Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Mol Biol ; 357(2): 351-7, 2006 Mar 24.
Article in English | MEDLINE | ID: mdl-16434051

ABSTRACT

LINE-1, or L1, is a highly successful retrotransposon in mammals, comprising 17% and 19% of the human and mouse genomes, respectively. L1 retrotransposition and hence amplification requires the protein products of its two open reading frames, ORF1 and ORF2. The sequence of the ORF1 protein (ORF1p) is not related to any protein with known function. ORF1p has RNA binding and nucleic acid chaperone activities that are both required for retrotransposition. Earlier studies have shown that ORF1p forms a homotrimer with an asymmetric dumbbell shape, in which a rod separates a large end from a small end. Here, we determine the topological arrangement of monomers within the homotrimer by comparing atomic force microscopy (AFM) images of the full ORF1p with those of truncations containing just the N or C-terminal regions. In addition, AFM images of ORF1p bound to RNA at high protein/RNA molar ratios show that ORF1p can form tightly packed clusters on RNA, with binding occurring at the C-terminal domain. The number of bound ORF1p trimers increases with increasing length of the RNA, revealing that the binding site size is about 50 nt, a value confirmed by nitrocellulose filter binding under stoichiometric conditions. These results are consistent with a role for ORF1p during L1 retrotransposition that includes both coating the RNA and acting as a nucleic acid chaperone. Furthermore, these in vitro L1 ribonucleoprotein particles provide insight into the structure of the L1 retrotransposition intermediate.


Subject(s)
Long Interspersed Nucleotide Elements , Mutagenesis, Insertional , RNA/metabolism , Retroelements , Animals , Humans , Mice , Microscopy, Atomic Force , Open Reading Frames , Protein Binding , Protein Conformation
2.
J Am Chem Soc ; 126(29): 8904-5, 2004 Jul 28.
Article in English | MEDLINE | ID: mdl-15264815

ABSTRACT

We describe a facile method for the formation of dynamic nanostructured surfaces based on the modification of porous anodic aluminum oxide with poly(N-isopropyl acrylamide) (PNIPAAm) via surface-initiated atom transfer radical polymerization. The dynamic structure of these surfaces was investigated by atomic force microscopy (AFM), which showed dramatic changes in the surface nanostructure above and below the aqueous lower critical solution temperature of PNIPAAm. These changes in surface structure are correlated with changes in the macroscopic wettability of the surfaces, which was probed by water contact angle measurements. Principal component analysis was used to develop a quantitative correlation between AFM image intensity histograms and macroscopic wettability. Such correlations and dynamic nanostructured surfaces may have a variety of uses.


Subject(s)
Acrylic Resins/chemistry , Nanotechnology/methods , Aluminum Oxide/chemistry , Microscopy, Atomic Force , Surface Properties , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL