Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal
Affiliation country
Publication year range
1.
Small ; : e2406589, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39367551

ABSTRACT

The growing interest in low-temperature direct ammonia fuel cells (DAFCs) arises from the utilization of a carbon-neutral ammonia source; however, DAFCs encounter significant electrode overpotentials due to the substantial energy barrier of the *NH2 to *NH dehydrogenation, compounded by the facile deactivation by *N on the Pt surface. In this work, a unique catalyst, Pt4Ir@AlOOH/NGr i.e., Pt4Ir/ANGr, is introduced composed of PtIr alloy nanoparticles controllably decorated on the pseudo-boehmite phase of AlOOH-supported nitrogen-doped reduced graphene (AlOOH/NGr) composite, synthesized via the polyol reduction method. The detailed studies on the structural and electronic properties of the catalyst by XAS and VB-XPS reveal the possible electronic modulations. The optimized Pt4Ir/ANGr composition exhibits a significantly improved onset potential and mass activity for AOR. The DFT study confirms the OHad species spillover by AlOOH and Pt4Ir (100) facilitates the conversion of the *NH2 to *NH with minimal energy barriers. Finally, testing of DAFC at the system level using a membrane electrode assembly (MEA) with Pt4Ir/ANGr as the anode catalyst, demonstrating the suitability of the catalyst for its practical applications. This study thus uncovers the potential of the Pt4Ir catalyst in synergy with ANGr, largely addressing the challenges in hydrogen transportation, storage, and safety within DAFCs.

2.
Small ; 20(35): e2400012, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38651508

ABSTRACT

There is a rising need to create high-performing, affordable electrocatalysts in the new field of oxygen electrochemistry. Here, a cost-effective, activity-modulated electrocatalyst with the capacity to trigger both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in an alkaline environment is presented. The catalyst (Al, Co/N-rGCNT) is made up of aluminium, nitrogen-dual-doped reduced graphene oxide sheets co-existing with cobalt-encapsulated carbon nanotube units. Based on X-ray Absorption Spectroscopy (XAS) studies, it is established that the superior reaction kinetics in Al, Co/N-rGCNT over their bulk counterparts can be attributed to their electronic regulation. The Al, Co/N-rGCNT performs as a versatile bifunctional electrocatalyst for zinc-air battery (ZAB), delivering an open circuit potential ≈1.35 V and peak power density of 106.3 mW cm-2, which are comparable to the system based on Pt/C. The Al, Co/N-rGCNT-based system showed a specific capacity of 737 mAh gZn -1 compared to 696 mAh gZn -1 delivered by the system based on Pt/C. The DFT calculations indicate that the adsorption of Co in the presence of Al doping in NGr improves the electronic properties favoring ORR. Thus, the Al, Co/N-rGCNT-based rechargeable ZAB (RZAB) emerges as a highly viable and affordable option for the development of RZAB for practical applications.

3.
Small ; 19(50): e2304143, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37612811

ABSTRACT

The rational design of noble metal-free electrocatalysts holds great promise for cost-effective green hydrogen generation through water electrolysis. In this context, here, the development of a superhydrophilic bifunctional electrocatalyst that facilitates both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline conditions is demonstrated. This is achieved through the in situ growth of hierarchical NiMoO4 @CoMoO4 ·xH2 O nanostructure on nickel foam (NF) via a two-step hydrothermal synthesis method. NiMoO4 @CoMoO4 ·xH2 O/NF facilitates OER and HER at the overpotentials of 180 and 220 mV, respectively, at the current density of 10 mA cm-2 . The NiMoO4 @CoMoO4 ·xH2 O/NF ǁ NiMoO4 @CoMoO4 ·xH2 O/NF cell can be operated at a potential of 1.60 V compared to 1.63 V displayed by the system based on the Pt/C@NFǁRuO2 @NF standard electrode pair configuration at 10 mA cm-2 for overall water splitting. The density functional theory calculations for the OER process elucidate that the lowest ΔG of NiMoO4 @CoMoO4 compared to both Ni and NiMoO4 is due to the presence of Co in the OER catalytic site and its synergistic interaction with NiMoO4 . The preparative strategy and mechanistic understanding make the windows open for the large-scale production of the robust and less expensive electrode material for the overall water electrolysis.

SELECTION OF CITATIONS
SEARCH DETAIL