P moieties. Recently, small molecules like the glucosylceramide synthase inhibitor miglustat were reported to increase the stability of recombinant human acid α-glucosidase, and it was suggested that an increased serum half-life would result in better glycogen clearance. Here, the effects of miglustat on alglucosidase alfa and avalglucosidase alfa stability, activity, and efficacy in Pompe mice were evaluated. Although miglustat increased the stability of both enzymes in fluorescent protein thermal shift assays and when incubated in neutral pH buffer over time, it reduced their enzymatic activity by ∼50%. Improvement in tissue glycogen clearance and transcriptional dysregulation in Pompe mice correlated with M6P levels but not with miglustat coadministration. These results further substantiate the crucial role of CIMPR binding in lysosomal targeting of ERTs. SIGNIFICANCE STATEMENT: This work describes important new insights into the treatment of Pompe disease using currently approved enzyme replacement therapies (ERTs) coadministered with miglustat. Although miglustat increased the stability of ERTs in vitro, there was no positive impact to glycogen clearance and transcriptional correction in Pompe mice. However, increasing mannose-6-phosphate levels resulted in increased cell uptake in vitro and increased glycogen clearance and transcriptional correction in Pompe mice, further underscoring the crucial role of cation-independent mannose-6-phosphate receptor-mediated lysosomal targeting for ERTs.

2.
Traffic ; 16(7): 773-786, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25711127

ABSTRACT

The ability to fluorescently label microtubules in live cells has enabled numerous studies of motile and mitotic processes. Such studies are particularly useful in budding yeast owing to the ease with which they can be genetically manipulated and imaged by live cell fluorescence microscopy. Because of problems associated with fusing genes encoding fluorescent proteins (FPs) to the native α-tubulin (TUB1) gene, the FP-Tub1 fusion is generally integrated into the genome such that the endogenous TUB1 locus is left intact. Although such modifications have no apparent consequences on cell viability, it is unknown if these genome-integrated FP-tubulin fusions negatively affect microtubule functions. Thus, a simple, economical and highly sensitive assay of microtubule function is required. Furthermore, the current plasmids available for generation of FP-Tub1 fusions have not kept pace with the development of improved FPs. Here, we have developed a simple and sensitive assay of microtubule function that is sufficient to identify microtubule defects that were not apparent by fluorescence microscopy or cell growth assays. Using results obtained from this assay, we have engineered a new family of 30 FP-Tub1 plasmids that use various improved FPs and numerous selectable markers that upon genome integration have no apparent defect on microtubule function.


Subject(s)
Luminescent Proteins/genetics , Microtubules/metabolism , Plasmids/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Genetic Vectors/genetics , Luminescent Proteins/metabolism , Microtubules/genetics , Protein Engineering/methods , Protein Transport , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
3.
STAR Protoc ; 4(4): 102165, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37729058

ABSTRACT

Here, we present a protocol to generate B cell restricted mouse models of loss-of-function genetic drivers typical of lymphoproliferative disorders, using stem cell engineering of murine strains carrying B cell restricted Cas9 expression. We describe steps for preparing lentivirus expressing sgRNA-mCherry, isolating hematopoietic stem and progenitor cells, and in vitro transduction. We then detail the transplantation of engineered cells into recipient mice and verification of gene edits. These mouse models represent versatile platforms to model complex disease traits typical of lymphoproliferative disorders. For complete details on the use and execution of this protocol, please refer to ten Hacken et al.,1 ten Hacken et al.,2 and ten Hacken et al.3.


Subject(s)
Gene Editing , Lymphoproliferative Disorders , Mice , Animals , Gene Editing/methods , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems , Disease Models, Animal , Mutation , Lymphoproliferative Disorders/genetics
4.
Blood Cancer Discov ; 4(2): 150-169, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36468984

ABSTRACT

Transformation to aggressive disease histologies generates formidable clinical challenges across cancers, but biological insights remain few. We modeled the genetic heterogeneity of chronic lymphocytic leukemia (CLL) through multiplexed in vivo CRISPR-Cas9 B-cell editing of recurrent CLL loss-of-function drivers in mice and recapitulated the process of transformation from indolent CLL into large cell lymphoma [i.e., Richter syndrome (RS)]. Evolutionary trajectories of 64 mice carrying diverse combinatorial gene assortments revealed coselection of mutations in Trp53, Mga, and Chd2 and the dual impact of clonal Mga/Chd2 mutations on E2F/MYC and interferon signaling dysregulation. Comparative human and murine RS analyses demonstrated tonic PI3K signaling as a key feature of transformed disease, with constitutive activation of the AKT and S6 kinases, downmodulation of the PTEN phosphatase, and convergent activation of MYC/PI3K transcriptional programs underlying enhanced sensitivity to MYC/mTOR/PI3K inhibition. This robust experimental system presents a unique framework to study lymphoid biology and therapy. SIGNIFICANCE: Mouse models reflective of the genetic complexity and heterogeneity of human tumors remain few, including those able to recapitulate transformation to aggressive disease histologies. Herein, we model CLL transformation into RS through multiplexed in vivo gene editing, providing key insight into the pathophysiology and therapeutic vulnerabilities of transformed disease. This article is highlighted in the In This Issue feature, p. 101.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphoma, Large B-Cell, Diffuse , Lymphoma, Non-Hodgkin , Humans , Animals , Mice , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Phosphatidylinositol 3-Kinases/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , B-Lymphocytes
5.
Genome Biol ; 21(1): 266, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33081820

ABSTRACT

CRISPR-Cas9 gene editing has transformed our ability to rapidly interrogate the functional impact of somatic mutations in human cancers. Droplet-based technology enables the analysis of Cas9-introduced gene edits in thousands of single cells. Using this technology, we analyze Ba/F3 cells engineered to express single or multiplexed loss-of-function mutations recurrent in chronic lymphocytic leukemia. Our approach reliably quantifies mutational co-occurrences, zygosity status, and the occurrence of Cas9 edits at single-cell resolution.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Loss of Function Mutation , Single-Cell Analysis/methods , Animals , Female , High-Throughput Screening Assays , Humans , Mice
6.
Cancer Cell ; 36(4): 369-384.e13, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31543463

ABSTRACT

Mitochondrial apoptosis can be effectively targeted in lymphoid malignancies with the FDA-approved B cell lymphoma 2 (BCL-2) inhibitor venetoclax, but resistance to this agent is emerging. We show that venetoclax resistance in chronic lymphocytic leukemia is associated with complex clonal shifts. To identify determinants of resistance, we conducted parallel genome-scale screens of the BCL-2-driven OCI-Ly1 lymphoma cell line after venetoclax exposure along with integrated expression profiling and functional characterization of drug-resistant and engineered cell lines. We identified regulators of lymphoid transcription and cellular energy metabolism as drivers of venetoclax resistance in addition to the known involvement by BCL-2 family members, which were confirmed in patient samples. Our data support the implementation of combinatorial therapy with metabolic modulators to address venetoclax resistance.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Mitochondria/pathology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/pharmacology , Adult , Aged , Aged, 80 and over , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cell Line, Tumor , Clonal Evolution/drug effects , Disease Progression , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Energy Metabolism/drug effects , Energy Metabolism/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Mice , Middle Aged , Mitochondria/drug effects , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Oxidative Phosphorylation/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/therapeutic use , Treatment Outcome , Xenograft Model Antitumor Assays
7.
Insect Biochem Mol Biol ; 102: 43-51, 2018 11.
Article in English | MEDLINE | ID: mdl-30217614

ABSTRACT

Seminal fluid proteins elicit several post-mating physiological changes in mated Drosophila melanogaster females. Some of these changes persist for over a week after mating because the seminal protein that causes these changes, the Sex Peptide (SP), binds to sperm that are stored in the female reproductive tract. SP's sperm binding is mediated by a network of at least eight seminal proteins. We show here that some of these network proteins (CG1656, CG1652, CG9997 and Antares) bind to sperm within 2 h of mating, like SP. However, while SP remains bound to sperm at 4 days post-mating, none of the other network proteins are detectable at this time. We also observed that the same network proteins are detectable at 2 h post-mating in seminal receptacle tissue from which sperm have been removed, but are no longer detectable there by 4 days post-mating, suggesting short-term retention of these proteins in this female sperm storage organ. Our results suggest that these network proteins act transiently to facilitate the conditions for SP's binding to sperm, perhaps by modifying SP or the sperm surface, but are not part of a long-acting complex that stably attaches SP to sperm.


Subject(s)
Drosophila Proteins/metabolism , Genitalia, Female/physiology , Seminal Plasma Proteins/metabolism , Spermatozoa/metabolism , Animals , Drosophila melanogaster , Female , Male , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL