Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
Add more filters

Publication year range
1.
PLoS Med ; 21(3): e1004360, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38502656

ABSTRACT

BACKGROUND: Adjuvants are widely used to enhance and/or direct vaccine-induced immune responses yet rarely evaluated head-to-head. Our trial directly compared immune responses elicited by MF59 versus alum adjuvants in the RV144-like HIV vaccine regimen modified for the Southern African region. The RV144 trial of a recombinant canarypox vaccine vector expressing HIV env subtype B (ALVAC-HIV) prime followed by ALVAC-HIV plus a bivalent gp120 protein vaccine boost adjuvanted with alum is the only trial to have shown modest HIV vaccine efficacy. Data generated after RV144 suggested that use of MF59 adjuvant might allow lower protein doses to be used while maintaining robust immune responses. We evaluated safety and immunogenicity of an HIV recombinant canarypox vaccine vector expressing HIV env subtype C (ALVAC-HIV) prime followed by ALVAC-HIV plus a bivalent gp120 protein vaccine boost (gp120) adjuvanted with alum (ALVAC-HIV+gp120/alum) or MF59 (ALVAC-HIV+gp120/MF59) or unadjuvanted (ALVAC-HIV+gp120/no-adjuvant) and a regimen where ALVAC-HIV+gp120 adjuvanted with MF59 was used for the prime and boost (ALVAC-HIV+gp120/MF59 coadministration). METHODS AND FINDINGS: Between June 19, 2017 and June 14, 2018, 132 healthy adults without HIV in South Africa, Zimbabwe, and Mozambique were randomized to receive intramuscularly: (1) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/MF59 (months 3, 6, and 12), n = 36; (2) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/alum (months 3, 6, and 12), n = 36; (3) 4 doses of ALVAC-HIV+gp120/MF59 coadministered (months 0, 1, 6, and 12), n = 36; or (4) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/no adjuvant (months 3, 6, and 12), n = 24. Primary outcomes were safety and occurrence and mean fluorescence intensity (MFI) of vaccine-induced gp120-specific IgG and IgA binding antibodies at month 6.5. All vaccinations were safe and well-tolerated; increased alanine aminotransferase was the most frequent related adverse event, occurring in 2 (1.5%) participants (1 severe, 1 mild). At month 6.5, vaccine-specific gp120 IgG binding antibodies were detected in 100% of vaccinees for all 4 vaccine groups. No significant differences were seen in the occurrence and net MFI of vaccine-specific IgA responses between the ALVAC-HIV+gp120/MF59-prime-boost and ALVAC-HIV+gp120/alum-prime-boost groups or between the ALVAC-HIV+gp120/MF59-prime-boost and ALVAC-HIV+gp120/MF59 coadministration groups. Limitations were the relatively small sample size per group and lack of evaluation of higher gp120 doses. CONCLUSIONS: Although MF59 was expected to enhance immune responses, alum induced similar responses to MF59, suggesting that the choice between these adjuvants may not be critical for the ALVAC+gp120 regimen. TRIAL REGISTRATION: HVTN 107 was registered with the South African National Clinical Trials Registry (DOH-27-0715-4894) and ClinicalTrials.gov (NCT03284710).


Subject(s)
AIDS Vaccines , Alum Compounds , HIV Infections , HIV-1 , Polysorbates , Squalene , Adult , Humans , Adjuvants, Immunologic , AIDS Vaccines/adverse effects , HIV Antibodies , HIV Infections/prevention & control , Immunogenicity, Vaccine , Immunoglobulin A , Immunoglobulin G , Vaccines, Combined , Vaccines, Synthetic
2.
Int J Mol Sci ; 25(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38255817

ABSTRACT

Demyelination in the central nervous system (CNS) resulting from injury or disease can cause loss of nerve function and paralysis. Cell therapies intended to promote remyelination of axons are a promising avenue of treatment, with mesenchymal stromal cells (MSCs) a prominent candidate. We have previously demonstrated that MSCs derived from human olfactory mucosa (hOM-MSCs) promote myelination to a greater extent than bone marrow-derived MSCs (hBM-MSCs). However, hOM-MSCs were developed using methods and materials that were not good manufacturing practice (GMP)-compliant. Before considering these cells for clinical use, it is necessary to develop a method for their isolation and expansion that is readily adaptable to a GMP-compliant environment. We demonstrate here that hOM-MSCs can be derived without enzymatic tissue digestion or cell sorting and without culture antibiotics. They grow readily in GMP-compliant media and express typical MSC surface markers. They robustly produce CXCL12 (a key secretory factor in promoting myelination) and are pro-myelinating in in vitro rodent CNS cultures. GMP-compliant hOM-MSCs are comparable in this respect to those grown in non-GMP conditions. However, when assessed in an in vivo model of demyelinating disease (experimental autoimmune encephalitis, EAE), they do not significantly improve disease scores compared with controls, indicating further pre-clinical evaluation is necessary before their advancement to clinical trials.


Subject(s)
Anti-Bacterial Agents , Mesenchymal Stem Cells , Humans , Culture Techniques , Axons , Biological Transport
3.
Glia ; 71(7): 1683-1698, 2023 07.
Article in English | MEDLINE | ID: mdl-36945189

ABSTRACT

There is an urgent need for therapies that target the multicellular pathology of central nervous system (CNS) disease. Modified, nonanticoagulant heparins mimic the heparan sulfate glycan family and are known regulators of multiple cellular processes. In vitro studies have demonstrated that low sulfated modified heparin mimetics (LS-mHeps) drive repair after CNS demyelination. Herein, we test LS-mHep7 (an in vitro lead compound) in experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced demyelination. In EAE, LS-mHep7 treatment resulted in faster recovery and rapidly reduced inflammation which was accompanied by restoration of animal weight. LS-mHep7 treatment had no effect on remyelination or on OLIG2 positive oligodendrocyte numbers within the corpus callosum in the cuprizone model. Further in vitro investigation confirmed that LS-mHep7 likely mediates its pro-repair effect in the EAE model by sequestering inflammatory cytokines, such as CCL5 which are upregulated during immune-mediated inflammatory attacks. These data support the future clinical translation of this next generation modified heparin as a treatment for CNS diseases with active immune system involvement.


Subject(s)
Central Nervous System Diseases , Encephalomyelitis, Autoimmune, Experimental , Animals , Mice , Cuprizone/toxicity , Sulfates/adverse effects , Oligodendroglia/pathology , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Corpus Callosum/pathology , Central Nervous System Diseases/pathology , Heparitin Sulfate/therapeutic use , Mice, Inbred C57BL , Disease Models, Animal , Myelin Sheath/pathology
5.
Glia ; 69(8): 2023-2036, 2021 08.
Article in English | MEDLINE | ID: mdl-33942402

ABSTRACT

Some children with proven intrauterine Zika virus (ZIKV) infection who were born asymptomatic subsequently manifested neurodevelopmental delays, pointing to impairment of development perinatally and postnatally. To model this, we infected postnatal day (P) 5-6 (equivalent to the perinatal period in humans) susceptible mice with a mammalian cell-propagated ZIKV clinical isolate from the Brazilian outbreak in 2015. All infected mice appeared normal up to 4 days post-intraperitoneal inoculation (dpi), but rapidly developed severe clinical signs at 5-6 dpi. All nervous tissue examined at 5/6 dpi appeared grossly normal. However, anti-ZIKV positive cells were observed in the optic nerve, brain, and spinal cord; predominantly in white matter. Co-labeling with cell type specific markers demonstrated oligodendrocytes and astrocytes support productive infection. Rarely, ZIKV positive neurons were observed. In spinal cord white matter, which we examined in detail, apoptotic cells were evident; the density of oligodendrocytes was significantly reduced; and there was localized microglial reactivity including expression of the NLRP3 inflammasome. Together, our observations demonstrate that a clinically relevant ZIKV isolate can directly impact oligodendrocytes. As primary oligodendrocyte cell death can lead later to secondary autoimmune demyelination, our observations may help explain neurodevelopmental delays in infants appearing asymptomatic at birth and commend lifetime surveillance.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Disease Models, Animal , Female , Mice , Neurons , Oligodendroglia , Pregnancy , Zika Virus Infection/complications
6.
Clin Infect Dis ; 72(1): 50-60, 2021 01 23.
Article in English | MEDLINE | ID: mdl-31900486

ABSTRACT

BACKGROUND: The Pox-Protein Public-Private Partnership is performing a suite of trials to evaluate the bivalent subtype C envelope protein (TV1.C and 1086.C glycoprotein 120) vaccine in the context of different adjuvants and priming agents for human immunodeficiency virus (HIV) type 1 (HIV-1) prevention. METHODS: In the HIV Vaccine Trials Network 111 trial, we compared the safety and immunogenicity of DNA prime followed by DNA/protein boost with DNA/protein coadministration injected intramuscularly via either needle/syringe or a needle-free injection device (Biojector). One hundred thirty-two healthy, HIV-1-uninfected adults were enrolled from Zambia, South Africa, and Tanzania and were randomized to 1 of 6 arms: DNA prime, protein boost by needle/syringe; DNA and protein coadministration by needle/syringe; placebo by needle/syringe; DNA prime, protein boost with DNA given by Biojector; DNA and protein coadministration with DNA given by Biojector; and placebo by Biojector. RESULTS: All vaccinations were safe and well tolerated. DNA and protein coadministration was associated with increased HIV-1 V1/V2 antibody response rate, a known correlate of decreased HIV-1 infection risk. DNA administration by Biojector elicited significantly higher CD4+ T-cell response rates to HIV envelope protein than administration by needle/syringe in the prime/boost regimen (85.7% vs 55.6%; P = .02), but not in the coadministration regimen (43.3% vs 48.3%; P = .61). CONCLUSIONS: Both the prime/boost and coadministration regimens are safe and may be promising for advancement into efficacy trials depending on whether cellular or humoral responses are desired. CLINICAL TRIALS REGISTRATION: South African National Clinical Trials Registry (application 3947; Department of Health [DoH] no. DOH-27-0715-4917) and ClinicalTrials.gov (NCT02997969).


