Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioeng Transl Med ; 8(2): e10453, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36925719

ABSTRACT

Ovarian cancer is especially deadly, challenging to treat, and has proven refractory to known immunotherapies. Cytokine therapy is an attractive strategy to drive a proinflammatory immune response in immunologically cold tumors such as many high grade ovarian cancers; however, this strategy has been limited in the past due to severe toxicity. We previously demonstrated the use of a layer-by-layer (LbL) nanoparticle (NP) delivery vehicle in subcutaneous flank tumors to reduce the toxicity of interleukin-12 (IL-12) therapy upon intratumoral injection. However, ovarian cancer cannot be treated by local injection as it presents as dispersed metastases. Herein, we demonstrate the use of systemically delivered LbL NPs using a cancer cell membrane-binding outer layer to effectively target and engage the adaptive immune system as a treatment in multiple orthotopic ovarian tumor models, including immunologically cold tumors. IL-12 therapy from systemically delivered LbL NPs shows reduced severe toxicity and maintained anti-tumor efficacy compared to carrier-free IL-12 or layer-free liposomal NPs leading to a 30% complete survival rate.

2.
ACS Nano ; 14(9): 11238-11253, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32692155

ABSTRACT

Although cytokine therapy is an attractive strategy to build a more robust immune response in tumors, cytokines have faced clinical failures due to toxicity. In particular, interleukin-12 has shown great clinical promise but was limited in translation because of systemic toxicity. In this study, we demonstrate an enhanced ability to reduce toxicity without affecting the efficacy of IL-12 therapy. We engineer the material properties of a NP to meet the enhanced demands for optimal cytokine delivery by using the layer-by-layer (LbL) approach. Importantly, using LbL, we demonstrate cell-level trafficking of NPs to preferentially localize to the cell's outer surface and act as a drug depot, which is required for optimal payload activity on neighboring cytokine membrane receptors. LbL-NPs showed efficacy against a tumor challenge in both colorectal and ovarian tumors at doses that were not tolerated when administered carrier-free.


Subject(s)
Nanoparticles , Neoplasms , Cytokines , Drug Delivery Systems , Humans , Neoplasms/drug therapy
3.
ACS Nano ; 14(2): 2224-2237, 2020 02 25.
Article in English | MEDLINE | ID: mdl-31971772

ABSTRACT

Nanoparticle surface chemistry is a fundamental engineering parameter that governs tumor-targeting activity. Electrostatic assembly generates controlled polyelectrolyte complexes through the process of adsorption and charge overcompensation utilizing synthetic polyions and natural biomacromolecules; it can yield films with distinctive hydration, charge, and presentation of functional groups. Here, we used electrostatic layer-by-layer (LbL) assembly to screen 10 different surface chemistries for their ability to preferentially target human ovarian cancer in vitro. Our screen identified that poly-l-aspartate, poly-l-glutamate, and hyaluronate-coated LbL nanoparticles have striking specificity for ovarian cancer, while sulfated poly(ß-cyclodextrin) nanoparticles target noncancerous stromal cells. We validated top candidates for tumor-homing ability with a murine model of metastatic disease and with patient-derived ovarian cancer spheroids. Nanoparticle surface chemistry also influenced subcellular trafficking, indicating strategies to target the cell membrane, caveolae, and perinuclear vesicles. Our results confirm LbL is a powerful tool to systematically engineer nanoparticles and achieve specific targeting.


Subject(s)
Nanoparticles/chemistry , Ovarian Neoplasms/chemistry , Cell Line, Tumor , Female , Humans , Hyaluronic Acid/chemistry , Particle Size , Peptides/chemistry , Polyglutamic Acid/chemistry , Static Electricity , Surface Properties
4.
Bioeng Transl Med ; 3(1): 26-36, 2018 01.
Article in English | MEDLINE | ID: mdl-29376131

ABSTRACT

DNA damaging chemotherapy is a cornerstone of current front-line treatments for advanced ovarian cancer (OC). Despite the fact that a majority of these patients initially respond to therapy, most will relapse with chemo-resistant disease; therefore, adjuvant treatments that synergize with DNA-damaging chemotherapy could improve treatment outcomes and survival in patients with this deadly disease. Here, we report the development of a nanoscale peptide-nucleic acid complex that facilitates tumor-specific RNA interference therapy to chemosensitize advanced ovarian tumors to frontline platinum/taxane therapy. We found that the nanoplex-mediated silencing of the protein kinase, MK2, profoundly sensitized mouse models of high-grade serous OC to cytotoxic chemotherapy by blocking p38/MK2-dependent cell cycle checkpoint maintenance. Combined RNAi therapy improved overall survival by 37% compared with platinum/taxane chemotherapy alone and decreased metastatic spread to the lungs without observable toxic side effects. These findings suggest (a) that peptide nanoplexes can serve as safe and effective delivery vectors for siRNA and (b) that combined inhibition of MK2 could improve treatment outcomes in patients currently receiving frontline chemotherapy for advanced OC.

SELECTION OF CITATIONS
SEARCH DETAIL