ABSTRACT
A series of terminal nonyl chain and nucleobase modified analogues of (+)-EHNA (III) were synthesized and evaluated for their ability to inhibit adenosine deaminase (ADA). The constrained carbon analogues of (+)-EHNA, 7a-7h, 10a-c, 12, 13, 14 and 17a-c appeared very potent with Ki values in the low nanomolar range. Thio-analogues of (+)-EHNA 24a-e wherein 5'C of nonyl chain replaced by sulfur atom found to be less potent compared to (+)-EHNA. Docking of the representative compounds into the active site of ADA was performed to understand structure-activity relationships. Compounds 7a (Ki: 1.1nM) 7b (Ki: 5.2nM) and 26a (Ki: 5.9nM) showed suitable balance of potency, microsomal stability and demonstrated better pharmacokinetic properties as compared to (+)-EHNA and therefore may have therapeutic potential for various inflammatory diseases, hypertension and cancer.
Subject(s)
Adenine/analogs & derivatives , Adenosine Deaminase Inhibitors/chemistry , Adenine/chemical synthesis , Adenine/chemistry , Adenine/pharmacokinetics , Adenine/pharmacology , Adenosine Deaminase Inhibitors/chemical synthesis , Adenosine Deaminase Inhibitors/pharmacokinetics , Adenosine Deaminase Inhibitors/pharmacology , Catalytic Domain , Enzyme Activation/drug effects , Molecular Docking Simulation , Molecular Structure , Structure-Activity RelationshipABSTRACT
Multipronged approach was used to synthesize a library of diverse C-8 cyclopentyl hypoxanthine analogs from a common intermediate III. Several potent and selective compounds were identified and evaluated for pharmacokinetic (PK) properties in Wistar rats. One of the compounds 14 with acceptable PK parameters was selected for testing in in vivo primary acute diuresis model. The compound demonstrated significant diuretic activity in this model.
Subject(s)
Adenosine A1 Receptor Antagonists/chemistry , Adenosine A1 Receptor Antagonists/pharmacology , Hypoxanthines/chemistry , Hypoxanthines/pharmacology , Adenosine A1 Receptor Antagonists/chemical synthesis , Adenosine A1 Receptor Antagonists/pharmacokinetics , Animals , Carbon-13 Magnetic Resonance Spectroscopy , Chromatography, Liquid , Drug Design , HEK293 Cells , Humans , Hypoxanthines/chemical synthesis , Hypoxanthines/pharmacokinetics , Male , Mass Spectrometry , Proton Magnetic Resonance Spectroscopy , Radioligand Assay , Rats , Rats, WistarABSTRACT
A series of novel heterocyclic carboxylic acid based protein tyrosine phosphatase 1B (PTP1B) inhibitors with hydrophobic tail have been synthesized and characterized. Structure-activity relationship (SAR) optimization resulted in identification of several potent, selective (over the highly homologous T-cell protein tyrosine phosphatase, TCPTP) and metabolically stable PTP1B inhibitors. Compounds 7a, 19a and 19c showed favorable cell permeability and pharmacokinetic properties in mouse with moderate to very good oral (% F=13-70) bio-availability.
Subject(s)
Carboxylic Acids/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds/chemical synthesis , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Administration, Oral , Animals , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacology , Enzyme Activation/drug effects , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Hydrophobic and Hydrophilic Interactions , Male , Mice , Mice, Inbred C57BL , Structure-Activity RelationshipABSTRACT
Long chain L-2-hydroxy acid oxidase 2 (Hao2) is a peroxisomal enzyme expressed in the kidney and the liver. Hao2 was identified as a candidate gene for blood pressure (BP) quantitative trait locus (QTL) but the identity of its physiological substrate and its role in vivo remains largely unknown. To define a pharmacological role of this gene product, we report the development of selective inhibitors of Hao2. We identified pyrazole carboxylic acid hits 1 and 2 from screening of a compound library. Lead optimization of these hits led to the discovery of 15-XV and 15-XXXII as potent and selective inhibitors of rat Hao2. This report details the structure activity relationship of the pyrazole carboxylic acids as specific inhibitors of Hao2.
Subject(s)
Alcohol Oxidoreductases/antagonists & inhibitors , Carboxylic Acids/chemistry , Enzyme Inhibitors/chemistry , Pyrazoles/chemistry , Thiophenes/chemistry , Alcohol Oxidoreductases/metabolism , Animals , Binding Sites , Carboxylic Acids/chemical synthesis , Carboxylic Acids/pharmacokinetics , Computer Simulation , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Humans , Kidney/enzymology , Kidney/metabolism , Liver/enzymology , Liver/metabolism , Protein Structure, Tertiary , Pyrazoles/chemical synthesis , Pyrazoles/therapeutic use , Rats , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/therapeutic useABSTRACT
A2BAdoR is a low affinity adenosine receptor that functions by Gs mediated elevation of cAMP and subsequent downstream signaling. The receptor has been implicated in lung inflammatory disorders like COPD and asthma. Several potent and selective A2BAdoR antagonists have been reported in literature, however most of the compounds suffer from poor pharmacokinetic profile. Therefore, with the aim to identify novel, potent and selective A2BAdoR antagonists with improved pharmacokinetic properties, we first explored more constrained form of MRS-1754 (4). To improve the metabolic stability, several linker modifications were attempted as replacement of amide linker along with different phenyl or other heteroaryls between C8 position of xanthine head group and terminal phenyl ring. SAR optimization resulted in identification of two novel A2BAdoR antagonists, 8-{1-[5-Oxo-1-(4-trifluoromethyl-phenyl)-pyrrolidin-3-ylmethyl]-1H-pyrazol-4-yl}-1,3-dipropyl-xanthine (31) and 8-(1-{2-Oxo-2-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-ethyl}-1H-pyrazol-4-yl)-1,3-dipropyl-xanthine (65), with high binding affinity (Ki = 1 and 1.5 nM, respectively) and selectivity for A2BAdoR with very good functional potency of 0.9 nM and 4 nM, respectively. Compound 31 and 65 also displayed good pharmacokinetic properties in mice with 27% and 65% oral bioavailability respectively. When evaluated in in vivo mice model of asthma, compound 65 also inhibited airway inflammation and airway reactivity in ovalbumin induced allergic asthma at 3 mpk dose.
Subject(s)
Adenosine A2 Receptor Antagonists/chemical synthesis , Adenosine A2 Receptor Antagonists/pharmacology , Drug Design , Receptor, Adenosine A2B/metabolism , Xanthine/chemical synthesis , Xanthine/pharmacology , Adenosine A2 Receptor Antagonists/chemistry , Animals , Brain/drug effects , Brain/metabolism , Chemistry Techniques, Synthetic , Male , Mice , Structure-Activity Relationship , Xanthine/chemistryABSTRACT
Our initial structure-activity relationship studies on 7-methoxy-4-morpholino-benzothiazole derivatives featured by aryloxy-2-methylpropanamide moieties at the 2-position led to identification of compound 25 as a potent and selective A2A adenosine receptor (A2AAdoR) antagonist with reasonable ADME and pharmacokinetic properties. However, poor intrinsic solubility and low to moderate oral bioavailability made this series unsuitable for further development. Further optimization using structure-based drug design approach resulted in discovery of potent and selective adenosine A2A receptor antagonists bearing substituted 1-methylcyclohexyl-carboxamide groups at position 2 of the benzothiazole scaffold and endowed with better solubility and oral bioavailability. Compounds 41 and 49 demonstrated a number of positive attributes with respect to in vitro ADME properties. Both compounds displayed good pharmacokinetic properties with 63% and 61% oral bioavailability, respectively, in rat. Further, compound 49 displayed oral efficacy in 6-OHDA lesioned rat model of Parkinson diseases.
Subject(s)
Adenosine A2 Receptor Antagonists/pharmacology , Benzothiazoles/pharmacology , Cyclohexanols/pharmacology , Receptor, Adenosine A2A/metabolism , Adenosine A2 Receptor Antagonists/chemical synthesis , Adenosine A2 Receptor Antagonists/pharmacokinetics , Administration, Oral , Animals , Antiparkinson Agents/chemical synthesis , Antiparkinson Agents/pharmacokinetics , Antiparkinson Agents/pharmacology , Benzothiazoles/chemical synthesis , Benzothiazoles/pharmacokinetics , Cyclohexanols/chemical synthesis , Cyclohexanols/pharmacokinetics , Drug Design , HEK293 Cells , Humans , Levodopa/pharmacology , Male , Microsomes, Liver/metabolism , Molecular Docking Simulation , Rats, Wistar , Structure-Activity RelationshipABSTRACT
Adenosine induces bronchial hyperresponsiveness and inflammation in asthmatics through activation of A2B adenosine receptor (A2BAdoR). Selective antagonists have been shown to attenuate airway reactivity and improve inflammatory conditions in pre-clinical studies. Hence, the identification of novel, potent and selective A2BAdoR antagonist may be beneficial for the potential treatment of asthma and Chronic Obstructive Pulmonary Disease (COPD). Towards this effort, we explored several prop-2-ynylated C8-aryl or heteroaryl substitutions on xanthine chemotype and found that 1-prop-2-ynyl-1H-pyrazol-4-yl moiety was better tolerated at the C8 position. Compound 59, exhibited binding affinity (Ki) of 62 nM but was non-selective for A2BAdoR over other AdoRs. Incorporation of substituted phenyl on the terminal acetylene increased the binding affinity (Ki) significantly to <10 nM. Various substitutions on terminal phenyl group and different alkyl substitutions on N-1 and N-3 were explored to improve the potency, selectivity for A2BAdoR and the solubility. In general, compounds with meta-substituted phenyl provided better selectivity for A2BAdoR compared to that of para-substituted analogs. Substitutions such as basic amines like pyrrolidine, piperidine, piperazine or cycloalkyls with polar group were tried on terminal acetylene, keeping in mind the poor solubility of xanthine analogs in general. However, these substitutions led to a decrease in affinity compared to compound 59. Subsequent SAR optimization resulted in identification of compound 46 with high human A2BAdoR affinity (Ki = 13 nM), selectivity against other AdoR subtypes and with good pharmacokinetic properties. It was found to be a potent functional A2BAdoR antagonist with a Ki of 8 nM in cAMP assay in hA2B-HEK293 cells and an IC50 of 107 nM in IL6 assay in NIH-3T3 cells. Docking study was performed to rationalize the observed affinity data. Structure-activity relationship (SAR) studies also led to identification of compound 36 as a potent A2BAdoR antagonist with Ki of 1.8 nM in cAMP assay and good aqueous solubility of 529 µM at neutral pH. Compound 46 was further tested for in vivo efficacy and found to be efficacious in ovalbumin-induced allergic asthma model in mice.
Subject(s)
Adenosine A2 Receptor Antagonists/chemistry , Adenosine A2 Receptor Antagonists/therapeutic use , Asthma/drug therapy , Receptor, Adenosine A2B/metabolism , Xanthine/chemistry , Xanthine/therapeutic use , Adenosine A2 Receptor Antagonists/metabolism , Adenosine A2 Receptor Antagonists/pharmacokinetics , Animals , Asthma/chemically induced , Asthma/metabolism , Dogs , Drug Design , Hep G2 Cells , Humans , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Molecular Docking Simulation , Ovalbumin , Rats , Receptor, Adenosine A2B/chemistry , Xanthine/metabolism , Xanthine/pharmacokineticsABSTRACT
Adenosine A2A receptor (A2AAdoR) antagonism is a nondopaminergic approach to Parkinson's disease treatment that is under development. Earlier we had reported the therapeutic potential of 7-methoxy-4-morpholino-benzothiazole derivatives as A2AAdoR antagonists. We herein described a novel series of [1,2,4]triazolo[5,1-f]purin-2-one derivatives that displays functional antagonism of the A2A receptor with a high degree of selectivity over A1, A2B, and A3 receptors. Compounds from this new scaffold resulted in the discovery of highly potent, selective, stable, and moderate brain penetrating compound 33. Compound 33 endowed with satisfactory in vitro and in vivo pharmacokinetics properties. Compound 33 demonstrated robust oral efficacies in two commonly used models of Parkinson's disease (haloperidol-induced catalepsy and 6-OHDA lesioned rat models) and depression (TST and FST mice models).
ABSTRACT
l-2-Hydroxy acid oxidase (Hao2) is a peroxisomal enzyme with predominant expression in the liver and kidney. Hao2 was recently identified as a candidate gene for blood pressure quantitative trait locus in rats. To investigate a pharmacological role of Hao2 in the management of blood pressure, selective Hao2 inhibitors were developed. Optimization of screening hits 1 and 2 led to the discovery of compounds 3 and 4 as potent and selective rat Hao2 inhibitors with pharmacokinetic properties suitable for in vivo studies in rats. Treatment with compound 3 or 4 resulted in a significant reduction or attenuation of blood pressure in an established or developing model of hypertension, deoxycorticosterone acetate-treated rats. This is the first report demonstrating a pharmacological benefit of selective Hao2 inhibitors in a relevant model of hypertension.