Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Cell ; 180(5): 833-846.e16, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32142677

ABSTRACT

Cognitive dysfunction and reactive microglia are hallmarks of traumatic brain injury (TBI), yet whether these cells contribute to cognitive deficits and secondary inflammatory pathology remains poorly understood. Here, we show that removal of microglia from the mouse brain has little effect on the outcome of TBI, but inducing the turnover of these cells through either pharmacologic or genetic approaches can yield a neuroprotective microglial phenotype that profoundly aids recovery. The beneficial effects of these repopulating microglia are critically dependent on interleukin-6 (IL-6) trans-signaling via the soluble IL-6 receptor (IL-6R) and robustly support adult neurogenesis, specifically by augmenting the survival of newborn neurons that directly support cognitive function. We conclude that microglia in the mammalian brain can be manipulated to adopt a neuroprotective and pro-regenerative phenotype that can aid repair and alleviate the cognitive deficits arising from brain injury.


Subject(s)
Brain Injuries, Traumatic/therapy , Interleukin-6/genetics , Receptors, Interleukin-6/genetics , Regeneration/genetics , Animals , Brain/growth & development , Brain/pathology , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Cognitive Dysfunction/therapy , Disease Models, Animal , Humans , Inflammation/genetics , Inflammation/pathology , Mice , Microglia/metabolism , Microglia/pathology , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/therapeutic use , Signal Transduction/genetics
2.
J Neurosci ; 41(19): 4172-4186, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33785644

ABSTRACT

Microglia, the resident immune cells of the CNS, have emerged as key regulators of neural precursor cell activity in the adult brain. However, the microglia-derived factors that mediate these effects remain largely unknown. In the present study, we investigated a role for microglial brain-derived neurotrophic factor (BDNF), a neurotrophic factor with well known effects on neuronal survival and plasticity. Surprisingly, we found that selective genetic ablation of BDNF from microglia increased the production of newborn neurons under both physiological and inflammatory conditions (e.g., LPS-induced infection and traumatic brain injury). Genetic ablation of BDNF from microglia otherwise also interfered with self-renewal/proliferation, reducing their overall density. In conclusion, we identify microglial BDNF as an important factor regulating microglia population dynamics and states, which in turn influences neurogenesis under both homeostatic and pathologic conditions.SIGNIFICANCE STATEMENT (1) Microglial BDNF contributes to self-renewal and density of microglia in the brain. (2) Selective ablation of BDNF in microglia stimulates neural precursor proliferation. (3) Loss of microglial BDNF augments working memory following traumatic brain injury. (4) Benefits of repopulating microglia on brain injury are not mediated via microglial BDNF.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Hippocampus/physiology , Microglia/metabolism , Nerve Regeneration/genetics , Nerve Regeneration/physiology , Neurogenesis/genetics , Neurogenesis/physiology , Animals , Cell Proliferation , Cell Survival/genetics , Dendrites/ultrastructure , Dendritic Spines/ultrastructure , Encephalitis/chemically induced , Encephalitis/pathology , Learning/physiology , Memory/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Stem Cells/physiology , Neural Stem Cells/ultrastructure
3.
Mol Psychiatry ; 26(11): 6975-6991, 2021 11.
Article in English | MEDLINE | ID: mdl-34040151

ABSTRACT

Advanced physiological aging is associated with impaired cognitive performance and the inability to induce long-term potentiation (LTP), an electrophysiological correlate of memory. Here, we demonstrate in the physiologically aged, senescent mouse brain that scanning ultrasound combined with microbubbles (SUS+MB), by transiently opening the blood-brain barrier, fully restores LTP induction in the dentate gyrus of the hippocampus. Intriguingly, SUS treatment without microbubbles (SUSonly), i.e., without the uptake of blood-borne factors, proved even more effective, not only restoring LTP, but also ameliorating the spatial learning deficits of the aged mice. This functional improvement is accompanied by an altered milieu of the aged hippocampus, including a lower density of perineuronal nets, increased neurogenesis, and synaptic signaling, which collectively results in improved spatial learning. We therefore conclude that therapeutic ultrasound is a non-invasive, pleiotropic modality that may enhance cognition in elderly humans.


Subject(s)
Long-Term Potentiation , Receptors, N-Methyl-D-Aspartate , Animals , Cognition/physiology , Hippocampus/metabolism , Long-Term Potentiation/physiology , Mice , Neurogenesis , Receptors, N-Methyl-D-Aspartate/metabolism
4.
Cereb Cortex ; 31(7): 3363-3373, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33690839

ABSTRACT

Identifying dynamic changes in biomarkers and clinical profiles is essential for understanding the progression of Alzheimer's disease (AD). The relevant studies have primarily relied on patients with autosomal dominant AD; however, relevant studies in sporadic AD are poorly understood. Here, we analyzed longitudinal data from 665 participants (mean follow-up 4.90 ± 2.83 years). By aligning normal cognition (CN) baseline with a clinical diagnosis of mild cognitive impairment (MCI) or AD, we studied the progression of AD using a linear mixed model to estimate the clinical and biomarker changes from stable CN to MCI to AD. The results showed that the trajectory of hippocampal volume and fluorodeoxyglucose (FDG) was consistent with the clinical measures in that they did not follow a hypothetical sigmoid curve but rather showed a slow change in the initial stage and accelerated changes in the later stage from MCI conversion to AD. Dramatic hippocampal atrophy and the ADAS13 increase were, respectively, 2.5 and 1 years earlier than the MCI onset. Besides, cognitively normal people with elevated and normal amyloid showed no significant differences in clinical measures, hippocampal volume, or FDG. These results reveal that pre-MCI to pre-AD may be a better time window for future clinical trial design.


Subject(s)
Alzheimer Disease/physiopathology , Brain/diagnostic imaging , Cognitive Dysfunction/physiopathology , Hippocampus/diagnostic imaging , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , Aniline Compounds , Biomarkers , Brain/metabolism , Brain/pathology , Cognitive Dysfunction/diagnostic imaging , Disease Progression , Ethylene Glycols , Female , Fluorodeoxyglucose F18 , Hippocampus/pathology , Humans , Linear Models , Longitudinal Studies , Magnetic Resonance Imaging , Male , Organ Size , Positron-Emission Tomography , Radiopharmaceuticals
5.
Int J Mol Sci ; 22(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34502339

ABSTRACT

Motor neuron disease (MND) comprises a group of fatal neurodegenerative diseases with no effective cure. As progressive motor neuron cell death is one of pathological characteristics of MND, molecules which protect these cells are attractive therapeutic targets. Accumulating evidence indicates that EphA4 activation is involved in MND pathogenesis, and inhibition of EphA4 improves functional outcomes. However, the underlying mechanism of EphA4's function in MND is unclear. In this review, we first present results to demonstrate that EphA4 signalling acts directly on motor neurons to cause cell death. We then review the three most likely mechanisms underlying this effect.


Subject(s)
Cell Death , Motor Neuron Disease/pathology , Motor Neurons/pathology , Receptor, EphA4/metabolism , Animals , Humans , Motor Neuron Disease/metabolism , Motor Neurons/metabolism , Signal Transduction
6.
Cereb Cortex ; 29(10): 4381-4397, 2019 09 13.
Article in English | MEDLINE | ID: mdl-30590507

ABSTRACT

The hippocampal dentate gyrus (DG) is a major region of the adult rodent brain in which neurogenesis occurs throughout life. The EphA4 receptor, which regulates neurogenesis and boundary formation in the developing brain, is also expressed in the adult DG, but whether it regulates adult hippocampal neurogenesis is not known. Here, we show that, in the adult mouse brain, EphA4 inhibits hippocampal precursor cell proliferation but does not affect precursor differentiation or survival. Genetic deletion or pharmacological inhibition of EphA4 significantly increased hippocampal precursor proliferation in vivo and in vitro, by blocking EphA4 forward signaling. EphA4 was expressed by mature hippocampal DG neurons but not neural precursor cells, and an EphA4 antagonist, EphA4-Fc, did not activate clonal cultures of precursors until they were co-cultured with non-precursor cells, indicating an indirect effect of EphA4 on the regulation of precursor activity. Supplementation with d-serine blocked the increased precursor proliferation induced by EphA4 inhibition, whereas blocking the interaction between d-serine and N-methyl-d-aspartate receptors (NMDARs) promoted precursor activity, even at the clonal level. Collectively, these findings demonstrate that EphA4 indirectly regulates adult hippocampal precursor proliferation and thus plays a role in neurogenesis via d-serine-regulated NMDAR signaling.


Subject(s)
Dentate Gyrus/metabolism , Neural Stem Cells/metabolism , Neurogenesis , Receptor, EphA4/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Cell Differentiation , Cell Proliferation , Cell Survival , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Receptor, EphA4/genetics , Signal Transduction
7.
J Neurochem ; 142(2): 191-193, 2017 07.
Article in English | MEDLINE | ID: mdl-28523793

ABSTRACT

Read the highlighted article 'Exercise and BDNF reduce Aß production by enhancing α-secretase processing of APP' on page 286.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Brain-Derived Neurotrophic Factor , Exercise , Humans
8.
J Neurosci ; 35(21): 8132-44, 2015 May 27.
Article in English | MEDLINE | ID: mdl-26019330

ABSTRACT

The activity of neural precursor cells in the adult hippocampus is regulated by various stimuli; however, whether these stimuli regulate the same or different precursor populations remains unknown. Here, we developed a novel cell-sorting protocol that allows the purification to homogeneity of neurosphere-forming neural precursors from the adult mouse hippocampus and examined the responsiveness of individual precursors to various stimuli using a clonal assay. We show that within the Hes5-GFP(+)/Nestin-GFP(+)/EGFR(+) cell population, which comprises the majority of neurosphere-forming precursors, there are two distinct subpopulations of quiescent precursor cells, one directly activated by high-KCl depolarization, and the other activated by norepinephrine (NE). We then demonstrate that these two populations are differentially distributed along the septotemporal axis of the hippocampus, and show that the NE-responsive precursors are selectively regulated by GABA, whereas the KCl-responsive precursors are selectively modulated by corticosterone. Finally, based on RNAseq analysis by deep sequencing, we show that the progeny generated by activating NE-responsive versus KCl-responsive quiescent precursors are molecularly different. These results demonstrate that the adult hippocampus contains phenotypically similar but stimulus-specific populations of quiescent precursors, which may give rise to neural progeny with different functional capacity.


Subject(s)
Cell Separation , Hippocampus/cytology , Hippocampus/growth & development , Neural Stem Cells/physiology , Neurogenesis/physiology , Age Factors , Animals , Cell Count/methods , Cell Separation/methods , Cells, Cultured , Male , Mice , Mice, Inbred C57BL
9.
Proc Natl Acad Sci U S A ; 110(47): 19131-6, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24194544

ABSTRACT

Opitz syndrome (OS) is a genetic neurological disorder. The gene responsible for the X-linked form of OS, Midline-1 (MID1), encodes an E3 ubiquitin ligase that regulates the degradation of the catalytic subunit of protein phosphatase 2A (PP2Ac). However, how Mid1 functions during neural development is largely unknown. In this study, we provide data from in vitro and in vivo experiments suggesting that silencing Mid1 in developing neurons promotes axon growth and branch formation, resulting in a disruption of callosal axon projections in the contralateral cortex. In addition, a similar phenotype of axonal development was observed in the Mid1 knockout mouse. This defect was largely due to the accumulation of PP2Ac in Mid1-depleted cells as further down-regulation of PP2Ac rescued the axonal phenotype. Together, these data demonstrate that Mid1-dependent PP2Ac turnover is important for normal axonal development and that dysregulation of this process may contribute to the underlying cause of OS.


Subject(s)
Axons/physiology , Cerebral Cortex/cytology , Cerebral Cortex/growth & development , Growth Cones/physiology , Protein Phosphatase 2/metabolism , Proteins/metabolism , Animals , Cleft Palate/physiopathology , Esophagus/abnormalities , Esophagus/physiopathology , Gene Knockdown Techniques , Genetic Diseases, X-Linked/physiopathology , Hypertelorism/physiopathology , Hypospadias/physiopathology , Immunoblotting , In Situ Hybridization , Mice , Mice, Knockout , Proteins/genetics , Proteolysis , RNA Interference , Real-Time Polymerase Chain Reaction , Time-Lapse Imaging , Ubiquitin-Protein Ligases
10.
J Neurosci ; 33(15): 6603-13, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23575857

ABSTRACT

It is now widely accepted that hippocampal neurogenesis underpins critical cognitive functions, such as learning and memory. To assess the behavioral importance of adult-born neurons, we developed a novel knock-in mouse model that allowed us to specifically and reversibly ablate hippocampal neurons at an immature stage. In these mice, the diphtheria toxin receptor (DTR) is expressed under control of the doublecortin (DCX) promoter, which allows for specific ablation of immature DCX-expressing neurons after administration of diphtheria toxin while leaving the neural precursor pool intact. Using a spatially challenging behavioral test (a modified version of the active place avoidance test), we present direct evidence that immature DCX-expressing neurons are required for successful acquisition of spatial learning, as well as reversal learning, but are not necessary for the retrieval of stored long-term memories. Importantly, the observed learning deficits were rescued as newly generated immature neurons repopulated the granule cell layer upon termination of the toxin treatment. Repeat (or cyclic) depletion of immature neurons reinstated behavioral deficits if the mice were challenged with a novel task. Together, these findings highlight the potential of stimulating neurogenesis as a means to enhance learning.


Subject(s)
Avoidance Learning/physiology , Gene Knock-In Techniques/psychology , Hippocampus/physiology , Memory/physiology , Microtubule-Associated Proteins/physiology , Neural Stem Cells/physiology , Neuropeptides/physiology , Reversal Learning/physiology , Animals , Cells, Cultured , Cerebral Cortex , Cytoskeletal Proteins/biosynthesis , Doublecortin Domain Proteins , Doublecortin Protein , Gene Knock-In Techniques/methods , Heparin-binding EGF-like Growth Factor , Intercellular Signaling Peptides and Proteins/genetics , Male , Memory, Long-Term/physiology , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/genetics , Models, Animal , Nerve Degeneration/genetics , Nerve Tissue Proteins/biosynthesis , Neurogenesis/physiology , Neuropeptides/genetics , Space Perception/physiology
11.
Glia ; 62(2): 247-58, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24311472

ABSTRACT

Microglia positively affect neural progenitor cell physiology through the release of inflammatory mediators or trophic factors. We demonstrated previously that reactive microglia foster K(ATP) -channel expression and that blocking this channel using glibenclamide administration enhances striatal neurogenesis after stroke. In this study, we investigated whether the microglial K(ATP) -channel directly influences the activation of neural precursor cells (NPCs) from the subventricular zone using transgenic Csf1r-GFP mice. In vitro exposure of NPCs to lipopolysaccharide and interferon-gamma resulted in a significant decrease in precursor cell number. The complete removal of microglia from the culture or exposure to enriched microglia culture also decreased the precursor cell number. The addition of glibenclamide rescued the negative effects of enriched microglia on neurosphere formation and promoted a ∼20% improvement in precursor cell number. Similar results were found using microglial-conditioned media from isolated microglia. Using primary mixed glial and pure microglial cultures, glibenclamide specifically targeted reactive microglia to restore neurogenesis and increased the microglial production of the chemokine monocyte chemoattractant protein-1 (MCP-1). These findings provide the first direct evidence that the microglial K(ATP) -channel is a regulator of the proliferation of NPCs under inflammatory conditions.


Subject(s)
Inflammation/metabolism , KATP Channels/antagonists & inhibitors , Microglia/metabolism , Neural Stem Cells/cytology , Neurogenesis/physiology , Animals , Cells, Cultured , Inflammation Mediators/metabolism , Interferon-gamma/metabolism , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/drug effects , Microglia/immunology , Neurogenesis/immunology , Neurons/drug effects , Neurons/immunology , Neurons/metabolism
12.
J Cereb Blood Flow Metab ; 44(3): 419-433, 2024 03.
Article in English | MEDLINE | ID: mdl-37871622

ABSTRACT

Cerebral vasogenic edema, a severe complication of ischemic stroke, aggravates neurological deficits. However, therapeutics to reduce cerebral edema still represent a significant unmet medical need. Brain microvascular endothelial cells (BMECs), vital for maintaining the blood-brain barrier (BBB), represent the first defense barrier for vasogenic edema. Here, we analyzed the proteomic profiles of the cultured mouse BMECs during oxygen-glucose deprivation and reperfusion (OGD/R). Besides the extensively altered cytoskeletal proteins, ephrin type-A receptor 4 (EphA4) expressions and its activated phosphorylated form p-EphA4 were significantly increased. Blocking EphA4 using EphA4-Fc, a specific and well-tolerated inhibitor shown in our ongoing human phase I trial, effectively reduced OGD/R-induced BMECs contraction and tight junction damage. EphA4-Fc did not protect OGD/R-induced neuronal and astrocytic death. However, administration of EphA4-Fc, before or after the onset of transient middle cerebral artery occlusion (tMCAO), reduced brain edema by about 50%, leading to improved neurological function recovery. The BBB permeability test also confirmed that cerebral BBB integrity was well maintained in tMCAO brains treated with EphA4-Fc. Therefore, EphA4 was critical in signaling BMECs-mediated BBB breakdown and vasogenic edema during cerebral ischemia. EphA4-Fc is promising for the treatment of clinical post-stroke edema.


Subject(s)
Brain Edema , Brain Ischemia , Stroke , Mice , Humans , Animals , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Proteomics , Stroke/complications , Stroke/drug therapy , Stroke/metabolism , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Brain Edema/drug therapy , Brain Edema/etiology , Brain Edema/metabolism , Oxygen/metabolism , Edema/metabolism
13.
Aging Dis ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39012673

ABSTRACT

Physical exercise may reduce dementia risk in aging, but varying reports on its effectiveness make it challenging to ascribe what level of exercise will have significant longer-term effects on important functions such as hippocampal-based learning and memory. This study compared the effect of three different 6-month exercise regimens on hippocampal-dependent cognition in healthy, elderly individuals. Participants, aged 65-85 with no cognitive deficits, were randomly assigned to one of three exercise interventions (low (LIT), medium (MIT), and High intensity interval training (HIIT), respectively). Each participant attended 72 supervised exercise sessions over a 6-month period. A total of 151 participants completed all sessions. Cognitive testing for hippocampal performance occurred monthly, as did blood collection, and continued for up to 5 years following initiation of the study. Multimodal 7 Tesla MRI scans were taken at commencement, 6 and 12 months. After 6 months, only the HIIT group displayed significant improvement in hippocampal function, as measured by paired associative learning (PAL). MRI from the HIIT group showed abrogation of the age-dependent volumetric decrease within several cortical regions including the hippocampus and improved functional connectivity between multiple neural networks not seen in the other groups. HIIT-mediated changes in the circulating levels of brain-derived neurotrophic factor (BDNF) and cortisol correlated to improved hippocampal-dependent cognitive ability. These findings demonstrate that HIIT significantly improves and prolongs the hippocampal-dependent cognitive health of aged individuals. Importantly, improvement was retained for at least 5 years following initiation of HIIT, suggesting that the changes seen in hippocampal volume and connectivity underpin this long-term maintenance. Sustained improvement in hippocampal function to this extent confirms that such exercise-based interventions can provide significant protection against hippocampal cognitive decline in the aged population. The changes in specific blood factor levels also may provide useful biomarkers for choosing the optimal exercise regimen to promote cognitive improvement.

14.
J Neurosci ; 32(19): 6435-43, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22573666

ABSTRACT

Exercise has been shown to positively augment adult hippocampal neurogenesis; however, the cellular and molecular pathways mediating this effect remain largely unknown. Previous studies have suggested that microglia may have the ability to differentially instruct neurogenesis in the adult brain. Here, we used transgenic Csf1r-GFP mice to investigate whether hippocampal microglia directly influence the activation of neural precursor cells. Our results revealed that an exercise-induced increase in neural precursor cell activity was mediated via endogenous microglia and abolished when these cells were selectively removed from hippocampal cultures. Conversely, microglia from the hippocampi of animals that had exercised were able to activate latent neural precursor cells when added to neurosphere preparations from sedentary mice. We also investigated the role of CX(3)CL1, a chemokine that is known to provide a more neuroprotective microglial phenotype. Intraparenchymal infusion of a blocking antibody against the CX(3)CL1 receptor, CX(3)CR1, but not control IgG, dramatically reduced the neurosphere formation frequency in mice that had exercised. While an increase in soluble CX(3)CL1 was observed following running, reduced levels of this chemokine were found in the aged brain. Lower levels of CX(3)CL1 with advancing age correlated with the natural decline in neural precursor cell activity, a state that could be partially alleviated through removal of microglia. These findings provide the first direct evidence that endogenous microglia can exert a dual and opposing influence on neural precursor cell activity within the hippocampus, and that signaling through the CX(3)CL1-CX(3)CR1 axis critically contributes toward this process.


Subject(s)
Aging/physiology , Hippocampus/cytology , Hippocampus/physiology , Microglia/physiology , Neural Stem Cells/physiology , Physical Conditioning, Animal/physiology , Animals , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microglia/cytology , Neural Stem Cells/cytology , Neurogenesis/physiology
15.
J Neurosci Res ; 91(5): 642-59, 2013 May.
Article in English | MEDLINE | ID: mdl-23404532

ABSTRACT

Within the two neurogenic niches of the adult mammalian brain, i.e., the subventricular zone lining the lateral ventricle and the subgranular zone of the hippocampus, there exist distinct populations of proliferating neural precursor cells that differentiate to generate new neurons. Numerous studies have suggested that epigenetic regulation by histone-modifying proteins is important in guiding precursor differentiation during development; however, the role of these proteins in regulating neural precursor activity in the adult neurogenic niches remains poorly understood. Here we examine the role of an NAD(+) -dependent histone deacetylase, SIRT1, in modulating the neurogenic potential of neural precursors in the neurogenic niches of the adult mouse brain. We show that SIRT1 is expressed by proliferating adult subventricular zone and hippocampal neural precursors, although its transcript and protein levels are dramatically reduced during neural precursor differentiation. Utilizing a lentiviral-mediated delivery strategy, we demonstrate that abrogation of SIRT1 signaling by RNAi does not affect neural precursor numbers or their proliferation. However, SIRT1 knock down results in a significant increase in neuronal production in both the subventricular zone and the hippocampus. In contrast, enhancing SIRT1 signaling either through lentiviral-mediated SIRT1 overexpression or through use of the SIRT1 chemical activator Resveratrol prevents adult neural precursors from differentiating into neurons. Importantly, knock down of SIRT1 in hippocampal precursors in vivo, either through RNAi or through genetic ablation, promotes their neurogenic potential. These findings highlight SIRT1 signaling as a negative regulator of neuronal differentiation of adult subventricular zone and hippocampal neural precursors. © 2013 Wiley Periodicals, Inc.


Subject(s)
Cerebral Ventricles/cytology , Hippocampus/cytology , Neural Stem Cells/physiology , Neurogenesis/genetics , Sirtuin 1/metabolism , Analysis of Variance , Animals , Bromodeoxyuridine/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Doublecortin Domain Proteins , Enzyme Inhibitors/pharmacology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Ki-67 Antigen/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Neurogenesis/drug effects , Neuropeptides/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Resveratrol , Sirtuin 1/deficiency , Sirtuin 1/genetics , Stem Cell Niche/genetics , Stem Cell Niche/physiology , Stilbenes/pharmacology , Transfection , Tubulin/metabolism
16.
Front Neurosci ; 17: 1238646, 2023.
Article in English | MEDLINE | ID: mdl-38156266

ABSTRACT

The hippocampus is a complex brain structure that plays an important role in various cognitive aspects such as memory, intelligence, executive function, and path integration. The volume of this highly plastic structure is identified as one of the most important biomarkers of specific neuropsychiatric and neurodegenerative diseases. It has also been extensively investigated in numerous aging studies. However, recent studies on aging show that the performance of conventional approaches in measuring the hippocampal volume is still far from satisfactory, especially in terms of delivering longitudinal measures from ultra-high field magnetic resonance images (MRIs), which can visualize more boundary details. The advancement of deep learning provides an alternative solution to measuring the hippocampal volume. In this work, we comprehensively compared a deep learning pipeline based on nnU-Net with several conventional approaches including Freesurfer, FSL and DARTEL, for automatically delivering hippocampal volumes: (1) Firstly, we evaluated the segmentation accuracy and precision on a public dataset through cross-validation. Results showed that the deep learning pipeline had the lowest mean (L = 1.5%, R = 1.7%) and the lowest standard deviation (L = 5.2%, R = 6.2%) in terms of volume percentage error. (2) Secondly, sub-millimeter MRIs of a group of healthy adults with test-retest 3T and 7T sessions were used to extensively assess the test-retest reliability. Results showed that the deep learning pipeline achieved very high intraclass correlation coefficients (L = 0.990, R = 0.986 for 7T; L = 0.985, R = 0.983 for 3T) and very small volume percentage differences (L = 1.2%, R = 0.9% for 7T; L = 1.3%, R = 1.3% for 3T). (3) Thirdly, a Bayesian linear mixed effect model was constructed with respect to the hippocampal volumes of two healthy adult datasets with longitudinal 7T scans and one disease-related longitudinal dataset. It was found that the deep learning pipeline detected both the subtle and disease-related changes over time with high sensitivity as well as the mild differences across subjects. Comparison results from the aforementioned three aspects showed that the deep learning pipeline significantly outperformed the conventional approaches by large margins. Results also showed that the deep learning pipeline can better accommodate longitudinal analysis purposes.

17.
J Cereb Blood Flow Metab ; 43(7): 1060-1076, 2023 07.
Article in English | MEDLINE | ID: mdl-36756891

ABSTRACT

Despite progress in reperfusion therapy, functional recovery remains suboptimal in many stroke patients, with oxidative stress, inflammation, dysbiosis, and secondary neurodegeneration constituting the major hurdles to recovery. The essential trace element selenium is emerging as a promising therapeutic agent for stroke. However, although several rodent studies have shown that selenium can protect against cell loss following cerebral ischemia, no study has yet examined whether selenium can enhance long-term functional recovery. Moreover, published studies have typically reported a single mechanism of action underlying selenium-mediated stroke recovery. However, we propose that selenium is more likely to have multifaceted actions. Here, we show that selenomethionine confers a potent neuroprotective effect in a canonical filament-induced transient middle cerebral artery occlusion (tMCAO) mouse model. Post-tMCAO selenium treatment significantly reduces the cerebral infarct volume, oxidative stress, and ferroptosis and enhances post-tMCAO motor performance in the acute phase after stroke. Moreover, analysis of the gut microbiota reveals that acute selenium treatment reverses stroke-induced gut dysbiosis. Longer-term selenium supplementation activates intrinsic neuroprotective mechanisms, prevents secondary neurodegeneration, alleviates systemic inflammation, and diminishes gut microbe-derived circulating trimethylamine N-oxide. These findings demonstrate that selenium treatment even after cerebral ischemia has long-term and multifaceted neuroprotective effects, highlighting its clinical potential.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Reperfusion Injury , Selenium , Stroke , Mice , Animals , Selenium/pharmacology , Selenium/therapeutic use , Neuroprotection , Dysbiosis , Brain Ischemia/drug therapy , Brain Ischemia/complications , Stroke/drug therapy , Stroke/complications , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/complications , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Dietary Supplements , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control
18.
Nat Commun ; 14(1): 4375, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587147

ABSTRACT

The beneficial effects of physical activity on brain ageing are well recognised, with exerkines, factors that are secreted into the circulation in response to exercise, emerging as likely mediators of this response. However, the source and identity of these exerkines remain unclear. Here we provide evidence that an anti-geronic exerkine is secreted by platelets. We show that platelets are activated by exercise and are required for the exercise-induced increase in hippocampal precursor cell proliferation in aged mice. We also demonstrate that increasing the systemic levels of the platelet-derived exerkine CXCL4/platelet factor 4 (PF4) ameliorates age-related regenerative and cognitive impairments in a hippocampal neurogenesis-dependent manner. Together these findings highlight the role of platelets in mediating the rejuvenating effects of exercise during physiological brain ageing.


Subject(s)
Aging , Cognitive Dysfunction , Neurogenesis , Platelet Factor 4 , Animals , Mice , Blood Platelets , Cognition , Hippocampus , Immunologic Factors
19.
Cell Metab ; 34(3): 408-423.e8, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35120590

ABSTRACT

Although the neurogenesis-enhancing effects of exercise have been extensively studied, the molecular mechanisms underlying this response remain unclear. Here, we propose that this is mediated by the exercise-induced systemic release of the antioxidant selenium transport protein, selenoprotein P (SEPP1). Using knockout mouse models, we confirmed that SEPP1 and its receptor low-density lipoprotein receptor-related protein 8 (LRP8) are required for the exercise-induced increase in adult hippocampal neurogenesis. In vivo selenium infusion increased hippocampal neural precursor cell (NPC) proliferation and adult neurogenesis. Mimicking the effect of exercise through dietary selenium supplementation restored neurogenesis and reversed the cognitive decline associated with aging and hippocampal injury, suggesting potential therapeutic relevance. These results provide a molecular mechanism linking exercise-induced changes in the systemic environment to the activation of quiescent hippocampal NPCs and their subsequent recruitment into the neurogenic trajectory.


Subject(s)
Neural Stem Cells , Selenium , Aging , Animals , Cell Proliferation , Hippocampus , Mice , Neural Stem Cells/metabolism , Neurogenesis/physiology , Selenium/metabolism , Selenium/pharmacology
20.
J Neurosci ; 30(27): 9038-50, 2010 Jul 07.
Article in English | MEDLINE | ID: mdl-20610738

ABSTRACT

Although a number of growth factors have been shown to be involved in neurogenesis, the role of inflammatory cytokines remains relatively unexplored in the normal brain. Here we investigated the effect of interferon gamma (IFNgamma) in the regulation of neural precursor (NP) activity in both the developing and the adult mouse brain. Exogenous IFNgamma inhibited neurosphere formation from the wild-type neonatal and adult subventricular zone (SVZ). More importantly, however, these effects were mirrored in vivo, with mutant mice lacking endogenous IFNgamma displaying enhanced neurogenesis, as demonstrated by an increase in proliferative bromodeoxyuridine-labeled cells in the SVZ and an increased percentage of newborn neurons in the olfactory bulb. Furthermore, NPs isolated from IFNgamma null mice exhibited an increase in self-renewal ability and in the capacity to produce differentiated neurons and oligodendrocytes. These effects resulted from the direct action of IFNgamma on the NPs, as determined by single-cell assays and the fact that nearly all the neurospheres were derived from cells positive for major histocompatibility complex class I antigen, a downstream marker of IFNgamma-mediated activation. Moreover, the inhibitory effect was ameliorated in the presence of SVZ-derived microglia, with their removal resulting in almost complete inhibition of NP proliferation. Interestingly, in contrast to the results obtained in the adult, exogenous IFNgamma treatment stimulated neurosphere formation from the embryonic brain, an effect that was mediated by sonic hedgehog. Together these findings provide the first direct evidence that IFNgamma acts as a regulator of the active NP pool in the non-inflammatory brain.


Subject(s)
Brain , Cell Differentiation/physiology , Gene Expression Regulation, Developmental/genetics , Interferon-gamma/deficiency , Neurons/physiology , Stem Cells/physiology , Animals , Animals, Newborn , Brain/cytology , Brain/embryology , Brain/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Embryo, Mammalian , Flow Cytometry/methods , Gene Expression Regulation, Developmental/drug effects , Green Fluorescent Proteins/genetics , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Interferon-gamma/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/drug effects , Microglia/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/drug effects , RNA, Messenger/metabolism , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Stem Cells/drug effects , Time Factors , bcl-2-Associated X Protein/deficiency , Interferon gamma Receptor
SELECTION OF CITATIONS
SEARCH DETAIL