Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
BMC Microbiol ; 22(1): 93, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35395771

ABSTRACT

BACKGROUND: Mycoplasma agalactiae is the main etiological agent of Contagious Agalactia syndrome of small ruminants notifiable to the World Organization for Animal Health. Despite serious economic losses, successful vaccines are unavailable, largely because its colonization and invasion factors are not well understood. This study evaluates the role of two recently identified antigenic proteins (MAG_1560, MAG_6130) and the cytadhesin P40 in pathogenicity related phenotypes. RESULTS: Adhesion to HeLa and sheep primary mammary stromal cells (MSC) was evaluated using ELISA, as well as in vitro adhesion assays on monolayer cell cultures. The results demonstrated MAG_6130 as a novel adhesin of M. agalactiae whose capacity to adhere to eukaryotic cells was significantly reduced by specific antiserum. Additionally, these proteins exhibited significant binding to plasminogen and extracellular matrix (ECM) proteins like lactoferrin, fibrinogen and fibronectin, a feature that could potentially support the pathogen in host colonization, tissue migration and immune evasion. Furthermore, these proteins played a detrimental role on the host cell proliferation and viability and were observed to activate pro-apoptotic genes indicating their involvement in cell death when eukaryotic cells were infected with M. agalactiae. CONCLUSIONS: To summarize, the hypothetical protein corresponding to MAG_6130 has not only been assigned novel adhesion functions but together with P40 it is demonstrated for the first time to bind to lactoferrin and ECM proteins thereby playing important roles in host colonization and pathogenicity.


Subject(s)
Mycoplasma Infections , Mycoplasma agalactiae , Adhesins, Bacterial/genetics , Animals , Cell Communication , Humans , Lactoferrin , Membrane Proteins/genetics , Mycoplasma Infections/veterinary , Mycoplasma agalactiae/genetics , Sheep
2.
BMC Vet Res ; 16(1): 379, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33028315

ABSTRACT

BACKGROUND: Ureaplasma diversum has numerous virulence factors that contribute to pathogenesis in cattle, including Lipid-associated membrane proteins (LAMPs). Therefore, the objectives of this study were to evaluate in silico important characteristics for immunobiological applications and for heterologous expression of 36 LAMPs of U. diversum (UdLAMPs) and, also, to verify by conventional PCR the distribution of these antigens in strains of Brazilian states (Bahia, Minas Gerais, São Paulo, and Mato Grosso do Sul). The Manatee database was used to obtain the gene and peptide sequences of the antigens. Similarity and identity studies were performed using BLASTp and direct antigenicity was evaluated by the VaxiJen v2.0 server. Epitope prediction for B lymphocytes was performed on the BepiPred v2.0 and CBTOPE v1.0 servers. NetBoLApan v1.0 was used to predict CD8+ T lymphocyte epitopes. Subcellular location and presence of transmembrane regions were verified by the software PSORTb v3.0.2 and TMHMM v2.2 respectively. SignalP v5.0, SecretomeP v2.0, and DOLOP servers were used to predict the extracellular excretion signal. Physico-chemical properties were evaluated by the web-software ProtParam, Solpro, and Protein-sol. RESULTS: In silico analysis revealed that many UdLAMPs have desirable properties for immunobiological applications and heterologous expression. The proteins gudiv_61, gudiv_103, gudiv_517, and gudiv_681 were most promising. Strains from the 4 states were PCR positive for antigens predicted with immunogenic and/or with good characteristics for expression in a heterologous system. CONCLUSION: These works contribute to a better understanding of the immunobiological properties of the UdLAMPs and provide a profile of the distribution of these antigens in different Brazilian states.


Subject(s)
Antigens, Bacterial/genetics , Lipid-Linked Proteins/immunology , Ureaplasma/immunology , Animals , Antigens, Bacterial/chemistry , B-Lymphocytes/immunology , Brazil , Cattle , Computer Simulation , Lipid-Linked Proteins/genetics , Ureaplasma/genetics , Virulence Factors/genetics , Virulence Factors/immunology
3.
BMC Infect Dis ; 15: 60, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25886914

ABSTRACT

BACKGROUND: The role of Mycoplasma hominis and M. genitalium in urogenital tract infections remains unknown. Furthermore these mollicutes present a complex relationship with the host immune response. The role of inflammatory cytokines in infections also makes them good candidates to investigate bacterial vaginosis and mycoplasma genital infections. Therefore, the aim of this study was to detect the above-mentioned mollicutes by quantitative Polymerase Chain Reaction (qPCR) methodologies in vaginal swabs and dosage of cytokines. METHODS: Vaginal swabs and peripheral blood were collected from 302 women, including healthy individuals. The molecular findings were correlated with some individual behavioral variables, clinical and demographic characteristics, presence of other important microorganisms in vaginal swabs, and levels of interleukin (IL)-1ß and IL-6. RESULTS: M. hominis and M. genitalium were detected in 31.8% and 28.1% of samples, respectively. The qPCR results were associated with clinical signs and symptoms of the infections studied. The frequency of Trichomonas vaginalis, Gardnerella vaginalis, Neisseria gonorrhoeae and Chlamydia trachomatis was 3.0%, 21.5%, 42.4%, and 1.7% respectively. Increased levels of IL-1ß were associated with the presence of M. hominis and signs and/or symptoms of the genital infection of women studied. CONCLUSION: IL-1ß production was associated with the detection of M. hominis by qPCR. The sexual behavior of women studied was associated with the detection of mycoplasma and other agents of genital infections.


Subject(s)
Mycoplasma Infections/epidemiology , Mycoplasma genitalium/isolation & purification , Mycoplasma hominis/isolation & purification , Urinary Tract Infections/epidemiology , Vaginosis, Bacterial/epidemiology , Adolescent , Adult , Aged , Brazil/epidemiology , Chlamydia Infections/epidemiology , Chlamydia Infections/microbiology , Chlamydia trachomatis/isolation & purification , Coinfection , Female , Female Urogenital Diseases/epidemiology , Female Urogenital Diseases/microbiology , Gardnerella vaginalis/isolation & purification , Humans , Middle Aged , Mycoplasma Infections/microbiology , Neisseria gonorrhoeae/isolation & purification , Prevalence , Sexually Transmitted Diseases/epidemiology , Sexually Transmitted Diseases/microbiology , Trichomonas vaginalis/isolation & purification , Urinary Tract Infections/microbiology , Urogenital System/microbiology , Vaginosis, Bacterial/microbiology , Young Adult
4.
Biol Res ; 47: 38, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-25299837

ABSTRACT

BACKGROUND: Bacterial pathogens have many strategies for infecting and persisting in host cells. Adhesion, invasion and intracellular life are important features in the biology of mollicutes. The intracellular location of Ureaplasma diversum may trigger disturbances in the host cell. This includes activation or inhibition of pro and anti-apoptotic factors, which facilitate the development of host damage. The aim of the present study was to associate U. diversum infection in HEp-2 cells and apoptosis induction. Cells were infected for 72hs with four U. diversum clinical isolates and an ATCC strain. The U. diversum invasion was analyzed by Confocal Laser Scanning Microscopy and gentamicin invasion assay. The apoptosis was evaluated using pro-apoptotic and anti-apoptotic gene expression, and FITC Annexin V/Dead Cell Apoptosis Kit. RESULTS: The number of internalized ureaplasma in HEp-2 cells increased significantly throughout the infection. The flow cytometry analysis with fluorochromes to detect membrane depolarization and gene expression for caspase 2, 3 and 9 increased in infected cells after 24 hours. However, after 72 hours a considerable decrease of apoptotic cells was observed. CONCLUSIONS: The data suggests that apoptosis may be initially induced by some isolates in association with HEp-2 cells, but over time, there was no evidence of apoptosis in the presence of ureaplasma and HEp-2 cells. The initial increase and then decrease in apoptosis could be related to bacterial pathogen-associated molecular pattern (PAMPS). Moreover, the isolates of U. diversum presented differences in the studied parameters for apoptosis. It was also observed that the amount of microorganisms was not proportional to the induction of apoptosis in HEp-2 cells.


Subject(s)
Apoptosis/physiology , Ureaplasma Infections/physiopathology , Ureaplasma/pathogenicity , Actin Cytoskeleton/ultrastructure , Bacterial Adhesion , Caspase 2/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Cell Survival , Female , Flow Cytometry , Gene Expression , Gentamicins/pharmacology , HeLa Cells/microbiology , Humans , Microscopy, Confocal , Pathogen-Associated Molecular Pattern Molecules/metabolism , Real-Time Polymerase Chain Reaction , Statistics, Nonparametric , Time Factors , Tumor Necrosis Factor-alpha/metabolism , Ureaplasma/drug effects
5.
Vaccines (Basel) ; 12(2)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38400139

ABSTRACT

Contagious agalactia (CA) is a serious multietiological disease whose classic etiological agent is Mycoplasma agalactiae and which causes high morbidity and mortality rates in infected herds. CA is classified as a notifiable disease by the World Organization for Animal Health due to its significant worldwide economic impact on livestock, primarily involving goat and sheep farms. The emergence of atypical symptoms and strains of M. agalactiae in wildlife ungulates reestablishes its highly plastic genome and is also of great epidemiological significance. Antimicrobial therapy is the main form of control, although several factors, such as intrinsic antibiotic resistance and the selection of resistant strains, must be considered. Available vaccines are few and mostly inefficient. The virulence and pathogenicity mechanisms of M. agalactiae mainly rely on surface molecules that have direct contact with the host. Because of this, they are essential for the development of vaccines. This review highlights the currently available vaccines and their limitations and the development of new vaccine possibilities, especially considering the challenge of antigenic variation and dynamic genome in this microorganism.

6.
Front Vet Sci ; 11: 1397145, 2024.
Article in English | MEDLINE | ID: mdl-39346959

ABSTRACT

Introduction: Mycoplasma bovis is a highly contagious pathogen that causes various diseases in herd animals, negatively impacting reproduction, production, and milk yield. Effective diagnostic methods and vaccine development are critical for controlling M. bovis outbreaks. This systematic review aimed to evaluate diagnostic alternatives and vaccine compounds based on recombinant proteins. Methods: Following the PRISMA protocol, a systematic search was conducted in the SciELO, PubMed, and CAPES Periodicals Portal databases. Inclusion criteria included studies published between 2008 and 2023 that involved (1) the use of recombinant proteins for M. bovis identification or vaccine production, (2) biological samples, (3) availability in the selected databases, (4) in vitro or in vivo experimental designs, and (5) English-language publications. Results: Ten of the initial 53 studies screened met the inclusion criteria. Of these, four studies focused on diagnostic approaches and six on vaccine development. Diagnostic studies predominantly used an indirect enzyme-linked immunosorbent assay (ELISA) with recombinant proteins, achieving over 90% sensitivity and specificity in detecting M. bovis infections. In contrast, the development of recombinant vaccines has shown limited success, with challenges in identifying effective adjuvants and optimizing conditions for protective immunity. Discussion: While recombinant protein-based diagnostics have proven effective, developing a successful vaccine against M. bovis remains elusive. Further research is necessary to refine vaccine formulations, including selecting suitable adjuvants and challenge models to enhance protective efficacy against M. bovis infections.

7.
Animals (Basel) ; 12(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35158589

ABSTRACT

Although mycoplasmas have a reduced genome and no cell wall, they have important mechanisms for the antigenic variation in surface lipoproteins that modulate their interactions with the host. Mycoplasma agalactiae, the main etiological agent of contagious agalactia, has a multigene family involved in the high-frequency phase variation in surface lipoproteins called variable proteins of M. agalactiae (Vpmas). The Vpma lipoproteins are involved in the immune evasion, colonization, dissemination, and persistence of M. agalactiae in the host. In this paper, we evaluate the Vpma phenotypic profiles of two different strains of M. agalactiae, namely, GM139 and the type strain PG2, to assess possible correlations between Vpma phase variability and the geographic localization, animal origin, and pathogenicity of these two strains. Using monospecific Vpma antibodies against individual Vpmas in immunoblots, we demonstrate that, unlike PG2, which expresses six Vpma proteins with high-frequency phase variation, colonies of GM139 predominantly express VpmaV and do not exhibit any sectoring phenotype for any Vpma. Since VpmaV is one of the most important Vpmas for cell adhesion and invasion, its predominant sole expression in GM139 without high-frequency variation may be the basis of the differential pathogenicity of GM139 and PG2. Additionally, MALDI-ToF MS analysis also demonstrates significant differences between these two strains and their relatedness with other M. agalactiae strains.

8.
Microorganisms ; 10(5)2022 May 16.
Article in English | MEDLINE | ID: mdl-35630474

ABSTRACT

Ureaplasma diversum is a bacterial pathogen that infects cattle and can cause severe inflammation of the genital and reproductive systems. Lipid-associated membrane proteins (LAMPs), including GUDIV-103, are the main virulence factors in this bacterium. In this study, we heterologously expressed recombinant GUDIV-103 (rGUDIV-103) in Escherichia coli, purified it, and evaluated its immunological reactivity and immunomodulatory effects in bovine peripheral blood mononuclear cells (PBMCs). Samples from rabbits inoculated with purified rGUDIV-103 were analysed using indirect enzyme-linked immunosorbent assay and dot blotting to confirm polyclonal antibody production and assess kinetics, respectively. The expression of this lipoprotein in field isolates was confirmed via Western blotting with anti-rGUDIV-103 serum and hydrophobic or hydrophilic proteins from 42 U. diversum strains. Moreover, the antibodies produced against the U. diversum ATCC 49783 strain recognised rGUDIV-103. The mitogenic potential of rGUDIV-103 was evaluated using a lymphoproliferation assay in 5(6)-carboxyfluorescein diacetate succinimidyl ester−labelled bovine PBMCs, where it induced lymphocyte proliferation. Quantitative polymerase chain reaction analysis revealed that the expression of interleukin-1ß, toll-like receptor (TLR)-α, TLR2, TLR4, inducible nitric oxide synthase, and caspase-3−encoding genes increased more in rGUDIV-103−treated PBMCs than in untreated cells (p < 0.05). Treating PBMCs with rGUDIV-103 increased nitric oxide and hydrogen peroxide levels. The antigenic and immunogenic properties of rGUDIV-103 suggested its suitability for immunobiological application.

9.
Infect Agent Cancer ; 16(1): 70, 2021 Dec 23.
Article in English | MEDLINE | ID: mdl-34949212

ABSTRACT

BACKGROUND: Gastric cancer is the third leading cause of cancer-related deaths worldwide and has been associated with infections that may promote tumour progression. Accordingly, we analysed the presence of Mollicutes, Mycoplasma hyorhinis, Fusobacterium nucleatum and Helicobacter pylori in gastric cancer tissues and evaluated their correlation with clinicopathological factors. METHODS: Using a commercial kit, DNA were extracted from 120 gastric samples embedded in paraffin: 80 from patients with gastric cancer and 40 from cancer free patients, dating from 2006 to 2016. Mollicutes and H. pylori were detected by PCR; F. nucleatum and M. hyorhinis were detected by qPCR, together with immunohistochemistry for the latter bacteria. RESULTS: Mollicutes were detected in the case and control groups (12% and 2.5%) and correlated with the papillary histologic pattern (P = 0.003), likely due to cell transformation promoted by Mollicutes. M. hyorhinis was detected in the case and control group but was not considered a cancer risk factor. H. pylori was detected at higher loads in the case compared to the control group (8% and 22%, P = 0.008) and correlated with metastasis (P = 0.024), lymphatic invasion (P = 0.033), tumour of diffused type (P = 0.028), and histopathological grading G1/G2 (P = 0.008). F. nucleatum was the most abundant bacteria in the case group, but was also detected in the control group (26% and 2.5%). It increased the cancer risk factor (P = 0.045, OR = 10.562, CI95% = 1.057-105.521), and correlated with old age (P = 0.030) and tumour size (P = 0.053). Bacterial abundance was significantly different between groups (P = 0.001). CONCLUSION: Our findings could improve the control and promote our understanding of opportunistic bacteria and their relevance to malignant phenotypes.

10.
Vet Microbiol ; 251: 108866, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33099078

ABSTRACT

Contagious agalactia (CA) is a serious disease notifiable to the World Organisation for Animal Health (OIE) causing severe economic losses to sheep and goat producers worldwide. Mycoplasma agalactiae, considered as its main etiological agent, inflicts a variety of symptoms in infected animals, including keratoconjunctivitis, mastitis, arthritis, ankylosis, abortions, stillbirths and granular vulvovaginitis. Despite its significance, developing a successful vaccine remains elusive, mostly due to the lack of knowledge about M. agalactiae's pathogenicity factors and pathogenic mechanisms, including its "core" antigens. The aim of this study was to identify, characterize and express antigenic proteins of M. agalactiae as potential vaccine candidates. Predicted proteins of type strain PG2 were analyzed using bioinformatic algorithms to assess their cellular localization and to identify their linear and conformational epitopes for B cells. Out of a total of 156 predicted membrane proteins, three were shortlisted as potential antigenic surface proteins, namely [MAG_1560 (WP_011949336.1), MAG_6130 (WP_011949770.1) and P40 (WP_011949418.1)]. These proteins were expressed in recombinant Escherichia coli strains. Purified proteins were evaluated for their antigenicity using Western blot and ELISA using sera of M. agalactiae-naturally infected and non-infected sheep and goats. All 3 proteins were specifically recognized by the tested sera of M. agalactiae-infected animals. Also, specific rabbit antisera raised against each of these 3 proteins confirm their membrane localization using TritonX-114 phase partioning, Western and colony immunoblotting. In conclusion, our study successfully identified P40 (as proof of concept and validation) and two novel antigenic M. agalactiae proteins as potential candidates for developing effective CA vaccines.


Subject(s)
Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Bacterial Vaccines/immunology , Mycoplasma agalactiae/chemistry , Serologic Tests/methods , Animals , Antigens, Bacterial/genetics , Epitopes, B-Lymphocyte/immunology , Female , Genome, Bacterial , Membrane Proteins/genetics , Membrane Proteins/immunology , Mycoplasma agalactiae/genetics , Mycoplasma agalactiae/immunology , Rabbits
11.
Vet Microbiol ; 167(3-4): 670-4, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-23993254

ABSTRACT

Ureaplasma diversum in veterinary studies is an undesirable microbe, which may cause infection in bulls and may result in seminal vesiculitis, balanopostitis, and alterations in spermatozoids, whereas in cows, it may cause placentitis, fetal alveolitis, abortion, and birth of weak calves. U. diversum is released through organic secretions, especially semen, preputial and vaginal mucus, conjunctival secretion, and milk. The aim of the present study was to develop a TaqMan probe, highly sensitive and specific quantitative PCR (qPCR) assay for the detection and quantification of U. diversum from genital swabs of bovines. Primers and probes specific to U. diversum 16S rRNA gene were designed. The specificity, detection limit, intra- and inter-assay variability of qPCR to detect this ureaplasma was compared with the results of the conventional PCR assay (cPCR). Swabs of vaginal mucus from 169 cows were tested. The qPCR assay detected as few as 10 copies of U. diversum and was 100-fold more sensitive than the cPCR. No cross-reactivity with other Mollicutes or eubacteria was observed. U. diversum was detected in 79 swabs (46.42%) by qPCR, while using cPCR it was detected in 42 (25%) samples. The difference in cPCR and qPCR ureaplasma detection between healthy and sick animals was not statistically significant. But the U. diversum load in samples from animals with genital disorders was higher than in healthy animals. The qPCR assay developed herein is highly sensitive and specific for the detection and quantification of U. diversum in vaginal bovine samples.


Subject(s)
Cattle Diseases/diagnosis , Polymerase Chain Reaction/veterinary , Ureaplasma Infections/veterinary , Ureaplasma/genetics , Animals , Cattle , Female , RNA, Ribosomal, 16S/genetics , Reproducibility of Results , Sensitivity and Specificity , Ureaplasma Infections/diagnosis , Vagina/microbiology
12.
Biol. Res ; 47: 1-9, 2014. ilus, graf
Article in English | LILACS | ID: biblio-950734

ABSTRACT

BACKGROUND: Bacterial pathogens have many strategies for infecting and persisting in host cells. Adhesion, invasion and intracellular life are important features in the biology of mollicutes. The intracellular location ofUreaplasma diversum may trigger disturbances in the host cell. This includes activation or inhibition of pro and anti-apoptotic factors, which facilitate the development of host damage. The aim of the present study was to associate U. diversum infection in HEp-2 cells and apoptosis induction. Cells were infected for 72hs with four U. diversum clinical isolates and an ATCC strain. The U. diversuminvasion was analyzed by Confocal Laser Scanning Microscopy and gentamicin invasion assay. The apoptosis was evaluated using pro-apoptotic and anti-apoptotic gene expression, and FITC Annexin V/Dead Cell Apoptosis Kit. RESULTS: The number of internalized ureaplasma in HEp-2 cells increased significantly throughout the infection. The flow cytometry analysis with fluorochromes to detect membrane depolarization and gene expression for caspase 2, 3 and 9 increased in infected cells after 24 hours. However, after 72 hours a considerable decrease of apoptotic cells was observed. CONCLUSIONS: The data suggests that apoptosis may be initially induced by some isolates in association with HEp-2 cells, but over time, there was no evidence of apoptosis in the presence of ureaplasma and HEp-2 cells. The initial increase and then decrease in apoptosis could be related to bacterial pathogen-associated molecular pattern (PAMPS). Moreover, the isolates of U. diversum presented differences in the studied parameters for apoptosis. It was also observed that the amount of microorganisms was not proportional to the induction of apoptosis in HEp-2 cells.


Subject(s)
Humans , Female , Ureaplasma/pathogenicity , Ureaplasma Infections/physiopathology , Apoptosis/physiology , Time Factors , Ureaplasma/drug effects , Bacterial Adhesion , Actin Cytoskeleton/ultrastructure , Gentamicins/pharmacology , HeLa Cells/microbiology , Gene Expression , Cell Survival , Tumor Necrosis Factor-alpha/metabolism , Statistics, Nonparametric , Microscopy, Confocal , Caspase 3/metabolism , Caspase 2/metabolism , Caspase 9/metabolism , Real-Time Polymerase Chain Reaction , Flow Cytometry , Pathogen-Associated Molecular Pattern Molecules/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL