Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Genes Dev ; 28(14): 1562-77, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-25030696

ABSTRACT

RXR signaling is predicted to have a major impact in macrophages, but neither the biological consequence nor the genomic basis of its ligand activation is known. Comprehensive genome-wide studies were carried out to map liganded RXR-mediated transcriptional changes, active binding sites, and cistromic interactions in the context of the macrophage genome architecture. The macrophage RXR cistrome has 5200 genomic binding sites, which are not impacted by ligand. Active enhancers are characterized by PU.1 binding, an increase of enhancer RNA, and P300 recruitment. Using these features, 387 liganded RXR-bound enhancers were linked to 226 genes, which predominantly reside in CTCF/cohesin-limited functional domains. These findings were molecularly validated using chromosome conformation capture (3C) and 3C combined with sequencing (3C-seq), and we show that selected long-range enhancers communicate with promoters via stable or RXR-induced loops and that some of the enhancers interact with each other, forming an interchromosomal network. A set of angiogenic genes, including Vegfa, has liganded RXR-controlled enhancers and provides the macrophage with a novel inducible program.


Subject(s)
Enhancer Elements, Genetic , Macrophages/metabolism , Neovascularization, Physiologic/physiology , Retinoid X Receptors/metabolism , Animals , Cells, Cultured , Gene Expression Regulation, Developmental/drug effects , Histones/metabolism , Ligands , Macrophages/cytology , Macrophages/drug effects , Mice , Organic Chemicals/chemistry , Organic Chemicals/metabolism , Organic Chemicals/pharmacology , RNA/metabolism , Transcription, Genetic/drug effects
2.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361862

ABSTRACT

Duchenne muscular dystrophy (DMD) is the most common inherited muscle dystrophy. Patients are characterized by muscle weakness, gross motor delay, and elevated serum creatinine kinase (CK) levels. The disease is caused by mutations in the DMD gene located on the X chromosome. Due to the X-linked recessive inheritance pattern, DMD most commonly affects males, who are generally diagnosed between the age of 3-5 years. Here we present an ultra-rare manifestation of DMD in a female patient. Cytogenetic examination showed that she has a t(X;10)(p21.1;p12.1) translocation, which turned out to affect the DMD gene with one of the breakpoints located in exon 54 (detected by genome sequencing). The X-inactivation test revealed skewed X-inactivation (ratio 99:1). Muscle histology and dystrophin immunohistochemistry showed severe dystrophic changes and highly reduced dystrophin expression, respectively. These results, in accordance with the clinical picture and a highly elevated serum CK, led to the diagnosis of DMD. In conclusion, although in very rare cases, DMD can manifest in female patients as well. In this case, a balanced X-autosome reciprocal translocation disrupts the DMD gene and skewed X-inactivation leads to the manifestation of the DMD phenotype.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Male , Female , Humans , Dystrophin/genetics , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , X Chromosome Inactivation , X Chromosome , Mutation
3.
Immunity ; 33(5): 699-712, 2010 Nov 24.
Article in English | MEDLINE | ID: mdl-21093321

ABSTRACT

Peroxisome proliferator-activated receptor γ (PPARγ) is a lipid-activated transcription factor regulating lipid metabolism and inflammatory response in macrophages and dendritic cells (DCs). These immune cells exposed to distinct inflammatory milieu show cell type specification as a result of altered gene expression. We demonstrate here a mechanism how inflammatory molecules modulate PPARγ signaling in distinct subsets of cells. Proinflammatory molecules inhibited whereas interleukin-4 (IL-4) stimulated PPARγ activity in macrophages and DCs. Furthermore, IL-4 signaling augmented PPARγ activity through an interaction between PPARγ and signal transducer and activators of transcription 6 (STAT6) on promoters of PPARγ target genes, including FABP4. Thus, STAT6 acts as a facilitating factor for PPARγ by promoting DNA binding and consequently increasing the number of regulated genes and the magnitude of responses. This interaction, underpinning cell type-specific responses, represents a unique way of controlling nuclear receptor signaling by inflammatory molecules in immune cells.


Subject(s)
Dendritic Cells/metabolism , Gene Expression Regulation , Macrophages/metabolism , PPAR gamma/metabolism , STAT6 Transcription Factor/metabolism , Animals , Fatty Acid-Binding Proteins/metabolism , Humans , Inflammation Mediators/metabolism , Interleukin-4/metabolism , Mice , Promoter Regions, Genetic
4.
Mol Genet Genomics ; 293(3): 665-684, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29294181

ABSTRACT

We present here the de novo genome assembly CerEla1.0 for the red deer, Cervus elaphus, an emblematic member of the natural megafauna of the Northern Hemisphere. Humans spread the species in the South. Today, the red deer is also a farm-bred animal and is becoming a model animal in biomedical and population studies. Stag DNA was sequenced at 74× coverage by Illumina technology. The ALLPATHS-LG assembly of the reads resulted in 34.7 × 103 scaffolds, 26.1 × 103 of which were utilized in Cer.Ela1.0. The assembly spans 3.4 Gbp. For building the red deer pseudochromosomes, a pre-established genetic map was used for main anchor points. A nearly complete co-linearity was found between the mapmarker sequences of the deer genetic map and the order and orientation of the orthologous sequences in the syntenic bovine regions. Syntenies were also conserved at the in-scaffold level. The cM distances corresponded to 1.34 Mbp uniformly along the deer genome. Chromosomal rearrangements between deer and cattle were demonstrated. 2.8 × 106 SNPs, 365 × 103 indels and 19368 protein-coding genes were identified in CerEla1.0, along with positions for centromerons. CerEla1.0 demonstrates the utilization of dual references, i.e., when a target genome (here C. elaphus) already has a pre-established genetic map, and is combined with the well-established whole genome sequence of a closely related species (here Bos taurus). Genome-wide association studies (GWAS) that CerEla1.0 (NCBI, MKHE00000000) could serve for are discussed.


Subject(s)
Contig Mapping/methods , Deer/genetics , Sequence Analysis, DNA/methods , Animals , Animals, Domestic/genetics , Cattle , Chromosome Mapping/methods , Chromosome Mapping/veterinary , Contig Mapping/veterinary , Genome-Wide Association Study , Molecular Sequence Annotation , Sequence Analysis, DNA/veterinary
5.
BMC Genomics ; 17(1): 637, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27526722

ABSTRACT

BACKGROUND: ChIP-seq provides a wealth of information on the approximate location of DNA-binding proteins genome-wide. It is known that the targeted motifs in most cases can be found at the peak centers. A high resolution mapping of ChIP-seq peaks could in principle allow the fine mapping of the protein constituents within protein complexes, but the current ChIP-seq analysis pipelines do not target the basepair resolution strand specific mapping of peak summits. RESULTS: The approach proposed here is based on i) locating regions that are bound by a sufficient number of proteins constituting a complex; ii) determining the position of the underlying motif using either a direct or a de novo motif search approach; and iii) determining the exact location of the peak summits with respect to the binding motif in a strand specific manner. We applied this method for analyzing the CTCF/cohesin complex, which holds together DNA loops. The relative positions of the constituents of the complex were determined with one-basepair estimated accuracy. Mapping the positions on a 3D model of DNA made it possible to deduce the approximate local topology of the complex that allowed us to predict how the CTCF/cohesin complex locks the DNA loops. As the positioning of the proteins was not compatible with previous models of loop closure, we proposed a plausible "double embrace" model in which the DNA loop is held together by two adjacent cohesin rings in such a way that the ring anchored by CTCF to one DNA duplex encircles the other DNA double helix and vice versa. CONCLUSIONS: A motif-centered, strand specific analysis of ChIP-seq data improves the accuracy of determining peak positions. If a genome contains a large number of binding sites for a given protein complex, such as transcription factor heterodimers or transcription factor/cofactor complexes, the relative position of the constituent proteins on the DNA can be established with an accuracy that allow one to deduce the local topology of the protein complex. The proposed high resolution mapping approach of ChIP-seq data is applicable for detecting the contact topology of DNA-binding protein complexes.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA/metabolism , Repressor Proteins/metabolism , Animals , Binding Sites , CCCTC-Binding Factor , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Chromatin Immunoprecipitation , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , DNA/chemistry , High-Throughput Nucleotide Sequencing , Humans , Mice , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Nucleic Acid Conformation , Protein Binding , Repressor Proteins/chemistry , Repressor Proteins/genetics , Sequence Analysis, DNA , Cohesins
6.
Stem Cells ; 33(3): 726-41, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25388207

ABSTRACT

Retinoids are morphogens and have been implicated in cell fate commitment of embryonic stem cells (ESCs) to neurons. Their effects are mediated by RAR and RXR nuclear receptors. However, transcriptional cofactors required for cell and gene-specific retinoid signaling are not known. Here we show that protein arginine methyl transferase (PRMT) 1 and 8 have key roles in determining retinoid regulated gene expression and cellular specification in a multistage neuronal differentiation model of murine ESCs. PRMT1 acts as a selective modulator, providing the cells with a mechanism to reduce the potency of retinoid signals on regulatory "hotspots." PRMT8 is a retinoid receptor target gene itself and acts as a cell type specific transcriptional coactivator of retinoid signaling at later stages of differentiation. Lack of either of them leads to reduced nuclear arginine methylation, dysregulated neuronal gene expression, and altered neuronal activity. Importantly, depletion of PRMT8 results in altered expression of a distinct set of genes, including markers of gliomagenesis. PRMT8 is almost entirely absent in human glioblastoma tissues. We propose that PRMT1 and PRMT8 serve as a rheostat of retinoid signaling to determine neuronal cell specification in a context-dependent manner and might also be relevant in the development of human brain malignancy.


Subject(s)
Embryonic Stem Cells/cytology , Neurons/cytology , Protein-Arginine N-Methyltransferases/metabolism , Receptors, Retinoic Acid/metabolism , Animals , Cell Differentiation/physiology , Cell Line, Tumor , Embryonic Stem Cells/enzymology , Embryonic Stem Cells/metabolism , Gene Expression , Glioblastoma , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurons/enzymology , Neurons/metabolism , Protein-Arginine N-Methyltransferases/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction
7.
Acta Biol Hung ; 67(2): 133-47, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27165525

ABSTRACT

Recently, there has been considerable interest in genetic differentiation in the Cervidae family. A common tool used to determine genetic variation in different species, breeds and populations is mitochondrial DNA analysis, which can be used to estimate phylogenetic relationships among animal taxa and for molecular phylogenetic evolution analysis. With the development of sequencing technology, more and more mitochondrial sequences have been made available in public databases, including whole mitochondrial DNA sequences. These data have been used for phylogenetic analysis of animal species, and for studies of evolutionary processes. We determined the complete mitochondrial genome of a Central European red deer, Cervus elaphus hippelaphus, from Hungary by a next generation sequencing technology. The mitochondrial genome is 16 354 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes and a control region, all of which are arranged similar as in other vertebrates. We made phylogenetic analyses with the new sequence and 76 available mitochondrial sequences of Cervidae, using Bos taurus mitochondrial sequence as outgroup. We used 'neighbor joining' and 'maximum likelihood' methods on whole mitochondrial genome sequences; the consensus phylogenetic trees supported monophyly of the family Cervidae; it was divided into two subfamilies, Cervinae and Capreolinae, and five tribes, Cervini, Muntiacini, Alceini, Odocoileini, and Capreolini. The evolutionary structure of the family Cervidae can be reconstructed by phylogenetic analysis based on whole mitochondrial genomes; which method could be used broadly in phylogenetic evolutionary analysis of animal taxa.


Subject(s)
Deer/genetics , Genome, Mitochondrial , Animals , High-Throughput Nucleotide Sequencing , Phylogeny
8.
BMC Genomics ; 16: 1025, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26626050

ABSTRACT

BACKGROUND: Nicotiana benthamiana is a widely used model plant species for research on plant-pathogen interactions as well as other areas of plant science. It can be easily transformed or agroinfiltrated, therefore it is commonly used in studies requiring protein localization, interaction, or plant-based systems for protein expression and purification. To discover and characterize the miRNAs and their cleaved target mRNAs in N. benthamiana, we sequenced small RNA transcriptomes and degradomes of two N. benthamiana accessions and validated them by Northern blots. RESULTS: We used a comprehensive molecular approach to detect and to experimentally validate N. benthamiana miRNAs and their target mRNAs from various tissues. We identified 40 conserved miRNA families and 18 novel microRNA candidates and validated their target mRNAs with a genomic scale approach. The accumulation of thirteen novel miRNAs was confirmed by Northern blot analysis. The conserved and novel miRNA targets were found to be involved in various biological processes including transcription, RNA binding, DNA modification, signal transduction, stress response and metabolic process. Among the novel miRNA targets we found the mRNA of REPRESSOR OF SILENCING (ROS1). Regulation of ROS1 by a miRNA provides a new regulatory layer to reinforce transcriptional gene silencing by a post-transcriptional repression of ROS1 activity. CONCLUSIONS: The identified conserved and novel miRNAs along with their target mRNAs also provides a tissue specific atlas of known and new miRNA expression and their cleaved target mRNAs of N. benthamiana. Thus this study will serve as a valuable resource to the plant research community that will be beneficial well into the future.


Subject(s)
Gene Expression Regulation, Plant , MicroRNAs/genetics , Nicotiana/genetics , RNA Interference , RNA Stability , RNA, Messenger/genetics , RNA, Plant/genetics , Base Sequence , Computational Biology/methods , Conserved Sequence , Evolution, Molecular , High-Throughput Nucleotide Sequencing , MicroRNAs/chemistry
9.
Nucleic Acids Res ; 41(13): 6715-28, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23666629

ABSTRACT

Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control system that recognizes and degrades transcripts containing NMD cis elements in their 3'untranslated region (UTR). In yeasts, unusually long 3'UTRs act as NMD cis elements, whereas in vertebrates, NMD is induced by introns located >50 nt downstream from the stop codon. In vertebrates, splicing leads to deposition of exon junction complex (EJC) onto the mRNA, and then 3'UTR-bound EJCs trigger NMD. It is proposed that this intron-based NMD is vertebrate specific, and it evolved to eliminate the misproducts of alternative splicing. Here, we provide evidence that similar EJC-mediated intron-based NMD functions in plants, suggesting that this type of NMD is evolutionary conserved. We demonstrate that in plants, like in vertebrates, introns located >50 nt from the stop induces NMD. We show that orthologs of all core EJC components are essential for intron-based plant NMD and that plant Partner of Y14 and mago (PYM) also acts as EJC disassembly factor. Moreover, we found that complex autoregulatory circuits control the activity of plant NMD. We demonstrate that expression of suppressor with morphogenic effect on genitalia (SMG)7, which is essential for long 3'UTR- and intron-based NMD, is regulated by both types of NMD, whereas expression of Barentsz EJC component is downregulated by intron-based NMD.


Subject(s)
Gene Expression Regulation, Plant , Introns , Nonsense Mediated mRNA Decay , Plant Proteins/physiology , 3' Untranslated Regions , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/physiology , Carrier Proteins/genetics , Codon, Terminator , Homeostasis , RNA-Binding Proteins/metabolism
10.
BMC Genomics ; 15: 761, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25193519

ABSTRACT

BACKGROUND: Mangalicas are fatty type local/rare pig breeds with an increasing presence in the niche pork market in Hungary and in other countries. To explore their genetic resources, we have analysed data from next-generation sequencing of an individual male from each of three Mangalica breeds along with a local male Duroc pig. Structural variations, such as SNPs, INDELs and CNVs, were identified and particular genes with SNP variations were analysed with special emphasis on functions related to fat metabolism in pigs. RESULTS: More than 60 Gb of sequence data were generated for each of the sequenced individuals, resulting in 11× to 19× autosomal median coverage. After stringent filtering, around six million SNPs, of which approximately 10% are novel compared to the dbSNP138 database, were identified in each animal. Several hundred thousands of INDELs and about 1,000 CNV gains were also identified. The functional annotation of genes with exonic, non-synonymous SNPs, which are common in all three Mangalicas but are absent in either the reference genome or the sequenced Duroc of this study, highlighted 52 genes in lipid metabolism processes. Further analysis revealed that 41 of these genes are associated with lipid metabolic or regulatory pathways, 49 are in fat-metabolism and fatness-phenotype QTLs and, with the exception of ACACA, ANKRD23, GM2A, KIT, MOGAT2, MTTP, FASN, SGMS1, SLC27A6 and RETSAT, have not previously been associated with fat-related phenotypes. CONCLUSIONS: Genome analysis of Mangalica breeds revealed that local/rare breeds could be a rich source of sequence variations not present in cosmopolitan/industrial breeds. The identified Mangalica variations may, therefore, be a very useful resource for future studies of agronomically important traits in pigs.


Subject(s)
Genome , Genomics , Sus scrofa/genetics , Animals , Breeding , Chromosome Mapping , Computational Biology , DNA Copy Number Variations , DNA, Mitochondrial , Fats/metabolism , Genotype , High-Throughput Nucleotide Sequencing , Hungary , INDEL Mutation , Male , Metabolic Networks and Pathways , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Signal Transduction , Sus scrofa/metabolism
11.
Amino Acids ; 44(1): 215-25, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22160262

ABSTRACT

Transglutaminase 2 (TG2) is a multifunctional member of an enzyme family: it modifies glutamine residues by cross-linking proteins and incorporating primary amines into them, has protein disulphide isomerase and protein kinase activities, mediates trans-membrane signal transduction and interactions between cell surface proteins and the extracellular matrix. These unusual multiple roles encoded into one polypeptide chain suggest that genomic variations in the TGM2 gene should be limited. Indeed, the available information in databases shows that unlike in the case of most other transglutaminases there are no common single nucleotide polymorphisms in exons of human TGM2. We collected data on and produced some of the rare genetic variants of TGM2 by site directed mutagenesis and found that some were less stable than the most abundant (wild type) enzyme variant and the majority had deficient transamidating activity. Further studies are required to clarify the pathologic significance of these rare TGM2 alleles in the human population.


Subject(s)
Polymorphism, Single Nucleotide , Transglutaminases/genetics , Amino Acid Sequence , Amino Acid Substitution , Enzyme Stability , Fibronectins/chemistry , GTP-Binding Proteins , Gene Frequency , Genome, Human , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation, Missense , Protein Binding , Protein Glutamine gamma Glutamyltransferase 2 , Sequence Analysis, DNA , Transglutaminases/chemistry
12.
Genet Sel Evol ; 45: 22, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23815680

ABSTRACT

BACKGROUND: Mangalica breeds are indigenous to Hungary and their breeding history dates back to about 200-250 years ago. They are fat-type pigs and have a rare curly hair phenotype. The aim of our study was to establish the relationships between these unique breeds and other European breeds. RESULTS: Based on a core sequence of 382 bp present in 2713 mitochondrial D-loop sequences from pigs belonging to 38 local breeds from nine countries, five cosmopolitan breeds and wild boars from 14 countries, we identified 164 haplotypes. More than half of the 2713 sequences belonged to either four haplotypes characteristic of continental European breeds or two haplotypes characteristic of British/cosmopolitan breeds; each haplotype is present in more than 100 individuals. Most Mangalica individuals belonged either to one of these common continental European haplotypes or to two Mangalica-specific haplotypes that were absent in all other breeds. In addition, we identified the ancestral mitochondrial D-loop signature present in these 2713 sequences and found that ~ 80% carried the European ancient signatures, ANC-Aside and ANC-Cside or their closely related signatures, while most of the remaining sequences carried a modern Asian signature, ANC-Easia. Mangalica individuals carried the ANC-Aside signature, but not the ANC-Cside or ANC-Easia signatures. CONCLUSIONS: In all the Mangalica individuals, a unique ancient European signature was found in the mitochondrial DNA D-loop region, but they belonged almost exclusively to either certain very abundant European or two Mangalica-specific D-loop haplotypes. This indicates that the present-day Mangalica population in Hungary evolved either by introgression of other European breeds and wild boars or via total isolation after the divergence of European ancient porcine bloodlines.


Subject(s)
Breeding , DNA, Mitochondrial , Swine/genetics , Animals , Genetic Variation , Genetics, Population , Haplotypes , Hungary , Phylogeny , Swine/classification
13.
Nat Commun ; 14(1): 1329, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36898987

ABSTRACT

During muscle cell differentiation, the alternatively spliced, acidic ß-domain potentiates transcription of Myocyte-specific Enhancer Factor 2 (Mef2D). Sequence analysis by the FuzDrop method indicates that the ß-domain can serve as an interaction element for Mef2D higher-order assembly. In accord, we observed Mef2D mobile nuclear condensates in C2C12 cells, similar to those formed through liquid-liquid phase separation. In addition, we found Mef2D solid-like aggregates in the cytosol, the presence of which correlated with higher transcriptional activity. In parallel, we observed a progress in the early phase of myotube development, and higher MyoD and desmin expression. In accord with our predictions, the formation of aggregates was promoted by rigid ß-domain variants, as well as by a disordered ß-domain variant, capable of switching between liquid-like and solid-like higher-order states. Along these lines, NMR and molecular dynamics simulations corroborated that the ß-domain can sample both ordered and disordered interactions leading to compact and extended conformations. These results suggest that ß-domain fine-tunes Mef2D higher-order assembly to the cellular context, which provides a platform for myogenic regulatory factors and the transcriptional apparatus during the developmental process.


Subject(s)
Muscle Development , MEF2 Transcription Factors/genetics , Cell Differentiation , Exons
14.
Sci Rep ; 13(1): 21969, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38082037

ABSTRACT

The golden jackal (Canis aureus) is a reoccurring species in the centre of the Carpathian basin, in Hungary. In total, 31 golden jackal tissue samples were collected, from 8 white-coated, 2 black-coated and one mottled animal across Hungary. Sequences and fragment length polymorphisms were studied for white colour (MC1R), and for black coat colouration (CBD103). In each white animal, the most widespread mutation causing white fur colour in dogs in homozygous form was detected. Three animals were found to carry the mutation in heterozygous form. The two black golden jackals were heterozygous for the 3 bp deletion in CBD103 that mutation for black coat colouration in dogs, and one of them also carried the mutation causing white fur. None of the white animals showed signs of hybridization, but both the black and the mottled coloured individuals were found to be hybrids based on genetic testing. Kinship was found three times, twice between white animals, and once between a white animal and an agouti animal carrying the mutation of white coat. Our results confirm the findings that golden jackal-dog hybrids may occur without human intervention, and the detected mutation causing white fur colour in golden jackals could possibly be due to an early hybridization event.


Subject(s)
Canidae , Jackals , Humans , Dogs , Animals , Jackals/genetics , Mutation , Hybridization, Genetic , Hungary
15.
F1000Res ; 122023.
Article in English | MEDLINE | ID: mdl-38882711

ABSTRACT

Biodiversity loss is now recognised as one of the major challenges for humankind to address over the next few decades. Unless major actions are taken, the sixth mass extinction will lead to catastrophic effects on the Earth's biosphere and human health and well-being. ELIXIR can help address the technical challenges of biodiversity science, through leveraging its suite of services and expertise to enable data management and analysis activities that enhance our understanding of life on Earth and facilitate biodiversity preservation and restoration. This white paper, prepared by the ELIXIR Biodiversity Community, summarises the current status and responses, and presents a set of plans, both technical and community-oriented, that should both enhance how ELIXIR Services are applied in the biodiversity field and how ELIXIR builds connections across the many other infrastructures active in this area. We discuss the areas of highest priority, how they can be implemented in cooperation with the ELIXIR Platforms, and their connections to existing ELIXIR Communities and international consortia. The article provides a preliminary blueprint for a Biodiversity Community in ELIXIR and is an appeal to identify and involve new stakeholders.


Subject(s)
Biodiversity , Humans , Conservation of Natural Resources
16.
Mol Ther Methods Clin Dev ; 29: 145-159, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37025950

ABSTRACT

DNA transposon-based gene delivery vectors represent a promising new branch of randomly integrating vector development for gene therapy. For the side-by-side evaluation of the piggyBac and Sleeping Beauty systems-the only DNA transposons currently employed in clinical trials-during therapeutic intervention, we treated the mouse model of tyrosinemia type I with liver-targeted gene delivery using both transposon vectors. For genome-wide mapping of transposon insertion sites we developed a new next-generation sequencing procedure called streptavidin-based enrichment sequencing, which allowed us to identify approximately one million integration sites for both systems. We revealed that a high proportion of piggyBac integrations are clustered in hot regions and found that they are frequently recurring at the same genomic positions among treated animals, indicating that the genome-wide distribution of Sleeping Beauty-generated integrations is closer to random. We also revealed that the piggyBac transposase protein exhibits prolonged activity, which predicts the risk of oncogenesis by generating chromosomal double-strand breaks. Safety concerns associated with prolonged transpositional activity draw attention to the importance of squeezing the active state of the transposase enzymes into a narrower time window.

17.
EMBO J ; 27(11): 1585-95, 2008 Jun 04.
Article in English | MEDLINE | ID: mdl-18451801

ABSTRACT

Nonsense-mediated mRNA decay (NMD) is a quality control system that degrades mRNAs containing premature termination codons. Although NMD is well characterized in yeast and mammals, plant NMD is poorly understood. We have undertaken the functional dissection of NMD pathways in plants. Using an approach that allows rapid identification of plant NMD trans factors, we demonstrated that two plant NMD pathways coexist, one eliminates mRNAs with long 3'UTRs, whereas a distinct pathway degrades mRNAs harbouring 3'UTR-located introns. We showed that UPF1, UPF2 and SMG-7 are involved in both plant NMD pathways, whereas Mago and Y14 are required only for intron-based NMD. The molecular mechanism of long 3'UTR-based plant NMD resembled yeast NMD, whereas the intron-based NMD was similar to mammalian NMD, suggesting that both pathways are evolutionarily conserved. Interestingly, the SMG-7 NMD component is targeted by NMD, suggesting that plant NMD is autoregulated. We propose that a complex, autoregulated NMD mechanism operated in stem eukaryotes, and that despite aspect of the mechanism being simplified in different lineages, feedback regulation was retained in all kingdoms.


Subject(s)
3' Untranslated Regions/metabolism , Codon, Nonsense/metabolism , Plant Proteins/metabolism , RNA Stability , RNA, Plant/metabolism , Amino Acid Sequence , Homeostasis , Introns , Molecular Sequence Data , Plant Proteins/genetics
18.
Sci Data ; 9(1): 763, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496436

ABSTRACT

In life-science research isogenic B-lymphoblastoid cell lines (LCLs) are widely known and preferred for their genetic stability - they are often used for studying mutations for example, where genetic stability is crucial. We have shown previously that phenotypic variability can be observed in isogenic B-lymphoblastoid cell lines. Isogenic LCLs present well-defined phenotypic differences on various levels, for example on the gene expression level or the chromatin level. Based on our investigations, the phenotypic variability of the isogenic LCLs is accompanied by certain genetic variation too. We have developed a compendium of LCL datasets that present the phenotypic and genetic variability of five isogenic LCLs from a multiomic perspective. In this paper, we present additional datasets generated with Next Generation Sequencing techniques to provide genomic and transcriptomic profiles (WGS, RNA-seq, single cell RNA-seq), protein-DNA interactions (ChIP-seq), together with mass spectrometry and flow cytometry datasets to monitor the changes in the proteome. We are sharing these datasets with the scientific community according to the FAIR principles for further investigations.


Subject(s)
B-Lymphocytes , Proteome , Humans , Proteome/metabolism , High-Throughput Nucleotide Sequencing/methods , Transcriptome , Genomics
19.
Mol Genet Genomics ; 284(4): 273-87, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20697743

ABSTRACT

Antlers of deer display the fastest and most robust bone development in the animal kingdom. Deposition of the minerals in the cartilage preceding ossification is a specific feature of the developing antler. We have cloned 28 genes which are upregulated in the cartilaginous section (called mineralized cartilage) of the developing ("velvet") antler of red deer stags, compared to their levels in the fetal cartilage. Fifteen of these genes were further characterized by their expression pattern along the tissue zones (i.e., antler mesenchyme, precartilage, cartilage, bone), and by in situ hybridization of the gene activities at the cellular level. Expression dynamics of genes col1A1, col1A2, col3A1, ibsp, mgp, sparc, runx2, and osteocalcin were monitored and compared in the ossified part of the velvet antler and in the skeleton (in ribs and vertebrae). Expression levels of these genes in the ossified part of the velvet antler exceeded the skeletal levels 10-30-fold or more. Gene expression and comparative sequence analyses of cDNAs and the cognate 5' cis-regulatory regions in deer, cattle, and human suggested that the genes runx2 and osx have a master regulatory role. GC-MS metabolite analyses of glucose, phosphate, ethanolamine-phosphate, and hydroxyproline utilizations confirmed the high activity of mineralization genes in governing the flow of the minerals from the skeleton to the antler bone. Gene expression patterns and quantitative metabolite data for the robust bone development in the antler are discussed in an integrated manner. We also discuss the potential implication of our findings on the deer genes in human osteoporosis research.


Subject(s)
Deer/anatomy & histology , Gene Expression Regulation , Animal Diseases/genetics , Animals , Antlers/anatomy & histology , Antlers/physiology , Calcification, Physiologic/genetics , Cartilage/anatomy & histology , Cartilage/embryology , Cloning, Molecular , Core Binding Factor Alpha 1 Subunit/genetics , DNA, Complementary/genetics , Deer/embryology , Deer/genetics , Deer/growth & development , Female , Gene Library , Humans , In Situ Hybridization , Introns , Male , Oligonucleotide Array Sequence Analysis , Osteoporosis/genetics , Pregnancy , RNA/genetics , Reverse Transcriptase Polymerase Chain Reaction
20.
Database (Oxford) ; 20202020 01 01.
Article in English | MEDLINE | ID: mdl-31942977

ABSTRACT

ChIP-seq reveals genomic regions where proteins, e.g. transcription factors (TFs) interact with DNA. A substantial fraction of these regions, however, do not contain the cognate binding site for the TF of interest. This phenomenon might be explained by protein-protein interactions and co-precipitation of interacting gene regulatory elements. We uniformly processed 3727 human ChIP-seq data sets and determined the cistrome of 292 TFs, as well as the distances between the TF binding motif centers and the ChIP-seq peak summits. ChIPSummitDB enables the analysis of ChIP-seq data using multiple approaches. The 292 cistromes and corresponding ChIP-seq peak sets can be browsed in GenomeView. Overlapping SNPs can be inspected in dbSNPView. Most importantly, the MotifView and PairShiftView pages show the average distance between motif centers and overlapping ChIP-seq peak summits and distance distributions thereof, respectively. In addition to providing a comprehensive human TF binding site collection, the ChIPSummitDB database and web interface allows for the examination of the topological arrangement of TF complexes genome-wide. ChIPSummitDB is freely accessible at http://summit.med.unideb.hu/summitdb/. The database will be regularly updated and extended with the newly available human and mouse ChIP-seq data sets.


Subject(s)
Binding Sites/genetics , Chromatin Immunoprecipitation Sequencing , Sequence Analysis, DNA , Transcription Factors , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Protein Binding/genetics , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL