Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(39): e2402924121, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39298482

ABSTRACT

Genomic studies of endangered species have primarily focused on describing diversity patterns and resolving phylogenetic relationships, with the overarching goal of informing conservation efforts. However, few studies have investigated genomic diversity housed in captive populations. For tigers (Panthera tigris), captive individuals vastly outnumber those in the wild, but their diversity remains largely unexplored. Privately owned captive tiger populations have remained an enigma in the conservation community, with some believing that these individuals are severely inbred, while others believe they may be a source of now-extinct diversity. Here, we present a large-scale genetic study of the private (non-zoo) captive tiger population in the United States, also known as "Generic" tigers. We find that the Generic tiger population has an admixture fingerprint comprising all six extant wild tiger subspecies. Of the 138 Generic individuals sequenced for the purpose of this study, no individual had ancestry from only one subspecies. We show that the Generic tiger population has a comparable amount of genetic diversity relative to most wild subspecies, few private variants, and fewer deleterious mutations. We observe inbreeding coefficients similar to wild populations, although there are some individuals within both the Generic and wild populations that are substantially inbred. Additionally, we develop a reference panel for tigers that can be used with imputation to accurately distinguish individuals and assign ancestry with ultralow coverage (0.25×) data. By providing a cost-effective alternative to whole-genome sequencing (WGS), the reference panel provides a resource to assist in tiger conservation efforts for both ex- and in situ populations.


Subject(s)
Endangered Species , Genetic Variation , Tigers , Tigers/genetics , Tigers/classification , Animals , United States , Phylogeny , Conservation of Natural Resources , Genomics/methods , Genome/genetics , Animals, Zoo/genetics
2.
Genet Med ; 26(9): 101198, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38943479

ABSTRACT

PURPOSE: We compared the rate of errors in genome sequencing (GS) result disclosures by genetic counselors (GC) and trained non-genetics healthcare professionals (NGHPs) in SouthSeq, a randomized trial utilizing GS in critically ill infants. METHODS: Over 400 recorded GS result disclosures were analyzed for major and minor errors. We used Fisher's exact test to compare error rates between GCs and NGHPs and performed a qualitative content analysis to characterize error themes. RESULTS: Major errors were identified in 7.5% of disclosures by NGHPs and in no disclosures by GCs. Minor errors were identified in 32.1% of disclosures by NGHPs and in 11.4% of disclosures by GCs. Although most disclosures lacked errors, NGHPs were significantly more likely to make any error than GCs for all result types (positive, negative, or uncertain). Common major error themes include omission of critical information, overstating a negative result, and overinterpreting an uncertain result. The most common minor error was failing to disclose negative secondary findings. CONCLUSION: Trained NGHPs made clinically significant errors in GS result disclosures. Characterizing common errors in result disclosure can illuminate gaps in education to inform the development of future genomics training and alternative service delivery models.


Subject(s)
Genetic Counseling , Health Personnel , Humans , Female , Infant, Newborn , Male , Disclosure , Whole Genome Sequencing/ethics , Neonatology/ethics , Genetic Testing/methods
3.
PLoS Genet ; 17(1): e1009195, 2021 01.
Article in English | MEDLINE | ID: mdl-33411788

ABSTRACT

Dravet syndrome (DS) is a developmental and epileptic encephalopathy that results from mutations in the Nav1.1 sodium channel encoded by SCN1A. Most known DS-causing mutations are in coding regions of SCN1A, but we recently identified several disease-associated SCN1A mutations in intron 20 that are within or near to a cryptic and evolutionarily conserved "poison" exon, 20N, whose inclusion is predicted to lead to transcript degradation. However, it is not clear how these intron 20 variants alter SCN1A expression or DS pathophysiology in an organismal context, nor is it clear how exon 20N is regulated in a tissue-specific and developmental context. We address those questions here by generating an animal model of our index case, NM_006920.4(SCN1A):c.3969+2451G>C, using gene editing to create the orthologous mutation in laboratory mice. Scn1a heterozygous knock-in (+/KI) mice exhibited an ~50% reduction in brain Scn1a mRNA and Nav1.1 protein levels, together with characteristics observed in other DS mouse models, including premature mortality, seizures, and hyperactivity. In brain tissue from adult Scn1a +/+ animals, quantitative RT-PCR assays indicated that ~1% of Scn1a mRNA included exon 20N, while brain tissue from Scn1a +/KI mice exhibited an ~5-fold increase in the extent of exon 20N inclusion. We investigated the extent of exon 20N inclusion in brain during normal fetal development in RNA-seq data and discovered that levels of inclusion were ~70% at E14.5, declining progressively to ~10% postnatally. A similar pattern exists for the homologous sodium channel Nav1.6, encoded by Scn8a. For both genes, there is an inverse relationship between the level of functional transcript and the extent of poison exon inclusion. Taken together, our findings suggest that poison exon usage by Scn1a and Scn8a is a strategy to regulate channel expression during normal brain development, and that mutations recapitulating a fetal-like pattern of splicing cause reduced channel expression and epileptic encephalopathy.


Subject(s)
Epilepsies, Myoclonic/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , NAV1.6 Voltage-Gated Sodium Channel/genetics , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Epilepsies, Myoclonic/pathology , Exons/genetics , Gene Expression Regulation/genetics , Gene Knock-In Techniques , Humans , Introns/genetics , Mice , Mutation/genetics , Organ Specificity/genetics , RNA-Seq
4.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34518374

ABSTRACT

Most endangered species exist today in small populations, many of which are isolated. Evolution in such populations is largely governed by genetic drift. Empirical evidence for drift affecting striking phenotypes based on substantial genetic data are rare. Approximately 37% of tigers (Panthera tigris) in the Similipal Tiger Reserve (in eastern India) are pseudomelanistic, characterized by wide, merged stripes. Camera trap data across the tiger range revealed the presence of pseudomelanistic tigers only in Similipal. We investigated the genetic basis for pseudomelanism and examined the role of drift in driving this phenotype's frequency. Whole-genome data and pedigree-based association analyses from captive tigers revealed that pseudomelanism cosegregates with a conserved and functionally important coding alteration in Transmembrane Aminopeptidase Q (Taqpep), a gene responsible for similar traits in other felid species. Noninvasive sampling of tigers revealed a high frequency of the Taqpep p.H454Y mutation in Similipal (12 individuals, allele frequency = 0.58) and absence from all other tiger populations (395 individuals). Population genetic analyses confirmed few (minimal number) tigers in Similipal, and its genetic isolation, with poor geneflow. Pairwise FST (0.33) at the mutation site was high but not an outlier. Similipal tigers had low diversity at 81 single nucleotide polymorphisms (mean heterozygosity = 0.28, SD = 0.27). Simulations were consistent with founding events and drift as possible drivers for the observed stark difference of allele frequency. Our results highlight the role of stochastic processes in the evolution of rare phenotypes. We highlight an unusual evolutionary trajectory in a small and isolated population of an endangered species.


Subject(s)
Biological Evolution , Genetic Drift , Genetic Variation , Genetics, Population , Melanosis/genetics , Phenotype , Tigers/physiology , Amino Acid Sequence , Animals , Conservation of Natural Resources , Endangered Species , Genome , Genotype , India , Microsatellite Repeats , Sequence Homology , Tigers/genetics
5.
Clin Genet ; 104(4): 434-442, 2023 10.
Article in English | MEDLINE | ID: mdl-37340305

ABSTRACT

As the uptake of population screening expands, assessment of medical and psychosocial outcomes is needed. Through the Alabama Genomic Health Initiative (AGHI), a state-funded genomic research program, individuals received screening for pathogenic or likely pathogenic variants in 59 actionable genes via genotyping. Of the 3874 eligible participants that received screening results, 858 (22%) responded to an outcomes survey. The most commonly reported motivation for seeking testing through AGHI was contribution to genetic research (64%). Participants with positive results reported a higher median number of planned actions (median = 5) due to AGHI results as compared to negative results (median = 3). Interviews were conducted with survey participants with positive screening results. As determined by certified genetic counselors, 50% of interviewees took appropriate medical action based on their result. There were no negative or harmful actions taken. These findings indicate population genomic screening of an unselected adult population is feasible, is not harmful, and may have positive outcomes on participants now and in the future; however, further research is needed in order to assess clinical utility.


Subject(s)
Genomics , Metagenomics , Adult , Humans , Genetic Testing
6.
PLoS Genet ; 16(12): e1008671, 2020 12.
Article in English | MEDLINE | ID: mdl-33290415

ABSTRACT

Cerebral cortical size and organization are critical features of neurodevelopment and human evolution, for which genetic investigation in model organisms can provide insight into developmental mechanisms and the causes of cerebral malformations. However, some abnormalities in cerebral cortical proliferation and folding are challenging to study in laboratory mice due to the absence of gyri and sulci in rodents. We report an autosomal recessive allele in domestic cats associated with impaired cerebral cortical expansion and folding, giving rise to a smooth, lissencephalic brain, and that appears to be caused by homozygosity for a frameshift in PEA15 (phosphoprotein expressed in astrocytes-15). Notably, previous studies of a Pea15 targeted mutation in mice did not reveal structural brain abnormalities. Affected cats, however, present with a non-progressive hypermetric gait and tremors, develop dissociative behavioral defects and aggression with age, and exhibit profound malformation of the cerebrum, with a 45% average decrease in overall brain weight, and reduction or absence of the ectosylvian, sylvian and anterior cingulate gyrus. Histologically, the cerebral cortical layers are disorganized, there is substantial loss of white matter in tracts such as the corona radiata and internal capsule, but the cerebellum is relatively spared. RNA-seq and immunohistochemical analysis reveal astrocytosis. Fibroblasts cultured from affected cats exhibit increased TNFα-mediated apoptosis, and increased FGFb-induced proliferation, consistent with previous studies implicating PEA15 as an intracellular adapter protein, and suggesting an underlying pathophysiology in which increased death of neurons accompanied by increased proliferation of astrocytes gives rise to abnormal organization of neuronal layers and loss of white matter. Taken together, our work points to a new role for PEA15 in development of a complex cerebral cortex that is only apparent in gyrencephalic species.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Brain Diseases/veterinary , Cat Diseases/genetics , Cerebral Cortex/metabolism , Loss of Function Mutation , Phosphoproteins/genetics , Animals , Apoptosis Regulatory Proteins/metabolism , Astrocytes/cytology , Astrocytes/metabolism , Brain Diseases/genetics , Brain Diseases/pathology , Cat Diseases/pathology , Cats , Cerebral Cortex/cytology , Cerebral Cortex/growth & development , Neurogenesis , Phosphoproteins/metabolism
7.
Genet Med ; 24(4): 851-861, 2022 04.
Article in English | MEDLINE | ID: mdl-34930662

ABSTRACT

PURPOSE: SouthSeq is a translational research study that undertook genome sequencing (GS) for infants with symptoms suggestive of a genetic disorder. Recruitment targeted racial/ethnic minorities and rural, medically underserved areas in the Southeastern United States, which are historically underrepresented in genomic medicine research. METHODS: GS and analysis were performed for 367 infants to detect disease-causal variation concurrent with standard of care evaluation and testing. RESULTS: Definitive diagnostic (DD) or likely diagnostic (LD) genetic findings were identified in 30% of infants, and 14% of infants harbored an uncertain result. Only 43% of DD/LD findings were identified via concurrent clinical genetic testing, suggesting that GS testing is better for obtaining early genetic diagnosis. We also identified phenotypes that correlate with the likelihood of receiving a DD/LD finding, such as craniofacial, ophthalmologic, auditory, skin, and hair abnormalities. We did not observe any differences in diagnostic rates between racial/ethnic groups. CONCLUSION: We describe one of the largest-to-date GS cohorts of ill infants, enriched for African American and rural patients. Our results show the utility of GS because it provides early-in-life detection of clinically relevant genetic variations not detected by current clinical genetic testing, particularly for infants exhibiting certain phenotypic features.


Subject(s)
Diagnostic Tests, Routine , Genetic Testing , Base Sequence , Chromosome Mapping , Genetic Testing/methods , Genomics , Humans
8.
Nature ; 539(7630): 518-523, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27806375

ABSTRACT

Mammalian colour patterns are among the most recognizable characteristics found in nature and can have a profound impact on fitness. However, little is known about the mechanisms underlying the formation and subsequent evolution of these patterns. Here we show that, in the African striped mouse (Rhabdomys pumilio), periodic dorsal stripes result from underlying differences in melanocyte maturation, which give rise to spatial variation in hair colour. We identify the transcription factor ALX3 as a regulator of this process. In embryonic dorsal skin, patterned expression of Alx3 precedes pigment stripes and acts to directly repress Mitf, a master regulator of melanocyte differentiation, thereby giving rise to light-coloured hair. Moreover, Alx3 is upregulated in the light stripes of chipmunks, which have independently evolved a similar dorsal pattern. Our results show a previously undescribed mechanism for modulating spatial variation in hair colour and provide insights into how phenotypic novelty evolves.


Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Hair Color , Murinae/embryology , Murinae/genetics , Animals , Biological Evolution , Body Patterning/genetics , Cell Differentiation , Hair Color/genetics , Homeodomain Proteins/metabolism , Melanins/biosynthesis , Melanocytes/cytology , Melanocytes/metabolism , Mice , Microphthalmia-Associated Transcription Factor/antagonists & inhibitors , Microphthalmia-Associated Transcription Factor/metabolism , Murinae/physiology , Phenotype , Promoter Regions, Genetic/genetics , Sciuridae/genetics , Skin/embryology
9.
Am J Hum Genet ; 103(6): 1022-1029, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30526861

ABSTRACT

Developmental and epileptic encephalopathies (DEEs) are a group of severe epilepsies characterized by refractory seizures and developmental impairment. Sequencing approaches have identified causal genetic variants in only about 50% of individuals with DEEs.1-3 This suggests that unknown genetic etiologies exist, potentially in the ∼98% of human genomes not covered by exome sequencing (ES). Here we describe seven likely pathogenic variants in regions outside of the annotated coding exons of the most frequently implicated epilepsy gene, SCN1A, encoding the alpha-1 sodium channel subunit. We provide evidence that five of these variants promote inclusion of a "poison" exon that leads to reduced amounts of full-length SCN1A protein. This mechanism is likely to be broadly relevant to human disease; transcriptome studies have revealed hundreds of poison exons,4,5 including some present within genes encoding other sodium channels and in genes involved in neurodevelopment more broadly.6 Future research on the mechanisms that govern neuronal-specific splicing behavior might allow researchers to co-opt this system for RNA therapeutics.


Subject(s)
Epilepsies, Myoclonic/genetics , Epilepsy/genetics , Exons/genetics , Genetic Variation/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Adult , Child , Female , Humans , Male , Middle Aged , Neurodevelopmental Disorders/genetics , Sodium Channels/genetics , Transcriptome/genetics
10.
Genet Med ; 23(2): 280-288, 2021 02.
Article in English | MEDLINE | ID: mdl-32989269

ABSTRACT

PURPOSE: To evaluate the effectiveness and specificity of population-based genomic screening in Alabama. METHODS: The Alabama Genomic Health Initiative (AGHI) has enrolled and evaluated 5369 participants for the presence of pathogenic/likely pathogenic (P/LP) variants using the Illumina Global Screening Array (GSA), with validation of all P/LP variants via Sanger sequencing in a CLIA-certified laboratory before return of results. RESULTS: Among 131 variants identified by the GSA that were evaluated by Sanger sequencing, 67 (51%) were false positives (FP). For 39 of the 67 FP variants, a benign/likely benign variant was present at or near the targeted P/LP variant. Variants detected within African American individuals were significantly enriched for FPs, likely due to a higher rate of nontargeted alternative alleles close to array-targeted P/LP variants. CONCLUSION: In AGHI, we have implemented an array-based process to screen for highly penetrant genetic variants in actionable disease genes. We demonstrate the need for clinical validation of array-identified variants in direct-to-consumer or population testing, especially for diverse populations.


Subject(s)
Genetic Testing , Genomics , Alabama , Genetic Variation , High-Throughput Nucleotide Sequencing , Humans
11.
Genet Med ; 23(4): 777-781, 2021 04.
Article in English | MEDLINE | ID: mdl-33244164

ABSTRACT

PURPOSE: The Alabama Genomic Health Initiative (AGHI) is a state-funded effort to provide genomic testing. AGHI engages two distinct cohorts across the state of Alabama. One cohort includes children and adults with undiagnosed rare disease; a second includes an unselected adult population. Here we describe findings from the first 176 rare disease and 5369 population cohort AGHI participants. METHODS: AGHI participants enroll in one of two arms of a research protocol that provides access to genomic testing results and biobank participation. Rare disease cohort participants receive genome sequencing to identify primary and secondary findings. Population cohort participants receive genotyping to identify pathogenic and likely pathogenic variants for actionable conditions. RESULTS: Within the rare disease cohort, genome sequencing identified likely pathogenic or pathogenic variation in 20% of affected individuals. Within the population cohort, 1.5% of individuals received a positive genotyping result. The rate of genotyping results corroborated by reported personal or family history varied by gene. CONCLUSIONS: AGHI demonstrates the ability to provide useful health information in two contexts: rare undiagnosed disease and population screening. This utility should motivate continued exploration of ways in which emerging genomic technologies might benefit broad populations.


Subject(s)
Genomics , Rare Diseases , Adult , Alabama , Child , Chromosome Mapping , Cohort Studies , Humans , Rare Diseases/diagnosis , Rare Diseases/genetics
12.
Mol Ecol ; 30(2): 379-390, 2021 01.
Article in English | MEDLINE | ID: mdl-33174253

ABSTRACT

One of the most iconic wild equids, the plains zebra occupies a broad region of sub-Saharan Africa and exhibits a wide range of phenotypic diversity in stripe patterns that have been used to classify multiple subspecies. After decades of relative stability, albeit with a loss of at least one recognized subspecies, the total population of plains zebras has undergone an approximate 25% decline since 2002. Individuals with abnormal stripe patterns have been recognized in recent years but the extent to which their appearance is related to demography and/or genetics is unclear. Investigating population genetic health and genetic structure are essential for developing effective strategies for plains zebra conservation. We collected DNA from 140 plains zebra, including seven with abnormal stripe patterns, from nine locations across the range of plains zebra, and analyzed data from restriction site-associated and whole genome sequencing (RAD-seq, WGS) libraries to better understand the relationships between population structure, genetic diversity, inbreeding, and abnormal phenotypes. We found that genetic structure did not coincide with described subspecific variation, but did distinguish geographic regions in which anthropogenic habitat fragmentation is associated with reduced gene flow and increased evidence of inbreeding, especially in certain parts of East Africa. Further, zebras with abnormal striping exhibited increased levels of inbreeding relative to normally striped individuals from the same populations. Our results point to a genetic cause of stripe pattern abnormalities, and dramatic evidence of the consequences of habitat fragmentation.


Subject(s)
Equidae , Inbreeding , Africa, Eastern , Animals , Base Sequence , Equidae/genetics , Genetic Variation
14.
PLoS Genet ; 14(11): e1007671, 2018 11.
Article in English | MEDLINE | ID: mdl-30500825

ABSTRACT

Mutations that alter signaling of RAS/MAPK-family proteins give rise to a group of Mendelian diseases known as RASopathies. However, among RASopathies, the matrix of genotype-phenotype relationships is still incomplete, in part because there are many RAS-related proteins and in part because the phenotypic consequences may be variable and/or pleiotropic. Here, we describe a cohort of ten cases, drawn from six clinical sites and over 16,000 sequenced probands, with de novo protein-altering variation in RALA, a RAS-like small GTPase. All probands present with speech and motor delays, and most have intellectual disability, low weight, short stature, and facial dysmorphism. The observed rate of de novo RALA variants in affected probands is significantly higher (p = 4.93 x 10(-11)) than expected from the estimated random mutation rate. Further, all de novo variants described here affect residues within the GTP/GDP-binding region of RALA; in fact, six alleles arose at only two codons, Val25 and Lys128. The affected residues are highly conserved across both RAL- and RAS-family genes, are devoid of variation in large human population datasets, and several are homologous to positions at which disease-associated variants have been observed in other GTPase genes. We directly assayed GTP hydrolysis and RALA effector-protein binding of the observed variants, and found that all but one tested variant significantly reduced both activities compared to wild-type. The one exception, S157A, reduced GTP hydrolysis but significantly increased RALA-effector binding, an observation similar to that seen for oncogenic RAS variants. These results show the power of data sharing for the interpretation and analysis of rare variation, expand the spectrum of molecular causes of developmental disability to include RALA, and provide additional insight into the pathogenesis of human disease caused by mutations in small GTPases.


Subject(s)
Developmental Disabilities/genetics , Intellectual Disability/genetics , Mitochondrial Proteins/genetics , Mutation , Protein Interaction Domains and Motifs/genetics , ral GTP-Binding Proteins/genetics , ras Proteins/genetics , Facies , Genotype , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Humans , Mitochondrial Proteins/chemistry , Models, Molecular , Mutation, Missense , Phenotype , Protein Conformation , ral GTP-Binding Proteins/chemistry , ras Proteins/chemistry
15.
BMC Biol ; 18(1): 3, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31915011

ABSTRACT

BACKGROUND: The lion (Panthera leo) is one of the most popular and iconic feline species on the planet, yet in spite of its popularity, the last century has seen massive declines for lion populations worldwide. Genomic resources for endangered species represent an important way forward for the field of conservation, enabling high-resolution studies of demography, disease, and population dynamics. Here, we present a chromosome-level assembly from a captive African lion from the Exotic Feline Rescue Center (Center Point, IN) as a resource for current and subsequent genetic work of the sole social species of the Panthera clade. RESULTS: Our assembly is composed of 10x Genomics Chromium data, Dovetail Hi-C, and Oxford Nanopore long-read data. Synteny is highly conserved between the lion, other Panthera genomes, and the domestic cat. We find variability in the length of runs of homozygosity across lion genomes, indicating contrasting histories of recent and possibly intense inbreeding and bottleneck events. Demographic analyses reveal similar ancient histories across all individuals during the Pleistocene except the Asiatic lion, which shows a more rapid decline in population size. We show a substantial influence on the reference genome choice in the inference of demographic history and heterozygosity. CONCLUSIONS: We demonstrate that the choice of reference genome is important when comparing heterozygosity estimates across species and those inferred from different references should not be compared to each other. In addition, estimates of heterozygosity or the amount or length of runs of homozygosity should not be taken as reflective of a species, as these can differ substantially among individuals. This high-quality genome will greatly aid in the continuing research and conservation efforts for the lion, which is rapidly moving towards becoming a species in danger of extinction.


Subject(s)
Genome , Lions/genetics , Animals , Female , Lions/classification , Synteny
17.
Exp Dermatol ; 28(4): 509-513, 2019 04.
Article in English | MEDLINE | ID: mdl-30506729

ABSTRACT

Mammalian periodic pigment patterns, such as spots and stripes, have long interested mathematicians and biologists because they arise from non-random developmental processes that are programmed to be spatially constrained, and can therefore be used as a model to understand how organized morphological structures develop. Despite such interest, the developmental and molecular processes underlying their formation remain poorly understood. Here, we argue that Arvicanthines, a clade of African rodents that naturally evolved a remarkable array of coat patterns, represent a tractable model system in which to dissect the mechanistic basis of pigment pattern formation. Indeed, we review recent insights into the process of stripe formation that were obtained using an Arvicanthine species, the African striped mouse (Rhabdomys pumilio), and discuss how these rodents can be used to probe deeply into our understanding of the factors that specify and implement positional information in the skin. By combining naturally evolved pigment pattern variation in rodents with classic and novel experimental approaches, we can substantially advance our understanding of the processes by which spatial patterns of cell differentiation are established during embryogenesis, a fundamental question in developmental biology.


Subject(s)
Biological Evolution , Rodentia/embryology , Skin Pigmentation , Animals
18.
Genet Med ; 20(12): 1635-1643, 2018 12.
Article in English | MEDLINE | ID: mdl-29790872

ABSTRACT

PURPOSE: Clinically relevant secondary variants were identified in parents enrolled with a child with developmental delay and intellectual disability. METHODS: Exome/genome sequencing and analysis of 789 "unaffected" parents was performed. RESULTS: Pathogenic/likely pathogenic variants were identified in 21 genes within 25 individuals (3.2%), with 11 (1.4%) participants harboring variation in a gene defined as clinically actionable by the American College of Medical Genetics and Genomics. These 25 individuals self-reported either relevant clinical diagnoses (5); relevant family history or symptoms (13); or no relevant family history, symptoms, or clinical diagnoses (7). A limited carrier screen was performed yielding 15 variants in 48 (6.1%) parents. Parents were also analyzed as mate pairs (n = 365) to identify cases in which both parents were carriers for the same recessive disease, yielding three such cases (0.8%), two of which had children with the relevant recessive disease. Four participants had two findings (one carrier and one noncarrier variant). In total, 71 of the 789 enrolled parents (9.0%) received secondary findings. CONCLUSION: We provide an overview of the rates and types of clinically relevant secondary findings, which may be useful in the design and implementation of research and clinical sequencing efforts to identify such findings.


Subject(s)
Exome Sequencing , Exome/genetics , Genetic Diseases, Inborn/genetics , Genetic Testing , Adult , Chromosome Mapping , Female , Genetic Carrier Screening , Genetic Diseases, Inborn/classification , Genetic Diseases, Inborn/physiopathology , Genetic Variation , Genome, Human/genetics , Humans , Male , Middle Aged , Mutation , Parents , Whole Genome Sequencing
20.
PLoS Genet ; 16(7): e1008950, 2020 07.
Article in English | MEDLINE | ID: mdl-32667915
SELECTION OF CITATIONS
SEARCH DETAIL