Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 288
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39332414

ABSTRACT

In this high-throughput proteomic study of autosomal dominant Alzheimer's disease (ADAD), we sought to identify early biomarkers in cerebrospinal fluid (CSF) for disease monitoring and treatment strategies. We examined CSF proteins in 286 mutation carriers (MCs) and 177 non-carriers (NCs). The developed multi-layer regression model distinguished proteins with different pseudo-trajectories between these groups. We validated our findings with independent ADAD as well as sporadic AD datasets and employed machine learning to develop and validate predictive models. Our study identified 137 proteins with distinct trajectories between MCs and NCs, including eight that changed before traditional AD biomarkers. These proteins are grouped into three stages: early stage (stress response, glutamate metabolism, neuron mitochondrial damage), middle stage (neuronal death, apoptosis), and late presymptomatic stage (microglial changes, cell communication). The predictive model revealed a six-protein subset that more effectively differentiated MCs from NCs, compared with conventional biomarkers.

2.
Nature ; 611(7936): 585-593, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36352225

ABSTRACT

Macrophages are important players in the maintenance of tissue homeostasis1. Perivascular and leptomeningeal macrophages reside near the central nervous system (CNS) parenchyma2, and their role in CNS physiology has not been sufficiently well studied. Given their continuous interaction with the cerebrospinal fluid (CSF) and strategic positioning, we refer to these cells collectively as parenchymal border macrophages (PBMs). Here we demonstrate that PBMs regulate CSF flow dynamics. We identify a subpopulation of PBMs that express high levels of CD163 and LYVE1 (scavenger receptor proteins), closely associated with the brain arterial tree, and show that LYVE1+ PBMs regulate arterial motion that drives CSF flow. Pharmacological or genetic depletion of PBMs led to accumulation of extracellular matrix proteins, obstructing CSF access to perivascular spaces and impairing CNS perfusion and clearance. Ageing-associated alterations in PBMs and impairment of CSF dynamics were restored after intracisternal injection of macrophage colony-stimulating factor. Single-nucleus RNA sequencing data obtained from patients with Alzheimer's disease (AD) and from non-AD individuals point to changes in phagocytosis, endocytosis and interferon-γ signalling on PBMs, pathways that are corroborated in a mouse model of AD. Collectively, our results identify PBMs as new cellular regulators of CSF flow dynamics, which could be targeted pharmacologically to alleviate brain clearance deficits associated with ageing and AD.


Subject(s)
Central Nervous System , Cerebrospinal Fluid , Macrophages , Parenchymal Tissue , Animals , Mice , Alzheimer Disease/metabolism , Brain/metabolism , Central Nervous System/cytology , Central Nervous System/metabolism , Cerebrospinal Fluid/metabolism , Macrophages/physiology , Meninges/cytology , Rheology , Extracellular Matrix Proteins/metabolism , Aging/metabolism , Phagocytosis , Endocytosis , Interferon-gamma/metabolism , Parenchymal Tissue/cytology , Humans
3.
N Engl J Med ; 388(1): 9-21, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36449413

ABSTRACT

BACKGROUND: The accumulation of soluble and insoluble aggregated amyloid-beta (Aß) may initiate or potentiate pathologic processes in Alzheimer's disease. Lecanemab, a humanized IgG1 monoclonal antibody that binds with high affinity to Aß soluble protofibrils, is being tested in persons with early Alzheimer's disease. METHODS: We conducted an 18-month, multicenter, double-blind, phase 3 trial involving persons 50 to 90 years of age with early Alzheimer's disease (mild cognitive impairment or mild dementia due to Alzheimer's disease) with evidence of amyloid on positron-emission tomography (PET) or by cerebrospinal fluid testing. Participants were randomly assigned in a 1:1 ratio to receive intravenous lecanemab (10 mg per kilogram of body weight every 2 weeks) or placebo. The primary end point was the change from baseline at 18 months in the score on the Clinical Dementia Rating-Sum of Boxes (CDR-SB; range, 0 to 18, with higher scores indicating greater impairment). Key secondary end points were the change in amyloid burden on PET, the score on the 14-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-cog14; range, 0 to 90; higher scores indicate greater impairment), the Alzheimer's Disease Composite Score (ADCOMS; range, 0 to 1.97; higher scores indicate greater impairment), and the score on the Alzheimer's Disease Cooperative Study-Activities of Daily Living Scale for Mild Cognitive Impairment (ADCS-MCI-ADL; range, 0 to 53; lower scores indicate greater impairment). RESULTS: A total of 1795 participants were enrolled, with 898 assigned to receive lecanemab and 897 to receive placebo. The mean CDR-SB score at baseline was approximately 3.2 in both groups. The adjusted least-squares mean change from baseline at 18 months was 1.21 with lecanemab and 1.66 with placebo (difference, -0.45; 95% confidence interval [CI], -0.67 to -0.23; P<0.001). In a substudy involving 698 participants, there were greater reductions in brain amyloid burden with lecanemab than with placebo (difference, -59.1 centiloids; 95% CI, -62.6 to -55.6). Other mean differences between the two groups in the change from baseline favoring lecanemab were as follows: for the ADAS-cog14 score, -1.44 (95% CI, -2.27 to -0.61; P<0.001); for the ADCOMS, -0.050 (95% CI, -0.074 to -0.027; P<0.001); and for the ADCS-MCI-ADL score, 2.0 (95% CI, 1.2 to 2.8; P<0.001). Lecanemab resulted in infusion-related reactions in 26.4% of the participants and amyloid-related imaging abnormalities with edema or effusions in 12.6%. CONCLUSIONS: Lecanemab reduced markers of amyloid in early Alzheimer's disease and resulted in moderately less decline on measures of cognition and function than placebo at 18 months but was associated with adverse events. Longer trials are warranted to determine the efficacy and safety of lecanemab in early Alzheimer's disease. (Funded by Eisai and Biogen; Clarity AD ClinicalTrials.gov number, NCT03887455.).


Subject(s)
Alzheimer Disease , Antibodies, Monoclonal, Humanized , Nootropic Agents , Humans , Activities of Daily Living , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/cerebrospinal fluid , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Cognition/drug effects , Double-Blind Method , Nootropic Agents/adverse effects , Nootropic Agents/pharmacology , Nootropic Agents/therapeutic use
4.
N Engl J Med ; 389(20): 1862-1876, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37966285

ABSTRACT

BACKGROUND: Monoclonal antibodies that target amyloid-beta (Aß) have the potential to slow cognitive and functional decline in persons with early Alzheimer's disease. Gantenerumab is a subcutaneously administered, fully human, anti-Aß IgG1 monoclonal antibody with highest affinity for aggregated Aß that has been tested for the treatment of Alzheimer's disease. METHODS: We conducted two phase 3 trials (GRADUATE I and II) involving participants 50 to 90 years of age with mild cognitive impairment or mild dementia due to Alzheimer's disease and evidence of amyloid plaques on positron-emission tomography (PET) or cerebrospinal fluid (CSF) testing. Participants were randomly assigned to receive gantenerumab or placebo every 2 weeks. The primary outcome was the change from baseline in the score on the Clinical Dementia Rating scale-Sum of Boxes (CDR-SB; range, 0 to 18, with higher scores indicating greater cognitive impairment) at week 116. RESULTS: A total of 985 and 980 participants were enrolled in the GRADUATE I and II trials, respectively. The baseline CDR-SB score was 3.7 in the GRADUATE I trial and 3.6 in the GRADUATE II trial. The change from baseline in the CDR-SB score at week 116 was 3.35 with gantenerumab and 3.65 with placebo in the GRADUATE I trial (difference, -0.31; 95% confidence interval [CI], -0.66 to 0.05; P = 0.10) and was 2.82 with gantenerumab and 3.01 with placebo in the GRADUATE II trial (difference, -0.19; 95% CI, -0.55 to 0.17; P = 0.30). At week 116, the difference in the amyloid level on PET between the gantenerumab group and the placebo group was -66.44 and -56.46 centiloids in the GRADUATE I and II trials, respectively, and amyloid-negative status was attained in 28.0% and 26.8% of the participants receiving gantenerumab in the two trials. Across both trials, participants receiving gantenerumab had lower CSF levels of phosphorylated tau 181 and higher levels of Aß42 than those receiving placebo; the accumulation of aggregated tau on PET was similar in the two groups. Amyloid-related imaging abnormalities with edema (ARIA-E) occurred in 24.9% of the participants receiving gantenerumab, and symptomatic ARIA-E occurred in 5.0%. CONCLUSIONS: Among persons with early Alzheimer's disease, the use of gantenerumab led to a lower amyloid plaque burden than placebo at 116 weeks but was not associated with slower clinical decline. (Funded by F. Hoffmann-La Roche; GRADUATE I and II ClinicalTrials.gov numbers, NCT03444870 and NCT03443973, respectively.).


Subject(s)
Alzheimer Disease , Antibodies, Monoclonal, Humanized , Humans , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/cerebrospinal fluid , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Positron-Emission Tomography , Middle Aged , Aged , Aged, 80 and over
5.
Ann Neurol ; 95(5): 951-965, 2024 May.
Article in English | MEDLINE | ID: mdl-38400792

ABSTRACT

OBJECTIVE: A clock relating amyloid positron emission tomography (PET) to time was used to estimate the timing of biomarker changes in sporadic Alzheimer disease (AD). METHODS: Research participants were included who underwent cerebrospinal fluid (CSF) collection within 2 years of amyloid PET. The ages at amyloid onset and AD symptom onset were estimated for each individual. The timing of change for plasma, CSF, imaging, and cognitive measures was calculated by comparing restricted cubic splines of cross-sectional data from the amyloid PET positive and negative groups. RESULTS: The amyloid PET positive sub-cohort (n = 118) had an average age of 70.4 ± 7.4 years (mean ± standard deviation) and 16% were cognitively impaired. The amyloid PET negative sub-cohort (n = 277) included individuals with low levels of amyloid plaque burden at all scans who were cognitively unimpaired at the time of the scans. Biomarker changes were detected 15-19 years before estimated symptom onset for CSF Aß42/Aß40, plasma Aß42/Aß40, CSF pT217/T217, and amyloid PET; 12-14 years before estimated symptom onset for plasma pT217/T217, CSF neurogranin, CSF SNAP-25, CSF sTREM2, plasma GFAP, and plasma NfL; and 7-9 years before estimated symptom onset for CSF pT205/T205, CSF YKL-40, hippocampal volumes, and cognitive measures. INTERPRETATION: The use of an amyloid clock enabled visualization and analysis of biomarker changes as a function of estimated years from symptom onset in sporadic AD. This study demonstrates that estimated years from symptom onset based on an amyloid clock can be used as a continuous staging measure for sporadic AD and aligns with findings in autosomal dominant AD. ANN NEUROL 2024;95:951-965.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Positron-Emission Tomography , Humans , Alzheimer Disease/blood , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/diagnosis , Female , Male , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Aged , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/blood , Middle Aged , Peptide Fragments/cerebrospinal fluid , Peptide Fragments/blood , Aged, 80 and over , Cross-Sectional Studies , Time Factors , Age of Onset , Cohort Studies , Disease Progression , Chitinase-3-Like Protein 1/cerebrospinal fluid , Chitinase-3-Like Protein 1/blood , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/blood , Plaque, Amyloid/diagnostic imaging , Plaque, Amyloid/pathology
6.
Ann Neurol ; 96(3): 453-459, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38963256

ABSTRACT

The life expectancy of people with multiple sclerosis (MS) has increased, yet we have noted that development of a typical Alzheimer disease dementia syndrome is uncommon. We hypothesized that Alzheimer disease pathology is uncommon in MS patients. In 100 MS patients, the rate of amyloid-ß plasma biomarker positivity was approximately half the rate in 300 non-MS controls matched on age, sex, apolipoprotein E proteotype, and cognitive status. Interestingly, most MS patients who did have amyloid-ß pathology had features atypical for MS at diagnosis. These results support that MS is associated with reduced Alzheimer disease risk, and suggest new avenues of research. ANN NEUROL 2024;96:453-459.


Subject(s)
Amyloid beta-Peptides , Multiple Sclerosis , Humans , Female , Male , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/blood , Multiple Sclerosis/pathology , Multiple Sclerosis/blood , Middle Aged , Adult , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/blood , Biomarkers/blood , Aged
7.
Radiology ; 311(3): e231442, 2024 06.
Article in English | MEDLINE | ID: mdl-38860897

ABSTRACT

Background Visual assessment of amyloid PET scans relies on the availability of radiologist expertise, whereas quantification of amyloid burden typically involves MRI for processing and analysis, which can be computationally expensive. Purpose To develop a deep learning model to classify minimally processed brain PET scans as amyloid positive or negative, evaluate its performance on independent data sets and different tracers, and compare it with human visual reads. Materials and Methods This retrospective study used 8476 PET scans (6722 patients) obtained from late 2004 to early 2023 that were analyzed across five different data sets. A deep learning model, AmyloidPETNet, was trained on 1538 scans from 766 patients, validated on 205 scans from 95 patients, and internally tested on 184 scans from 95 patients in the Alzheimer's Disease Neuroimaging Initiative (ADNI) fluorine 18 (18F) florbetapir (FBP) data set. It was tested on ADNI scans using different tracers and scans from independent data sets. Scan amyloid positivity was based on mean cortical standardized uptake value ratio cutoffs. To compare with model performance, each scan from both the Centiloid Project and a subset of the Anti-Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4) study were visually interpreted with a confidence level (low, intermediate, high) of amyloid positivity/negativity. The area under the receiver operating characteristic curve (AUC) and other performance metrics were calculated, and Cohen κ was used to measure physician-model agreement. Results The model achieved an AUC of 0.97 (95% CI: 0.95, 0.99) on test ADNI 18F-FBP scans, which generalized well to 18F-FBP scans from the Open Access Series of Imaging Studies (AUC, 0.95; 95% CI: 0.93, 0.97) and the A4 study (AUC, 0.98; 95% CI: 0.98, 0.98). Model performance was high when applied to data sets with different tracers (AUC ≥ 0.97). Other performance metrics provided converging evidence. Physician-model agreement ranged from fair (Cohen κ = 0.39; 95% CI: 0.16, 0.60) on a sample of mostly equivocal cases from the A4 study to almost perfect (Cohen κ = 0.93; 95% CI: 0.86, 1.0) on the Centiloid Project. Conclusion The developed model was capable of automatically and accurately classifying brain PET scans as amyloid positive or negative without relying on experienced readers or requiring structural MRI. Clinical trial registration no. NCT00106899 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Bryan and Forghani in this issue.


Subject(s)
Alzheimer Disease , Brain , Deep Learning , Positron-Emission Tomography , Humans , Positron-Emission Tomography/methods , Retrospective Studies , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/classification , Male , Female , Aged , Brain/diagnostic imaging , Brain/metabolism , Amyloid/metabolism , Aged, 80 and over
8.
Ann Neurol ; 94(1): 27-40, 2023 07.
Article in English | MEDLINE | ID: mdl-36897120

ABSTRACT

OBJECTIVE: In Alzheimer's disease, hyperphosphorylated tau is associated with formation of insoluble paired helical filaments that aggregate as neurofibrillary tau tangles and are associated with neuronal loss and cognitive symptoms. Dual orexin receptor antagonists decrease soluble amyloid-ß levels and amyloid plaques in mouse models overexpressing amyloid-ß, but have not been reported to affect tau phosphorylation. In this randomized controlled trial, we tested the acute effect of suvorexant, a dual orexin receptor antagonist, on amyloid-ß, tau, and phospho-tau. METHODS: Thirty-eight cognitively unimpaired participants aged 45 to 65 years were randomized to placebo (N = 13), suvorexant 10 mg (N = 13), and suvorexant 20 mg (N = 12). Six milliliters of cerebrospinal fluid were collected via an indwelling lumbar catheter every 2 hours for 36 hours starting at 20:00. Participants received placebo or suvorexant at 21:00. All samples were processed and measured for multiple forms of amyloid-ß, tau, and phospho-tau via immunoprecipitation and liquid chromatography-mass spectrometry. RESULTS: The ratio of phosphorylated-tau-threonine-181 to unphosphorylated-tau-threonine-181, a measure of phosphorylation at this tau phosphosite, decreased ~10% to 15% in participants treated with suvorexant 20 mg compared to placebo. However, phosphorylation at tau-serine-202 and tau-threonine-217 were not decreased by suvorexant. Suvorexant decreased amyloid-ß ~10% to 20% compared to placebo starting 5 hours after drug administration. INTERPRETATION: In this study, suvorexant acutely decreased tau phosphorylation and amyloid-ß concentrations in the central nervous system. Suvorexant is approved by the US Food and Drug Administration to treatment insomnia and may have potential as a repurposed drug for the prevention of Alzheimer's disease, however, future studies with chronic treatment are needed. ANN NEUROL 2023;94:27-40.


Subject(s)
Alzheimer Disease , Mice , Animals , Humans , Alzheimer Disease/diagnosis , Phosphorylation , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Central Nervous System/metabolism , Orexin Receptor Antagonists/pharmacology , Orexin Receptor Antagonists/therapeutic use
9.
Ann Neurol ; 93(6): 1158-1172, 2023 06.
Article in English | MEDLINE | ID: mdl-36843330

ABSTRACT

OBJECTIVE: Identifying cerebrospinal fluid measures of the microtubule binding region of tau (MTBR-tau) species that reflect tau aggregation could provide fluid biomarkers that track Alzheimer's disease related neurofibrillary tau pathological changes. We examined the cerebrospinal fluid (CSF) MTBR-tau species in dominantly inherited Alzheimer's disease (DIAD) mutation carriers to assess the association with Alzheimer's disease (AD) biomarkers and clinical symptoms. METHODS: Cross-sectional and longitudinal CSF from 229 DIAD mutation carriers and 130 mutation non-carriers had sequential characterization of N-terminal/mid-domain phosphorylated tau (p-tau) followed by MTBR-tau species and tau positron emission tomography (tau PET), other soluble tau and amyloid biomarkers, comprehensive clinical and cognitive assessments, and brain magnetic resonance imaging of atrophy. RESULTS: CSF MTBR-tau species located within the putative "border" region and one species corresponding to the "core" region of aggregates in neurofibrillary tangles (NFTs) increased during the presymptomatic stage and decreased during the symptomatic stage. The "border" MTBR-tau species were associated with amyloid pathology and CSF p-tau; whereas the "core" MTBR-tau species were associated stronger with tau PET and CSF measures of neurodegeneration. The ratio of the border to the core species provided a continuous measure of increasing amounts that tracked clinical progression and NFTs. INTERPRETATION: Changes in CSF soluble MTBR-tau species preceded the onset of dementia, tau tangle increase, and atrophy in DIAD. The ratio of 4R-specific MTBR-tau (border) to the NFT (core) MTBR-tau species corresponds to the pathology of NFTs in DIAD and change with disease progression. The dynamics between different MTBR-tau species in the CSF may serve as a marker of tau-related disease progression and target engagement of anti-tau therapeutics. ANN NEUROL 2023;93:1158-1172.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Cross-Sectional Studies , tau Proteins/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Positron-Emission Tomography/methods , Atrophy/pathology , Biomarkers/cerebrospinal fluid , Disease Progression , Microtubules/metabolism , Microtubules/pathology
10.
Brain ; 146(4): 1592-1601, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36087307

ABSTRACT

Plasma phospho-tau (p-tau) species have emerged as the most promising blood-based biomarkers of Alzheimer's disease. Here, we performed a head-to-head comparison of p-tau181, p-tau217 and p-tau231 measured using 10 assays to detect abnormal brain amyloid-ß (Aß) status and predict future progression to Alzheimer's dementia. The study included 135 patients with baseline diagnosis of mild cognitive impairment (mean age 72.4 years; 60.7% women) who were followed for an average of 4.9 years. Seventy-one participants had abnormal Aß-status (i.e. abnormal CSF Aß42/40) at baseline; and 45 of these Aß-positive participants progressed to Alzheimer's dementia during follow-up. P-tau concentrations were determined in baseline plasma and CSF. P-tau217 and p-tau181 were both measured using immunoassays developed by Lilly Research Laboratories (Lilly) and mass spectrometry assays developed at Washington University (WashU). P-tau217 was also analysed using Simoa immunoassay developed by Janssen Research and Development (Janss). P-tau181 was measured using Simoa immunoassay from ADxNeurosciences (ADx), Lumipulse immunoassay from Fujirebio (Fuji) and Splex immunoassay from Mesoscale Discovery (Splex). Both p-tau181 and p-tau231 were quantified using Simoa immunoassay developed at the University of Gothenburg (UGOT). We found that the mass spectrometry-based p-tau217 (p-tau217WashU) exhibited significantly better performance than all other plasma p-tau biomarkers when detecting abnormal Aß status [area under curve (AUC) = 0.947; Pdiff < 0.015] or progression to Alzheimer's dementia (AUC = 0.932; Pdiff < 0.027). Among immunoassays, p-tau217Lilly had the highest AUCs (0.886-0.889), which was not significantly different from the AUCs of p-tau217Janss, p-tau181ADx and p-tau181WashU (AUCrange 0.835-0.872; Pdiff > 0.09), but higher compared with AUC of p-tau231UGOT, p-tau181Lilly, p-tau181UGOT, p-tau181Fuji and p-tau181Splex (AUCrange 0.642-0.813; Pdiff ≤ 0.029). Correlations between plasma and CSF values were strongest for p-tau217WashU (R = 0.891) followed by p-tau217Lilly (R = 0.755; Pdiff = 0.003 versus p-tau217WashU) and weak to moderate for the rest of the p-tau biomarkers (Rrange 0.320-0.669). In conclusion, our findings suggest that among all tested plasma p-tau assays, mass spectrometry-based measures of p-tau217 perform best when identifying mild cognitive impairment patients with abnormal brain Aß or those who will subsequently progress to Alzheimer's dementia. Several other assays (p-tau217Lilly, p-tau217Janss, p-tau181ADx and p-tau181WashU) showed relatively high and consistent accuracy across both outcomes. The results further indicate that the highest performing assays have performance metrics that rival the gold standards of Aß-PET and CSF. If further validated, our findings will have significant impacts in diagnosis, screening and treatment for Alzheimer's dementia in the future.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Female , Aged , Male , Alzheimer Disease/diagnosis , tau Proteins , Amyloid beta-Peptides , Cognitive Dysfunction/diagnosis , Brain , Biomarkers
11.
Alzheimers Dement ; 20(9): 6365-6373, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39041391

ABSTRACT

INTRODUCTION: Cerebrospinal fluid (CSF) tau phosphorylation at multiple sites is associated with cortical amyloid and other pathologic changes in Alzheimer's disease. These relationships can be non-linear. We used an artificial neural network to assess the ability of 10 different CSF tau phosphorylation sites to predict continuous amyloid positron emission tomography (PET) values. METHODS: CSF tau phosphorylation occupancies at 10 sites (including pT181/T181, pT217/T217, pT231/T231 and pT205/T205) were measured by mass spectrometry in 346 individuals (57 cognitively impaired, 289 cognitively unimpaired). We generated synthetic amyloid PET scans using biomarkers and evaluated their performance. RESULTS: Concentration of CSF pT217/T217 had low predictive error (average error: 13%), but also a low predictive range (ceiling 63 Centiloids). CSF pT231/T231 has slightly higher error (average error: 19%) but predicted through a greater range (87 Centiloids). DISCUSSION: Tradeoffs exist in biomarker selection. Some phosphorylation sites offer greater concordance with amyloid PET at lower levels, while others perform better over a greater range. HIGHLIGHTS: Novel pTau isoforms can predict cortical amyloid burden. pT217/T217 accurately predicts cortical amyloid burden in low-amyloid individuals. Traditional CSF biomarkers correspond with higher levels of amyloid.


Subject(s)
Alzheimer Disease , Biomarkers , Positron-Emission Tomography , tau Proteins , Humans , tau Proteins/cerebrospinal fluid , tau Proteins/metabolism , Phosphorylation , Female , Male , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Aged , Biomarkers/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Middle Aged , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Neural Networks, Computer
12.
Alzheimers Dement ; 20(8): 5421-5433, 2024 08.
Article in English | MEDLINE | ID: mdl-39030751

ABSTRACT

INTRODUCTION: Estimating treatment effects as time savings in disease progression may be more easily interpretable than assessing the absolute difference or a percentage reduction. In this study, we investigate the statistical considerations of the existing method for estimating time savings and propose alternative complementary methods. METHODS: We propose five alternative methods to estimate the time savings from different perspectives. These methods are applied to simulated clinical trial data that mimic or modify the Clinical Dementia Rating Sum of Boxes progression trajectories observed in the Clarity AD lecanemab trial. RESULTS: Our study demonstrates that the proposed methods can generate more precise estimates by considering two crucial factors: (1) the absolute difference between treatment arms, and (2) the observed progression rate in the treatment arm. DISCUSSION: Quantifying treatment effects as time savings in disease progression offers distinct advantages. To provide comprehensive estimations, it is important to use various methods. HIGHLIGHTS: We explore the statistical considerations of the current method for estimating time savings. We proposed alternative methods that provide time savings estimations based on the observed absolute differences. By using various methods, a more comprehensive estimation of time savings can be achieved.


Subject(s)
Alzheimer Disease , Disease Progression , Humans , Clinical Trials as Topic/methods , Time Factors , Treatment Outcome , Computer Simulation , Models, Statistical
13.
Alzheimers Dement ; 20(9): 6423-6440, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39077866

ABSTRACT

INTRODUCTION: Plasma has been proposed as an alternative to cerebrospinal fluid (CSF) for measuring Alzheimer's disease (AD) biomarkers, but no studies have analyzed in detail which biofluid is more informative for genetics studies of AD. METHOD: Eleven proteins associated with AD (α-synuclein, apolipoprotein E [apoE], CLU, GFAP, GRN, NfL, NRGN, SNAP-25, TREM2, VILIP-1, YKL-40) were assessed in plasma (n = 2317) and CSF (n = 3107). Both plasma and CSF genome-wide association study (GWAS) analyses were performed for each protein, followed by functional annotation. Additional characterization for each biomarker included calculation of correlations and predictive power. RESULTS: Eighteen plasma protein quantitative train loci (pQTLs) associated with 10 proteins and 16 CSF pQTLs associated with 9 proteins were identified. Plasma and CSF shared some genetic loci, but protein levels between tissues correlated weakly. CSF protein levels better associated with AD compared to plasma. DISCUSSION: The present results indicate that CSF is more informative than plasma for genetic studies in AD. HIGHLIGHTS: The identification of novel protein quantitative trait loci (pQTLs) in both plasma and cerebrospinal fluid (CSF). Plasma and CSF levels of neurodegeneration-related proteins correlated weakly. CSF is more informative than plasma for genetic studies of Alzheimer's disease (AD). Neurofilament light (NfL), triggering receptor expressed on myeloid cells 2 (TREM2), and chitinase-3-like protein 1 (YKL-40) tend to show relatively strong inter-tissue associations. A novel signal in the apolipoprotein E (APOE) region was identified, which is an eQTL for APOC1.


Subject(s)
Alzheimer Disease , Biomarkers , Genome-Wide Association Study , Proteomics , Humans , Alzheimer Disease/genetics , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/blood , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Male , Female , Aged , Quantitative Trait Loci
14.
Alzheimers Dement ; 20(5): 3179-3192, 2024 05.
Article in English | MEDLINE | ID: mdl-38491912

ABSTRACT

BACKGROUND: With the availability of disease-modifying therapies for Alzheimer's disease (AD), it is important for clinicians to have tests to aid in AD diagnosis, especially when the presence of amyloid pathology is a criterion for receiving treatment. METHODS: High-throughput, mass spectrometry-based assays were used to measure %p-tau217 and amyloid beta (Aß)42/40 ratio in blood samples from 583 individuals with suspected AD (53% positron emission tomography [PET] positive by Centiloid > 25). An algorithm (PrecivityAD2 test) was developed using these plasma biomarkers to identify brain amyloidosis by PET. RESULTS: The area under the receiver operating characteristic curve (AUC-ROC) for %p-tau217 (0.94) was statistically significantly higher than that for p-tau217 concentration (0.91). The AUC-ROC for the PrecivityAD2 test output, the Amyloid Probability Score 2, was 0.94, yielding 88% agreement with amyloid PET. Diagnostic performance of the APS2 was similar by ethnicity, sex, age, and apoE4 status. DISCUSSION: The PrecivityAD2 blood test showed strong clinical validity, with excellent agreement with brain amyloidosis by PET.


Subject(s)
Algorithms , Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Brain , Mass Spectrometry , Peptide Fragments , Positron-Emission Tomography , tau Proteins , Humans , Amyloid beta-Peptides/blood , Female , Male , tau Proteins/blood , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Alzheimer Disease/diagnostic imaging , Aged , Peptide Fragments/blood , Brain/diagnostic imaging , Brain/metabolism , Biomarkers/blood , Middle Aged , Aged, 80 and over , ROC Curve
15.
Alzheimers Dement ; 20(4): 2698-2706, 2024 04.
Article in English | MEDLINE | ID: mdl-38400532

ABSTRACT

INTRODUCTION: Increasing evidence suggests that amyloid reduction could serve as a plausible surrogate endpoint for clinical and cognitive efficacy. The double-blind phase 3 DIAN-TU-001 trial tested clinical and cognitive declines with increasing doses of solanezumab or gantenerumab. METHODS: We used latent class (LC) analysis on data from the Dominantly Inherited Alzheimer Network Trials Unit 001 trial to test amyloid positron emission tomography (PET) reduction as a potential surrogate biomarker. RESULTS: LC analysis categorized participants into three classes: amyloid no change, amyloid reduction, and amyloid growth, based on longitudinal amyloid Pittsburgh compound B PET standardized uptake value ratio data. The amyloid-no-change class was at an earlier disease stage for amyloid amounts and dementia. Despite similar baseline characteristics, the amyloid-reduction class exhibited reductions in the annual decline rates compared to the amyloid-growth class across multiple biomarker, clinical, and cognitive outcomes. DISCUSSION: LC analysis indicates that amyloid reduction is associated with improved clinical outcomes and supports its use as a surrogate biomarker in clinical trials. HIGHLIGHTS: We used latent class (LC) analysis to test amyloid reduction as a surrogate biomarker. Despite similar baseline characteristics, the amyloid-reduction class exhibited remarkably better outcomes compared to the amyloid-growth class across multiple measures. LC analysis proves valuable in testing amyloid reduction as a surrogate biomarker in clinical trials lacking significant treatment effects.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Amyloid , Amyloid beta-Peptides , Amyloidogenic Proteins , Biomarkers , Double-Blind Method , Latent Class Analysis , Positron-Emission Tomography/methods
16.
Alzheimers Dement ; 20(1): 47-62, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37740921

ABSTRACT

INTRODUCTION: Studies suggest distinct differences in the development, presentation, progression, and response to treatment of Alzheimer's disease (AD) between females and males. We investigated sex differences in cognition, neuroimaging, and fluid biomarkers in dominantly inherited AD (DIAD). METHODS: Three hundred twenty-five mutation carriers (55% female) and one hundred eighty-six non-carriers (58% female) of the Dominantly Inherited Alzheimer Network Observational Study were analyzed. Linear mixed models and Spearman's correlation explored cross-sectional sex differences in cognition, cerebrospinal fluid (CSF) biomarkers, Pittsburgh compound B positron emission tomography (11 C-PiB PET) and structural magnetic resonance imaging (MRI). RESULTS: Female carriers performed better than males on delayed recall and processing speed despite similar hippocampal volumes. As the disease progressed, symptomatic females revealed higher increases in MRI markers of neurodegeneration and memory impairment. PiB PET and established CSF AD markers revealed no sex differences. DISCUSSION: Our findings suggest an initial cognitive reserve in female carriers followed by a pronounced increase in neurodegeneration coupled with worse performance on delayed recall at later stages of DIAD.


Subject(s)
Alzheimer Disease , Humans , Female , Male , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Cross-Sectional Studies , Sex Characteristics , Positron-Emission Tomography , Mutation/genetics , Biomarkers
17.
Alzheimers Dement ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324510

ABSTRACT

INTRODUCTION: We investigated longitudinal associations between self-reported exercise and Alzheimer's disease (AD)-related biomarkers in individuals with autosomal dominant AD (ADAD) mutations. METHODS: Participants were 308 ADAD mutation carriers aged 39.7 ± 10.8 years from the Dominantly Inherited Alzheimer's Network. Weekly exercise volume was measured via questionnaire and associations with brain volume (magnetic resonance imaging), cerebrospinal fluid biomarkers, and brain amyloid beta (Aß) measured by positron emission tomography were investigated. RESULTS: Greater volume of weekly exercise at baseline was associated with slower accumulation of brain Aß at preclinical disease stages ß = -0.16 [-0.23 to -0.08], and a slower decline in multiple brain regions including hippocampal volume ß = 0.06 [0.03 to 0.08]. DISCUSSION: Exercise is associated with more favorable profiles of AD-related biomarkers in individuals with ADAD mutations. Exercise may have therapeutic potential for delaying the onset of AD; however, randomized controlled trials are vital to determine a causal relationship before a clinical recommendation of exercise is implemented. HIGHLIGHTS: Greater self-reported weekly exercise predicts slower declines in brain volume in autosomal dominant Alzheimer's disease (ADAD). Greater self-reported weekly exercise predicts slower accumulation of brain amyloid beta in ADAD. Associations varied depending on closeness to estimated symptom onset.

18.
Alzheimers Dement ; 20(6): 4351-4365, 2024 06.
Article in English | MEDLINE | ID: mdl-38666355

ABSTRACT

INTRODUCTION: Amyloid beta and tau pathology are the hallmarks of sporadic Alzheimer's disease (AD) and autosomal dominant AD (ADAD). However, Lewy body pathology (LBP) is found in ≈ 50% of AD and ADAD brains. METHODS: Using an α-synuclein seed amplification assay (SAA) in cerebrospinal fluid (CSF) from asymptomatic (n = 26) and symptomatic (n = 27) ADAD mutation carriers, including 12 with known neuropathology, we investigated the timing of occurrence and prevalence of SAA positive reactivity in ADAD in vivo. RESULTS: No asymptomatic participant and only 11% (3/27) of the symptomatic patients tested SAA positive. Neuropathology revealed LBP in 10/12 cases, primarily affecting the amygdala or the olfactory areas. In the latter group, only the individual with diffuse LBP reaching the neocortex showed α-synuclein seeding activity in CSF in vivo. DISCUSSION: Results suggest that in ADAD LBP occurs later than AD pathology and often as amygdala- or olfactory-predominant LBP, for which CSF α-synuclein SAA has low sensitivity. HIGHLIGHTS: Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) detects misfolded α-synuclein in ≈ 10% of symptomatic autosomal dominant Alzheimer's disease (ADAD) patients. CSF RT-QuIC does not detect α-synuclein seeding activity in asymptomatic mutation carriers. Lewy body pathology (LBP) in ADAD mainly occurs as olfactory only or amygdala-predominant variants. LBP develops late in the disease course in ADAD. CSF α-synuclein RT-QuIC has low sensitivity for focal, low-burden LBP.


Subject(s)
Alzheimer Disease , Lewy Bodies , alpha-Synuclein , Aged , Female , Humans , Male , Middle Aged , alpha-Synuclein/cerebrospinal fluid , alpha-Synuclein/genetics , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Brain/pathology , Disease Progression , Lewy Bodies/pathology , Mutation
19.
Hum Brain Mapp ; 44(18): 6375-6387, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37867465

ABSTRACT

Carriers of mutations responsible for dominantly inherited Alzheimer disease provide a unique opportunity to study potential imaging biomarkers. Biomarkers based on routinely acquired clinical MR images, could supplement the extant invasive or logistically challenging) biomarker studies. We used 1104 longitudinal MR, 324 amyloid beta, and 87 tau positron emission tomography imaging sessions from 525 participants enrolled in the Dominantly Inherited Alzheimer Network Observational Study to extract novel imaging metrics representing the mean (µ) and standard deviation (σ) of standardized image intensities of T1-weighted and Fluid attenuated inversion recovery (FLAIR) MR scans. There was an exponential decrease in FLAIR-µ in mutation carriers and an increase in FLAIR and T1 signal heterogeneity (T1-σ and FLAIR-σ) as participants approached the symptom onset in both supramarginal, the right postcentral and right superior temporal gyri as well as both caudate nuclei, putamina, thalami, and amygdalae. After controlling for the effect of regional atrophy, FLAIR-µ decreased and T1-σ and FLAIR-σ increased with increasing amyloid beta and tau deposition in numerous cortical regions. In symptomatic mutation carriers and independent of the effect of regional atrophy, tau pathology demonstrated a stronger relationship with image intensity metrics, compared with amyloid pathology. We propose novel MR imaging intensity-based metrics using standard clinical T1 and FLAIR images which strongly associates with the progression of pathology in dominantly inherited Alzheimer disease. We suggest that tau pathology may be a key driver of the observed changes in this cohort of patients.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/complications , Amyloid beta-Peptides , Magnetic Resonance Imaging/methods , Positron-Emission Tomography , Biomarkers , Atrophy , tau Proteins
20.
Ann Neurol ; 92(3): 358-363, 2022 09.
Article in English | MEDLINE | ID: mdl-35670654

ABSTRACT

Autosomal-dominant, Dutch-type cerebral amyloid angiopathy (D-CAA) offers a unique opportunity to develop biomarkers for pre-symptomatic cerebral amyloid angiopathy (CAA). We hypothesized that neuroimaging measures of white matter injury would be present and progressive in D-CAA prior to hemorrhagic lesions or symptomatic hemorrhage. In a longitudinal cohort of D-CAA carriers and non-carriers, we observed divergence of white matter injury measures between D-CAA carriers and non-carriers prior to the appearance of cerebral microbleeds and >14 years before the average age of first symptomatic hemorrhage. These results indicate that white matter disruption measures may be valuable cross-sectional and longitudinal biomarkers of D-CAA progression. ANN NEUROL 2022;92:358-363.


Subject(s)
Cerebral Amyloid Angiopathy , White Matter , Cerebral Amyloid Angiopathy/diagnostic imaging , Cerebral Amyloid Angiopathy/pathology , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/pathology , Cross-Sectional Studies , Hemorrhage/pathology , Humans , Magnetic Resonance Imaging , Neuroimaging , White Matter/diagnostic imaging , White Matter/pathology
SELECTION OF CITATIONS
SEARCH DETAIL