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , AIDS Vaccines/therapeutic use , Adult , DNA , HIV Antibodies , HIV Infections/prevention & control , HIV-1/genetics , Humans , Immunization, Secondary , Immunogenicity, Vaccine , Polysorbates , South Africa , Squalene , Tanzania , Zambia
7.
PLoS Pathog ; 15(12): e1008121, 2019 12.
Article in English | MEDLINE | ID: mdl-31794588

ABSTRACT

The ALVAC-HIV clade B/AE and equivalent SIV-based/gp120 + Alum vaccines successfully decreased the risk of virus acquisition in humans and macaques. Here, we tested the efficacy of HIV clade B/C ALVAC/gp120 vaccine candidates + MF59 or different doses of Aluminum hydroxide (Alum) against SHIV-Cs of varying neutralization sensitivity in macaques. Low doses of Alum induced higher mucosal V2-specific IgA that increased the risk of Tier 2 SHIV-C acquisition. High Alum dosage, in contrast, elicited serum IgG to V2 that correlated with a decreased risk of Tier 1 SHIV-C acquisition. MF59 induced negligible mucosal antibodies to V2 and an inflammatory profile with blood C-reactive Protein (CRP) levels correlating with neutralizing antibody titers. MF59 decreased the risk of Tier 1 SHIV-C acquisition. The relationship between vaccine efficacy and the neutralization profile of the challenge virus appear to be linked to the different immunological spaces created by MF59 and Alum via CXCL10 and IL-1ß, respectively.


Subject(s)
Adjuvants, Immunologic/pharmacology , Alum Compounds/pharmacology , Antibodies, Neutralizing/immunology , SAIDS Vaccines/chemistry , SAIDS Vaccines/immunology , AIDS Vaccines/chemistry , AIDS Vaccines/immunology , Animals , Antibodies, Viral/immunology , Female , HIV Infections , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Viral Vaccines/chemistry , Viral Vaccines/immunology
8.
J Virol ; 93(3)2019 02 01.
Article in English | MEDLINE | ID: mdl-30429340

ABSTRACT

As part of the continuing effort to develop an effective HIV vaccine, we generated a poxviral vaccine vector (previously described) designed to improve on the results of the RV144 phase III clinical trial. The construct, NYVAC-KC, is a replication-competent, attenuated recombinant of the vaccinia virus strain NYVAC. NYVAC is a vector that has been used in many previous clinical studies but is replication deficient. Here, we report a side-by-side comparison of replication-restricted NYVAC and replication-competent NYVAC-KC in a nonhuman primate study, which utilized a prime-boost regimen similar to that of RV144. NYVAC-C and NYVAC-C-KC express the HIV-1 antigens gp140, and Gag/Gag-Pol-Nef-derived virus-like particles (VLPs) from clade C and were used as the prime, with recombinant virus plus envelope protein used as the boost. In nearly every T and B cell immune assay against HIV-1, including neutralization and antibody binding, NYVAC-C-KC induced a greater immune response than NYVAC-C, indicating that replication competence in a poxvirus may improve upon the modestly successful regimen used in the RV144 clinical trial.IMPORTANCE Though the RV144 phase III clinical trial showed promise that an effective vaccine against HIV-1 is possible, a successful vaccine will require improvement over the vaccine candidate (ALVAC) used in the RV144 study. With that goal in mind, we have tested in nonhuman primates an attenuated but replication-competent vector, NYVAC-KC, in direct comparison to its parental vector, NYVAC, which is replication restricted in human cells, similar to the ALVAC vector used in RV144. We have utilized a prime-boost regimen for administration of the vaccine candidate that is similar to the one used in the RV144 study. The results of this study indicate that a replication-competent poxvirus vector may improve upon the effectiveness of the RV144 clinical trial vaccine candidate.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Antigens/immunology , HIV Infections/immunology , HIV-1/immunology , Viral Vaccines/administration & dosage , Virus Replication , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibodies, Neutralizing/blood , HIV Antibodies/blood , HIV Infections/prevention & control , HIV Infections/virology , Humans , Macaca mulatta , Male , Vaccination , Vaccinia virus/immunology , Viral Vaccines/immunology
9.
J Virol ; 93(3)2019 02 01.
Article in English | MEDLINE | ID: mdl-30429343

ABSTRACT

The use of heterologous immunization regimens and improved vector systems has led to increases in immunogenicity of HIV-1 vaccine candidates in nonhuman primates. In order to resolve interrelations between different delivery modalities, three different poxvirus boost regimens were compared. Three groups of rhesus macaques were each primed with the same DNA vaccine encoding Gag, Pol, Nef, and gp140. The groups were then boosted with either the vaccinia virus strain NYVAC or a variant with improved replication competence in human cells, termed NYVAC-KC. The latter was administered either by scarification or intramuscularly. Finally, macaques were boosted with adjuvanted gp120 protein to enhance humoral responses. The regimen elicited very potent CD4+ and CD8+ T cell responses in a well-balanced manner, peaking 2 weeks after the boost. T cells were broadly reactive and polyfunctional. All animals exhibited antigen-specific humoral responses already after the poxvirus boost, which further increased following protein administration. Polyclonal reactivity of IgG antibodies was highest against HIV-1 clade C Env proteins, with considerable cross-reactivity to other clades. Substantial effector functional activities (antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated virus inhibition) were observed in serum obtained after the last protein boost. Notably, major differences between the groups were absent, indicating that the potent priming induced by the DNA vaccine initially framed the immune responses in such a way that the subsequent boosts with NYVAC and protein led only to an increase in the response magnitudes without skewing the quality. This study highlights the importance of selecting the best combination of vector systems in heterologous prime-boost vaccination regimens.IMPORTANCE The evaluation of HIV vaccine efficacy trials indicates that protection would most likely correlate with a polyfunctional immune response involving several effector functions from all arms of the immune system. Heterologous prime-boost regimens have been shown to elicit vigorous T cell and antibody responses in nonhuman primates that, however, qualitatively and quantitatively differ depending on the respective vector systems used. The present study evaluated a DNA prime and poxvirus and protein boost regimen and compared how two poxvirus vectors with various degrees of replication capacity and two different delivery modalities-conventional intramuscular delivery and percutaneous delivery by scarification-impact several immune effectors. It was found that despite the different poxvirus boosts, the overall immune responses in the three groups were similar, suggesting the potent DNA priming as the major determining factor of immune responses. These findings emphasize the importance of selecting optimal priming agents in heterologous prime-boost vaccination settings.


Subject(s)
HIV Antigens/immunology , HIV Infections/immunology , HIV-1/immunology , T-Lymphocytes/immunology , Vaccines, DNA/administration & dosage , Viral Vaccines/immunology , Virus Replication , Animals , Antibodies, Neutralizing/blood , HIV Antibodies/blood , HIV Infections/prevention & control , HIV Infections/virology , Humans , Macaca mulatta , Male , Poxviridae , Vaccination , Vaccines, DNA/immunology , Vaccinia virus/immunology
10.
Bioinformatics ; 35(21): 4528-4530, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31095292

ABSTRACT

SUMMARY: MyelinJ is a free user friendly ImageJ macro for high throughput analysis of fluorescent micrographs such as 2D-myelinating cultures and statistical analysis using R. MyelinJ can analyse single images or complex experiments with multiple conditions, where the ggpubr package in R is automatically used for statistical analysis and the production of publication quality graphs. The main outputs are percentage (%) neurite density and % myelination. % neurite density is calculated using the normalize local contrast algorithm, followed by thresholding, to adjust for differences in intensity. For % myelination the myelin sheaths are selected using the Frangi vesselness algorithm, in conjunction with a grey scale morphology filter and the removal of cell bodies using a high intensity mask. MyelinJ uses a simple graphical user interface and user name system for reproducibility and sharing that will be useful to the wider scientific community that study 2D-myelination in vitro. AVAILABILITY AND IMPLEMENTATION: MyelinJ is freely available at https://github.com/BarnettLab/MyelinJ. For statistical analysis the freely available R and the ggpubr package are also required. MyelinJ has a user guide (Supplementary Material) and has been tested on both Windows (Windows 10) and Mac (High Sierra) operating systems. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Software , Neurites , Reproducibility of Results
11.
Spinal Cord ; 58(8): 844-856, 2020 08.
Article in English | MEDLINE | ID: mdl-32249830

ABSTRACT

INTRODUCTION: Spinal cord injury (SCI) is associated with significant and life-long disability. Yet, despite decades of research, no regenerative treatment has reached clinical practice. Cell-based therapies are one possible regenerative strategy beginning to transfer to human trials from a more extensive pre-clinical basis. METHODS: We therefore conducted a scoping review to synthesise all cell-based trials in SCI to consider the current state of the field and the cell transplant type or strategy with greatest promise. A search strategy of MEDLINE returned 1513 results. All clinical trials including adult human patients with acute or chronic, compete or incomplete SCI and a recorded ASIA score were sought. Exclusion criteria included non-traumatic SCI, paediatric patients and animal studies. A total of 43 studies, treating 1061 patients, were identified. Most trials evaluated cells from the bone marrow (22 papers, 660 patients) or the olfactory bulb (10 papers, 245 patients). RESULTS: Cell transplantation does appear to be safe, with no serious adverse effects being reported in the short-term. 86% of trials described efficacy as a primary outcome. However, varying degrees of outcome reporting prevented meta-analysis. No emerging cell type or technique was identified. The majority of trials, 53%, took place in developing countries, which may suggest more stringent regulatory requirements within Western countries. CONCLUSION: We believe cell-based transplantation translation remains in its infancy and that, although further robust clinical research is required, it is an important strategy to consider in the treatment of SCI.


Subject(s)
Cell Transplantation , Outcome Assessment, Health Care , Spinal Cord Injuries/therapy , Cell Transplantation/adverse effects , Cell Transplantation/statistics & numerical data , Humans , Outcome Assessment, Health Care/statistics & numerical data
12.
J Infect Dis ; 219(11): 1755-1765, 2019 05 05.
Article in English | MEDLINE | ID: mdl-30615119

ABSTRACT

BACKGROUND: The durability and breadth of human immunodeficiency virus type 1 (HIV-1)-specific immune responses elicited through vaccination are important considerations in the development of an effective HIV-1 vaccine. Responses to HIV-1 envelope subunit protein (Env) immunization in humans are often described as short-lived. METHODS: We enrolled 16 healthy volunteers who had received priming with an HIV-1 subtype B Env vaccine given with MF59 adjuvant 5-17 years previously and 20 healthy unprimed volunteers. Three booster immunizations with a heterologous subtype C trimeric gp140 protein vaccine were administered to the primed group, and the same subtype C gp140 protein vaccination regimen was administered to the unprimed subjects. RESULTS: Binding antibodies and neutralizing antibodies to tier 1 viral isolates were detected in the majority of previously primed subjects. Remarkably, a single dose of protein boosted binding and neutralizing antibody titers in 100% of primed subjects following this prolonged immunologic rest period, and CD4+ T-cell responses were boosted in 75% of primed individuals. CONCLUSIONS: These results demonstrate that HIV-1 protein immunogens can elicit durable memory T- and B-cell responses and that strong tier 1 virus neutralizing responses can be elicited by a single booster dose of protein following a long immunologic rest period. However, we found no evidence that cross-clade boosting led to a significantly broadened neutralizing antibody response.


Subject(s)
HIV Antibodies/immunology , HIV Infections/prevention & control , HIV-1/immunology , Adjuvants, Immunologic , Adolescent , Adult , Antibodies, Neutralizing/immunology , HIV Infections/virology , Humans , Immunization, Secondary , Middle Aged , Vaccination , Young Adult
13.
Glia ; 67(4): 668-687, 2019 04.
Article in English | MEDLINE | ID: mdl-30585359

ABSTRACT

The lack of endogenous repair following spinal cord injury (SCI) accounts for the frequent permanent deficits for which effective treatments are absent. Previously, we demonstrated that low sulfated modified heparin mimetics (LS-mHeps) attenuate astrocytosis, suggesting they may represent a novel therapeutic approach. mHeps are glycomolecules with structural similarities to resident heparan sulfates (HS), which modulate cell signaling by both sequestering ligands, and acting as cofactors in the formation of ligand-receptor complexes. To explore whether mHeps can affect the myelination and neurite outgrowth necessary for repair after SCI, we created lesioned or demyelinated neural cell co-cultures and exposed them with a panel of mHeps with varying degrees and positions of their sulfate moieties. LS-mHep7 enhanced neurite outgrowth and myelination, whereas highly sulfated mHeps (HS-mHeps) had attenuating effects. LS-mHeps had no effects on myelination or neurite extension in developing, uninjured myelinating cultures, suggesting they might exert their proregenerating effects by modulating or sequestering inhibitory factors secreted after injury. To investigate this, we examined conditioned media from cultures using chemokine arrays and conducted an unbiased proteomics approach by applying TMT-LC/MS to mHep7 affinity purified conditioned media from these cultures. Multiple protein factors reported to play a role in damage or repair mechanisms were identified, including amyloid betaA4. Amyloid beta peptide (1-42) was validated as an important candidate by treating myelination cultures and shown to inhibit myelination. Thus, we propose that LS-mHeps exert multiple beneficial effects on mechanisms supporting enhanced repair, and represent novel candidates as therapeutics for CNS damage.


Subject(s)
Central Nervous System Diseases/drug therapy , Central Nervous System Diseases/metabolism , Demyelinating Diseases/drug therapy , Heparitin Sulfate/therapeutic use , Recovery of Function/drug effects , Amyloid beta-Peptides/metabolism , Animals , Animals, Newborn , Antimetabolites/pharmacology , Cell Proliferation/drug effects , Cells, Cultured , Culture Media, Conditioned/pharmacology , Cytokines/metabolism , Deoxyuridine/pharmacology , Embryo, Mammalian , Intercellular Signaling Peptides and Proteins/metabolism , Myelin Proteins/metabolism , Myelin-Oligodendrocyte Glycoprotein/metabolism , Neurites/drug effects , Neuroglia/drug effects , Neurons/drug effects , Oligodendroglia/drug effects , Rats , Rats, Sprague-Dawley , Spinal Cord/cytology
14.
J Virol ; 92(1)2018 01 01.
Article in English | MEDLINE | ID: mdl-29021402

ABSTRACT

In the RV144 vaccine trial, IgG responses against the HIV envelope variable loops 1 and 2 (V1V2) were associated with decreased HIV acquisition risk. We previously reported that infants immunized with an MF59-adjuvanted rgp120 vaccine developed higher-magnitude anti-V1V2 IgG responses than adult RV144 vaccinees. To determine whether the robust antibody response in infants is due to differences in vaccine regimens or to inherent differences between the adult and infant immune systems, we compared Env-specific IgG responses in adults and infants immunized with the same MF59- and alum-adjuvanted HIV envelope vaccines. At peak immunogenicity, the magnitudes of the gp120- and V1V2-specific IgG responses were comparable between adults and infants immunized with the alum/MNrgp120 vaccine (gp120 median fluorescence intensities [FIs] in infants = 7,118 and in adults = 11,510, P = 0.070; V1V2 median MFIs of 512 [infants] and 804 [adults], P = 0.50), whereas infants immunized with the MF59/SF-2 rgp120 vaccine had higher-magnitude antibody levels than adults (gp120 median FIs of 15,509 [infants] and 2,290 [adults], P < 0.001; V1V2 median FIs of 23,926 [infants] and 1,538 [adults]; P < 0.001). Six months after peak immunogenicity, infants maintained higher levels Env-specific IgG than adults. Anti-V1V2 IgG3 antibodies that were associated with decreased HIV-1 risk in RV144 vaccinees were present in 43% of MF59/rgp120-vaccinated infants but only in 12% of the vaccinated adults (P = 0.0018). Finally, in contrast to the rare vaccine-elicited Env-specific IgA in infants, rgp120 vaccine-elicited Env-specific IgA was frequently detected in adults. Our results suggest that vaccine adjuvants differently modulate gp120-specific antibody responses in adults and infants and that infants can robustly respond to HIV Env immunization.IMPORTANCE More than 150,000 pediatric HIV infections occur yearly, despite the availability of antiretroviral prophylaxis. A pediatric HIV vaccine could reduce the number of these ongoing infant infections and also prime for long-term immunity prior to sexual debut. We previously reported that immunization of infants with an MF59-adjuvanted recombinant gp120 vaccine induced higher-magnitude, potentially protective anti-V1V2 IgG responses than in adult vaccinees receiving the moderately effective RV144 vaccine. In the present study, we demonstrate that the robust response observed in infants is not due to differences in vaccine regimen or vaccine dose between adults and infants. Our results suggest that HIV vaccine adjuvants may differentially modulate immune responses in adults and infants, highlighting the need to conduct vaccine trials in pediatric populations.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/blood , HIV Envelope Protein gp120/immunology , Immunogenicity, Vaccine , Immunoglobulin G/blood , Squalene/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/administration & dosage , Adjuvants, Immunologic , Adult , Age Factors , HIV Antibodies/immunology , HIV Envelope Protein gp120/administration & dosage , HIV Infections/immunology , HIV Infections/prevention & control , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Infant , Polysorbates/administration & dosage , Squalene/administration & dosage , Vaccination
15.
J Virol ; 91(19)2017 10 01.
Article in English | MEDLINE | ID: mdl-28490585

ABSTRACT

Evaluation of the epitope specificities, locations (systemic or mucosal), and effector functions of antibodies elicited by novel HIV-1 immunogens engineered to improve exposure of specific epitopes is critical for HIV-1 vaccine development. Utilizing an array of humoral assays, we evaluated the magnitudes, epitope specificities, avidities, and functions of systemic and mucosal immune responses elicited by a vaccine regimen containing Env cross-linked to a CD4-mimetic miniprotein (gp140-M64U1) in rhesus macaques. Cross-linking of gp140 Env to M64U1 resulted in earlier increases of both the magnitude and avidity of the IgG binding response than those with Env protein alone. Notably, IgG binding responses at an early time point correlated with antibody-dependent cellular cytotoxicity (ADCC) function at the peak immunity time point, which was higher for the cross-linked Env group than for the Env group. In addition, the cross-linked Env group developed higher IgG responses against a linear epitope in the gp120 C1 region of the HIV-1 envelope glycoprotein. These data demonstrate that structural modification of the HIV-1 envelope immunogen by cross-linking of gp140 with the CD4-mimetic M64U1 elicited an earlier increase of binding antibody responses and altered the specificity of the IgG responses, correlating with the rise of subsequent antibody-mediated antiviral functions.IMPORTANCE The development of an efficacious HIV-1 vaccine remains a global priority to prevent new cases of HIV-1 infection. Of the six HIV-1 efficacy trials to date, only one has demonstrated partial efficacy, and immune correlate analysis of that trial revealed a role for binding antibodies and antibody Fc-mediated effector functions. New HIV-1 envelope immunogens are being engineered to selectively expose the most vulnerable and conserved sites on the HIV-1 envelope, with the goal of eliciting antiviral antibodies. Evaluation of the humoral responses elicited by these novel immunogen designs in nonhuman primates is critical for understanding how to improve upon immunogen design to inform further testing in human clinical trials. Our results demonstrate that structural modifications of Env that aim to mimic the CD4-bound conformation can result in earlier antibody elicitation, altered epitope specificity, and increased antiviral function postimmunization.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , CD4 Antigens/immunology , HIV Antibodies/immunology , HIV-1/immunology , Macaca mulatta/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibody-Dependent Cell Cytotoxicity/immunology , CD4 Antigens/genetics , CD4-Positive T-Lymphocytes/immunology , Epitopes/immunology , HIV Envelope Protein gp120/immunology , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Vaccination , env Gene Products, Human Immunodeficiency Virus/genetics
16.
J Virol ; 91(19)2017 10 01.
Article in English | MEDLINE | ID: mdl-28701402

ABSTRACT

Strategies are needed to improve the immunogenicity of HIV-1 envelope (Env) antigens (Ag) for more long-lived, efficacious HIV-1 vaccine-induced B-cell responses. HIV-1 Env gp140 (native or uncleaved molecules) or gp120 monomeric proteins elicit relatively poor B-cell responses which are short-lived. We hypothesized that Env engagement of the CD4 receptor on T-helper cells results in anergic effects on T-cell recruitment and consequently a lack of strong, robust, and durable B-memory responses. To test this hypothesis, we occluded the CD4 binding site (CD4bs) of gp140 by stable cross-linking with a 3-kDa CD4 miniprotein mimetic, serving to block ligation of gp140 on CD4+ T cells while preserving CD4-inducible (CDi) neutralizing epitopes targeted by antibody-dependent cellular cytotoxicity (ADCC) effector responses. Importantly, immunization of rhesus macaques consistently gave superior B-cell (P < 0.001) response kinetics and superior ADCC (P < 0.014) in a group receiving the CD4bs-occluded vaccine compared to those of animals immunized with gp140. Of the cytokines examined, Ag-specific interleukin-4 (IL-4) T-helper enzyme-linked immunosorbent spot (ELISpot) assays of the CD4bs-occluded group increased earlier (P = 0.025) during the inductive phase. Importantly, CD4bs-occluded gp140 antigen induced superior B-cell and ADCC responses, and the elevated B-cell responses proved to be remarkably durable, lasting more than 60 weeks postimmunization.IMPORTANCE Attempts to develop HIV vaccines capable of inducing potent and durable B-cell responses have been unsuccessful until now. Antigen-specific B-cell development and affinity maturation occurs in germinal centers in lymphoid follicles through a critical interaction between B cells and T follicular helper cells. The HIV envelope binds the CD4 receptor on T cells as soluble shed antigen or as antigen-antibody complexes, causing impairment in the activation of these specialized CD4-positive T cells. We proposed that CD4-binding impairment is partly responsible for the relatively poor B-cell responses to HIV envelope-based vaccines. To test this hypothesis, we blocked the CD4 binding site of the envelope antigen and compared it to currently used unblocked envelope protein. We found superior and durable B-cell responses in macaques vaccinated with an occluded CD4 binding site on the HIV envelope antigen, demonstrating a potentially important new direction in future design of new HIV vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , CD4 Antigens/immunology , HIV Antibodies/immunology , Macaca mulatta/immunology , T-Lymphocytes, Helper-Inducer/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Animals , Antibody-Dependent Cell Cytotoxicity/immunology , Binding Sites, Antibody/immunology , HIV-1/immunology , Macaca mulatta/virology , Vaccination
17.
J Virol ; 91(9)2017 05 01.
Article in English | MEDLINE | ID: mdl-28179536

ABSTRACT

The nonreplicating attenuated poxvirus vector NYVAC expressing clade C(CN54) HIV-1 Env(gp120) and Gag-Pol-Nef antigens (NYVAC-C) showed limited immunogenicity in phase I clinical trials. To enhance the capacity of the NYVAC vector to trigger broad humoral responses and a more balanced activation of CD4+ and CD8+ T cells, here we compared the HIV-1-specific immunogenicity elicited in nonhuman primates immunized with two replicating NYVAC vectors that have been modified by the insertion of the K1L and C7L vaccinia virus host range genes and express the clade C(ZM96) trimeric HIV-1 gp140 protein or a Gag(ZM96)-Pol-Nef(CN54) polyprotein as Gag-derived virus-like particles (termed NYVAC-C-KC). Additionally, one NYVAC-C-KC vector was generated by deleting the viral gene B19R, an inhibitor of the type I interferon response (NYVAC-C-KC-ΔB19R). An immunization protocol mimicking that of the RV144 phase III clinical trial was used. Two groups of macaques received two doses of the corresponding NYVAC-C-KC vectors (weeks 0 and 4) and booster doses with NYVAC-C-KC vectors plus the clade C HIV-1 gp120 protein (weeks 12 and 24). The two replicating NYVAC-C-KC vectors induced enhanced and similar HIV-1-specific CD4+ and CD8+ T cell responses, similar levels of binding IgG antibodies, low levels of IgA antibodies, and high levels of antibody-dependent cellular cytotoxicity responses and HIV-1-neutralizing antibodies. Small differences within the NYVAC-C-KC-ΔB19R group were seen in the magnitude of CD4+ and CD8+ T cells, the induction of some cytokines, and the neutralization of some HIV-1 isolates. Thus, replication-competent NYVAC-C-KC vectors acquired relevant immunological properties as vaccine candidates against HIV/AIDS, and the viral B19 molecule exerts some control of immune functions.IMPORTANCE It is of special importance to find a safe and effective HIV/AIDS vaccine that can induce strong and broad T cell and humoral immune responses correlating with HIV-1 protection. Here we developed novel replicating poxvirus NYVAC-based HIV/AIDS vaccine candidates expressing clade C HIV-1 antigens, with one of them lacking the vaccinia virus B19 protein, an inhibitor of the type I interferon response. Immunization of nonhuman primates with these novel NYVAC-C-KC vectors and the protein component gp120 elicited high levels of T cell and humoral immune responses, with the vector containing a deletion in B19R inducing a trend toward a higher magnitude of CD4+ and CD8+ T cell responses and neutralization of some HIV-1 strains. These poxvirus vectors could be considered HIV/AIDS vaccine candidates based on their activation of potential immune correlates of protection.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , HIV Antibodies/blood , HIV Envelope Protein gp120/immunology , Vaccines, Virus-Like Particle/immunology , env Gene Products, Human Immunodeficiency Virus/metabolism , AIDS Vaccines/genetics , Animals , Antibodies, Neutralizing/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , HIV Antibodies/immunology , HIV Antigens/immunology , HIV Infections/prevention & control , Interferon Type I/genetics , Macaca mulatta , Male , Receptors, Interferon/genetics , Receptors, Interferon/immunology , Vaccination , Vaccinia virus/genetics , env Gene Products, Human Immunodeficiency Virus/genetics
18.
Transfusion ; 58(5): 1228-1233, 2018 05.
Article in English | MEDLINE | ID: mdl-29498053

ABSTRACT

BACKGROUND: Four similar transfusion reactions involving infants were reported in less than 1 year. After transfusion of red blood cells (RBCs) via syringe in the operating room, each patient experienced discolored urine, laboratory evidence of hemolysis, and acute kidney injury. Clerical and serologic investigations were unremarkable. Mechanical hemolysis was considered. STUDY DESIGN AND METHODS: Simulated syringe transfusions were performed. Measurements included hematocrit (Hct), free hemoglobin, and visual hemolysis index. Washed and unwashed RBCs were tested with or without a recently introduced one-way valve, using a 24- or 16-gauge intravenous catheter. Constant manual pressure (1.43 ± 0.49 mL/sec) or syringe pump (2 mL/min) was used and a subset was timed. RESULTS: The valve increased hemolysis during manual transfusion using both catheters with washed and unwashed RBCs. With the 24-gauge catheter, the change in Hct was -3.53 ± 0.69% with the valve and 0.22 ± 0.13% without (p < 0.00001). Comparing the individual valves tested, differences in hemolysis were observed (change in Hct, p < 0.0001). During manual transfusion with 24-gauge catheter and unwashed RBCs, the degree of hemolysis was greater when it took longer to transfuse with a valve (change in Hct versus time, r = -0.75, p < 0.0001) compared to a slight increase in hemolysis for samples that took less time to transfuse without a valve (change in Hct versus time, r = 0.58, p = 0.23). CONCLUSIONS: Mechanical hemolysis should be considered when investigating possible hemolytic transfusion reactions, especially with high rates of transfusion and use of a valve. During rapid manual transfusion with the valve, greater resistance was associated with increased hemolysis.


Subject(s)
Erythrocyte Transfusion/adverse effects , Hemolysis , Models, Biological , Transfusion Reaction , Cells, Cultured , Erythrocyte Transfusion/methods , Humans , Infant , Syringes , Time Factors
19.
Proc Natl Acad Sci U S A ; 112(6): 1767-72, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25624487

ABSTRACT

Human cytomegalovirus (HCMV) is a major cause of morbidity and mortality in transplant patients and the leading viral cause of birth defects after congenital infection. The glycoprotein complexes gH/gL/gO and gH/gL/UL128/UL130/UL131A (Pentamer) are key targets of the human humoral response against HCMV and are required for HCMV entry into fibroblasts and endothelial/epithelial cells, respectively. We expressed and characterized soluble forms of gH/gL, gH/gL/gO, and Pentamer. Mass spectrometry and mutagenesis analysis revealed that gL-Cys144 forms disulfide bonds with gO-Cys351 in gH/gL/gO and with UL128-Cys162 in the Pentamer. Notably, Pentamer harboring the UL128-Cys162Ser/gL-Cys144Ser mutations had impaired syncytia formation and reduced interference of HCMV entry into epithelial cells. Electron microscopy analysis showed that HCMV gH/gL resembles HSV gH/gL and that gO and UL128/UL130/UL131A bind to the same site at the gH/gL N terminus. These data are consistent with gH/gL/gO and Pentamer forming mutually exclusive cell entry complexes and reveal the overall location of gH/gL-, gH/gL/gO-, and Pentamer-specific neutralizing antibody binding sites. Our results provide, to our knowledge, the first structural view of gH/gL/gO and Pentamer supporting the development of vaccines and antibody therapeutics against HCMV.


Subject(s)
Cytomegalovirus/immunology , Cytomegalovirus/physiology , Membrane Glycoproteins/metabolism , Multiprotein Complexes/metabolism , Viral Envelope Proteins/metabolism , Virus Internalization , Antibodies, Neutralizing/immunology , Binding Sites/genetics , Blotting, Western , Chromatography, Affinity , Conserved Sequence/genetics , Cytomegalovirus/metabolism , Disulfides/metabolism , Flow Cytometry , Humans , Image Processing, Computer-Assisted , Mass Spectrometry , Membrane Glycoproteins/chemistry , Microscopy, Electron , Multiprotein Complexes/chemistry , Mutagenesis , Mutagenesis, Site-Directed , Mutation/genetics , Protein Binding , Viral Envelope Proteins/chemistry
20.
Glia ; 65(4): 639-656, 2017 04.
Article in English | MEDLINE | ID: mdl-28144983

ABSTRACT

Autologous cell transplantation is a promising strategy for repair of the injured spinal cord. Here we have studied the repair potential of mesenchymal stromal cells isolated from the human olfactory mucosa after transplantation into a rodent model of incomplete spinal cord injury. Investigation of peripheral type remyelination at the injury site using immunocytochemistry for P0, showed a more extensive distribution in transplanted compared with control animals. In addition to the typical distribution in the dorsal columns (common to all animals), in transplanted animals only, P0 immunolabelling was consistently detected in white matter lateral and ventral to the injury site. Transplanted animals also showed reduced cavitation. Several functional outcome measures including end-point electrophysiological testing of dorsal column conduction and weekly behavioural testing of BBB, weight bearing and pain, showed no difference between transplanted and control animals. However, gait analysis revealed an earlier recovery of co-ordination between forelimb and hindlimb stepping in transplanted animals. This improvement in gait may be associated with the enhanced myelination in ventral and lateral white matter, where fibre tracts important for locomotion reside. Autologous transplantation of mesenchymal stromal cells from the olfactory mucosa may therefore be therapeutically beneficial in the treatment of spinal cord injury. GLIA 2017 GLIA 2017;65:639-656.


Subject(s)
Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/surgery , Mesenchymal Stem Cell Transplantation/methods , Olfactory Mucosa/cytology , Remyelination/physiology , Spinal Cord Injuries/complications , Animals , Cell Adhesion Molecules, Neuronal/metabolism , Disease Models, Animal , Electroencephalography , Evoked Potentials, Somatosensory/physiology , Exploratory Behavior/physiology , Humans , Locomotion/physiology , Male , Myelin P0 Protein/metabolism , Nerve Tissue Proteins/metabolism , Pain Measurement , Rats , Rats, Sprague-Dawley , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL