Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Hum Mol Genet ; 23(3): 590-601, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24045615

ABSTRACT

Acute lymphoblastic leukemia (ALL) accounts for ∼25% of pediatric malignancies. Of interest, the incidence of ALL is observed ∼20% higher in males relative to females. The mechanism behind the phenomenon of sex-specific differences is presently not understood. Employing genome-wide genetic aberration screening in 19 ALL samples, one of the most recurrent lesions identified was monoallelic deletion of the 5' region of SLX4IP. We characterized this deletion by conventional molecular genetic techniques and analyzed its interrelationships with biological and clinical characteristics using specimens and data from 993 pediatric patients enrolled into trial AIEOP-BFM ALL 2000. Deletion of SLX4IP was detected in ∼30% of patients. Breakpoints within SLX4IP were defined to recurrent positions and revealed junctions with typical characteristics of illegitimate V(D)J-mediated recombination. In initial and validation analyses, SLX4IP deletions were significantly associated with male gender and ETV6/RUNX1-rearranged ALL (both overall P < 0.0001). For mechanistic validation, a second recurrent deletion affecting TAL1 and caused by the same molecular mechanism was analyzed in 1149 T-cell ALL patients. Validating a differential role by sex of illegitimate V(D)J-mediated recombination at the TAL1 locus, 128 out of 1149 T-cell ALL samples bore a deletion and males were significantly more often affected (P = 0.002). The repeatedly detected association of SLX4IP deletion with male sex and the extension of the sex bias to deletion of the TAL1 locus suggest that differential illegitimate V(D)J-mediated recombination events at specific loci may contribute to the consistent observation of higher incidence rates of childhood ALL in boys compared with girls.


Subject(s)
Carrier Proteins/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Recombinases/genetics , V(D)J Recombination , Adolescent , Basic Helix-Loop-Helix Transcription Factors/genetics , Child , Child, Preschool , Cohort Studies , Core Binding Factor Alpha 2 Subunit/genetics , Female , Gene Deletion , Humans , Infant , Male , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1 , ETS Translocation Variant 6 Protein
2.
J Clin Med ; 10(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34768335

ABSTRACT

BACKGROUND: Acute pancreatitis (AP) is a serious, mechanistically not entirely resolved side effect of L-asparaginase-containing treatment for acute lymphoblastic leukemia (ALL). To find new candidate variations for AP, we conducted a genome-wide association study (GWAS). METHODS: In all, 1,004,623 single-nucleotide variants (SNVs) were analyzed in 51 pediatric ALL patients with AP (cases) and 1388 patients without AP (controls). Replication used independent patients. RESULTS: The top-ranked SNV (rs4148513) was located within the ABCC4 gene (odds ratio (OR) 84.1; p = 1.04 × 10-14). Independent replication of our 20 top SNVs was not supportive of initial results, partly because rare variants were neither present in cases nor present in controls. However, results of combined analysis (GWAS and replication cohorts) remained significant (e.g., rs4148513; OR = 47.2; p = 7.31 × 10-9). Subsequently, we sequenced the entire ABCC4 gene and its close relative, the cystic fibrosis associated CFTR gene, a strong AP candidate gene, in 48 cases and 47 controls. Six AP-associated variants in ABCC4 and one variant in CFTR were detected. Replication confirmed the six ABCC4 variants but not the CFTR variant. CONCLUSIONS: Genetic variation within the ABCC4 gene was associated with AP during the treatment of ALL. No association of AP with CFTR was observed. Larger international studies are necessary to more conclusively assess the risk of rare clinical phenotypes.

3.
Nat Genet ; 47(9): 1020-1029, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26214592

ABSTRACT

TCF3-HLF-positive acute lymphoblastic leukemia (ALL) is currently incurable. Using an integrated approach, we uncovered distinct mutation, gene expression and drug response profiles in TCF3-HLF-positive and treatment-responsive TCF3-PBX1-positive ALL. We identified recurrent intragenic deletions of PAX5 or VPREB1 in constellation with the fusion of TCF3 and HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin toward a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics but sensitivity to glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease.


Subject(s)
Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Coculture Techniques , Cohort Studies , DNA Mutational Analysis , Drug Resistance, Neoplasm , Female , Gene Expression , Genetic Association Studies , Genomics , Humans , Immunoglobulin Light Chains, Surrogate/genetics , Inhibitory Concentration 50 , Kaplan-Meier Estimate , Male , Mice, Inbred NOD , Mice, SCID , Mutation , Oncogene Proteins, Fusion/metabolism , PAX5 Transcription Factor/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Sequence Deletion , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL