ABSTRACT
Dyslexia is a learning difficulty with neurodevelopmental origins, manifesting as reduced accuracy and speed in reading and spelling. It is substantially heritable and frequently co-occurs with other neurodevelopmental conditions, particularly attention deficit-hyperactivity disorder (ADHD). Here, we investigate the genetic structure underlying dyslexia and a range of psychiatric traits using results from genome-wide association studies of dyslexia, ADHD, autism, anorexia nervosa, anxiety, bipolar disorder, major depressive disorder, obsessive compulsive disorder, schizophrenia, and Tourette syndrome. Genomic Structural Equation Modelling (GenomicSEM) showed heightened support for a model consisting of five correlated latent genomic factors described as: F1) compulsive disorders (including obsessive-compulsive disorder, anorexia nervosa, Tourette syndrome), F2) psychotic disorders (including bipolar disorder, schizophrenia), F3) internalising disorders (including anxiety disorder, major depressive disorder), F4) neurodevelopmental traits (including autism, ADHD), and F5) attention and learning difficulties (including ADHD, dyslexia). ADHD loaded more strongly on the attention and learning difficulties latent factor (F5) than on the neurodevelopmental traits latent factor (F4). The attention and learning difficulties latent factor (F5) was positively correlated with internalising disorders (.40), neurodevelopmental traits (.25) and psychotic disorders (.17) latent factors, and negatively correlated with the compulsive disorders (-.16) latent factor. These factor correlations are mirrored in genetic correlations observed between the attention and learning difficulties latent factor and other cognitive, psychological and wellbeing traits. We further investigated genetic variants underlying both dyslexia and ADHD, which implicated 49 loci (40 not previously found in GWAS of the individual traits) mapping to 174 genes (121 not found in GWAS of individual traits) as potential pleiotropic variants. Our study confirms the increased genetic relation between dyslexia and ADHD versus other psychiatric traits and uncovers novel pleiotropic variants affecting both traits. In future, analyses including additional co-occurring traits such as dyscalculia and dyspraxia will allow a clearer definition of the attention and learning difficulties latent factor, yielding further insights into factor structure and pleiotropic effects.
ABSTRACT
The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 × 10-8) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits.
Subject(s)
Genome-Wide Association Study , Individuality , Reading , Speech , Adolescent , Adult , Child , Child, Preschool , Genetic Loci , Humans , Language , Polymorphism, Single Nucleotide , Young AdultABSTRACT
Reading difficulties are prevalent worldwide, including in economically developed countries, and are associated with low academic achievement and unemployment. Longitudinal studies have identified several early childhood predictors of reading ability, but studies frequently lack genotype data that would enable testing of predictors with heritable influences. The National Child Development Study (NCDS) is a UK birth cohort study containing direct reading skill variables at every data collection wave from age 7 years through to adulthood with a subsample (final n = 6431) for whom modern genotype data are available. It is one of the longest running UK cohort studies for which genotyped data are currently available and is a rich dataset with excellent potential for future phenotypic and gene-by-environment interaction studies in reading. Here, we carry out imputation of the genotype data to the Haplotype Reference Panel, an updated reference panel that offers greater imputation quality. Guiding phenotype choice, we report a principal components analysis of nine reading variables, yielding a composite measure of reading ability in the genotyped sample. We include recommendations for use of composite scores and the most reliable variables for use during childhood when conducting longitudinal, genetically sensitive analyses of reading ability.
Subject(s)
Child Development , Cognition , Humans , Child, Preschool , Cohort Studies , Genotype , Phenotype , Polymorphism, Single NucleotideABSTRACT
Erikson asked what makes some people care for the future of the species and others not, calling this 'generativity vs. stagnation'. In three studies, we addressed structure of this trait and its heritability. Study 1 (N = 1570), using structural models of the Loyola Generativity Scale , revealed three correlated factors consisting of (1) Establishing and aiding the next generation; (2) Maintaining the world; and (3) Symbolic immortality through a positive legacy. Study 2 (N = 311) successfully replicated this structure in an independent UK sample. Study 3 tested genetic and environmental influences on generativity. All three factors showed significant and substantial heritable influence. A general factor was required, which was also heritable. In resolving previous uncertainty over the transmission of generativity across generations, shared environmental transmission models fit poorly. Substantial unique environmental effects suggest strong cultural impacts on concern for the species. Generativity researchers may usefully adopt this three-factor scoring system, allowing research on the predictive power of each component of generativity as well as molecular genetic or biological studies.
ABSTRACT
We support Uchiyama et al. in the value of genetics, sample diversification, and context measurement. Against the example of vitamins, we highlight the intransigence of many phenotypes. We caution that while culture can mask genetic differences, the dependence of behaviour on genetics is reinvented and unmasked by novel challenges across generations.
ABSTRACT
Recounts how our collaboration with Nick Martin was shaped over two decades, leading to the first studies of predictions from the 'Dual Route Cascaded' computational model of reading in twins, and extending into the molecular work, first linkage, fine mapping of genes identified in pedigree studies, into now the genomewide association study era and the first polygenic risk scores for reading and their potential in early clarifying causality and validating interventions, as well as for future global collaborations in improving these predictors and identifying causal variants. We highlight Nick's warm, future-focused optimism, support and inclusive approach without which none of this would have been possible. The circle of Nick asking, over half a century ago, 'What genes do you think make some kids get better grades?' has built a diverse scientific legacy involving thousands of papers and collaborations. The (heritable) traits of curiosity, boldness, warmth, interest in societally important questions, openness to new methods, ambition and collaborative skill to bring into being the infrastructure and samples needed for this research are rare, and we are grateful.
Subject(s)
Dyslexia/history , Genome-Wide Association Study/history , Twin Studies as Topic/history , Twins/genetics , Dyslexia/genetics , History, 20th Century , History, 21st Century , Humans , Language , Pedigree , Polymorphism, Single Nucleotide/genetics , ReadingABSTRACT
Reading and language abilities are critical for educational achievement and success in adulthood. Variation in these traits is highly heritable, but the underlying genetic architecture is largely undiscovered. Genetic studies of reading and language skills traditionally focus on children with developmental disorders; however, much larger unselected adult samples are available, increasing power to identify associations with specific genetic variants of small effect size. We introduce an Australian adult population cohort (41.7-73.2 years of age, N = 1505) in which we obtained data using validated measures of several aspects of reading and language abilities. We performed genetic association analysis for a reading and spelling composite score, nonword reading (assessing phonological processing: a core component in learning to read), phonetic spelling, self-reported reading impairment and nonword repetition (a marker of language ability). Given the limited power in a sample of this size (~80% power to find a minimum effect size of 0.005), we focused on analyzing candidate genes that have been associated with dyslexia and developmental speech and language disorders in prior studies. In gene-based tests, FOXP2, a gene implicated in speech/language disorders, was associated with nonword repetition (p < .001), phonetic spelling (p = .002) and the reading and spelling composite score (p < .001). Gene-set analyses of candidate dyslexia and speech/language disorder genes were not significant. These findings contribute to the assessment of genetic associations in reading and language disorders, crucial for understanding their etiology and informing intervention strategies, and validate the approach of using unselected adult samples for gene discovery in language and reading.
Subject(s)
Dyslexia/genetics , Forkhead Transcription Factors/genetics , Language Development Disorders/genetics , Adult , Aged , Aptitude , Australia , Axons/metabolism , Axons/physiology , Cohort Studies , Female , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/physiology , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Neurons/metabolism , Neurons/physiology , Phonetics , Polymorphism, Single Nucleotide , Reading , SpeechABSTRACT
Generativity-showing concern to establish and guide future generations-has been argued to be a biological adaptation central to cumulative culture and survival, but also, in turn, to be a cultural adaptation dependent on norms. From the perspective of human agency, concern for the future has played a key role in raising agency for generations that follow by creating infrastructure and cultural inheritance. Here, in a population-representative sample of 756 twin-pairs, we present the first test of the genetic and environmental structure of generativity using the Loyola Generativity Scale (short). Genetic analysis of scale sum-scores revealed that shared environmental effects were comparable in magnitude or exceeded effects estimated for genetic differences (A = 0.30 CI95 [- 0.01, 0.61], C = 0.41 [0.25, 0.56], E = 0.86 [0.79, 0.93]). At the item level, a well-fitting genetically-informed model suggested 3 factors influencing generativity via a common-pathway structure. The first was tentatively characterized as reflecting a heritable general concern for the future. The second reflected being a valued source of advice and assistance. The third factor showed only unique environment effects and had as its strongest indicator having had a good influence on the lives of others. Replicability of this structure should be tested in the full version of the scale. Work is needed also to validate influences of generativity on vocations such as teaching and on philanthropic activity improving life for subsequent generations.
Subject(s)
Cultural Characteristics , Inheritance Patterns/genetics , Adult , Aged , Aged, 80 and over , Cognition , Family , Female , Humans , Male , Middle Aged , Models, TheoreticalABSTRACT
Structural equation modeling (SEM) is an important research tool, both for path-based model specification (common in the social sciences) and also for matrix-based models (in heavy use in behavior genetics). We developed umx to give more immediate access, relatively concise syntax and helpful defaults for users in these two broad disciplines. umx supports development, modification and comparison of models, as well as both graphical and tabular outputs. The second major focus of umx, behavior genetic models, is supported via functions implementing standard multigroup twin models. These functions support raw and covariance data, including joint ordinal data, and give solutions for ACE models, including support for covariates, common- and independent-pathway models, and gene × environment interaction models. A tutorial site and question forum are also available.
Subject(s)
Models, Genetic , Software , Twins/genetics , Female , Humans , MaleABSTRACT
We recently reported an association of offspring educational attainment with polygenic risk scores (PRS) computed on parent's non-transmitted alleles for educational attainment using the second GWAS meta-analysis article on educational attainment published by the Social Science Genetic Association Consortium. Here we test the replication of these findings using a more powerful PRS from the third GWAS meta-analysis article by the Consortium. Each of the key findings of our previous paper is replicated using this improved PRS (N = 2335 adolescent twins and their genotyped parents). The association of children's attainment with their own PRS increased substantially with the standardized effect size, moving from ß = 0.134, 95% CI = 0.079, 0.188 for EA2, to ß = 0.223, 95% CI = 0.169, 0.278, p < .001, for EA3. Parent's PRS again predicted the socioeconomic status (SES) they provided to their offspring and increased from ß = 0.201, 95% CI = 0.147, 0.256 to ß = 0.286, 95% CI = 0.239, 0.333. Importantly, the PRS for alleles not transmitted to their offspring - therefore acting via the parenting environment - was increased in effect size from ß = 0.058, 95% CI = 0.003, 0.114 to ß = 0.067, 95% CI = 0.012, 0.122, p = .016. As previously found, this non-transmitted genetic effect was fully accounted for by parental SES. The findings reinforce the conclusion that genetic effects of parenting are substantial, explain approximately one-third the magnitude of an individual's own genetic inheritance and are mediated by parental socioeconomic competence.
Subject(s)
Educational Status , Genome-Wide Association Study , Adolescent , Female , Humans , Male , Socioeconomic Factors , TwinsABSTRACT
A number of candidate genes for reading and language impairment have been replicated, primarily in samples of children with developmental disability or delay, although these genes are also supported in adolescent population samples. The present study used a systematic approach to test 14 of these candidate genes for association with reading assessed in late adulthood (two cohorts with mean ages of 70 and 79 years). Gene-sets (14 candidates, axon-guidance and neuron migration pathways) and individual SNPs within each gene of interest were tested for association using imputed data referenced to the 1000 genomes European panel. Using the results from the genome-wide association (GWA) meta-analysis of the two cohorts (N = 1217), a competitive gene-set analysis showed that the candidate gene-set was associated with the reading index (p = .016) at a family wise error rate corrected significance level. Neither axon guidance nor neuron migration pathways were significant. Whereas individual SNP associations within CYP19A1, DYX1C1, CNTNAP2 and DIP2A genes (p < .05) did not reach corrected significance their allelic effects were in the same direction as past available reports. These results suggest that reading skill in normal adults shares the same genetic substrate as reading in adolescents, and clinically disordered reading, and highlights the utility of adult samples to increase sample sizes in the genetic study of developmental disorders.
Subject(s)
Dyslexia/genetics , Genetic Association Studies , Reading , Aged , Cohort Studies , Genetic Predisposition to Disease , Humans , Polymorphism, Single Nucleotide/geneticsABSTRACT
Research on environmental and genetic pathways to complex traits such as educational attainment (EA) is confounded by uncertainty over whether correlations reflect effects of transmitted parental genes, causal family environments, or some, possibly interactive, mixture of both. Thus, an aggregate of thousands of alleles associated with EA (a polygenic risk score; PRS) may tap parental behaviors and home environments promoting EA in the offspring. New methods for unpicking and determining these causal pathways are required. Here, we utilize the fact that parents pass, at random, 50% of their genome to a given offspring to create independent scores for the transmitted alleles (conventional EA PRS) and a parental score based on alleles not transmitted to the offspring (EA VP_PRS). The formal effect of non-transmitted alleles on offspring attainment was tested in 2,333 genotyped twins for whom high-quality measures of EA, assessed at age 17 years, were available, and whose parents were also genotyped. Four key findings were observed. First, the EA PRS and EA VP_PRS were empirically independent, validating the virtual-parent design. Second, in this family-based design, children's own EA PRS significantly predicted their EA (ß = 0.15), ruling out stratification confounds as a cause of the association of attainment with the EA PRS. Third, parental EA PRS predicted the SES environment parents provided to offspring (ß = 0.20), and parental SES and offspring EA were significantly associated (ß = 0.33). This would suggest that the EA PRS is at least as strongly linked to social competence as it is to EA, leading to higher attained SES in parents and, therefore, a higher experienced SES for children. In a full structural equation model taking account of family genetic relatedness across multiple siblings the non-transmitted allele effects were estimated at similar values; but, in this more complex model, confidence intervals included zero. A test using the forthcoming EA3 PRS may clarify this outcome. The virtual-parent method may be applied to clarify causality in other phenotypes where observational evidence suggests parenting may moderate expression of other outcomes, for instance in psychiatry.
Subject(s)
Alleles , Education , Gene-Environment Interaction , Genotype , Parenting , Polymorphism, Single Nucleotide , Twins/genetics , Adolescent , Female , Genome-Wide Association Study , Humans , MaleABSTRACT
Impairments in reading and in language have negative consequences on life outcomes, but it is not known to what extent genetic effects influence this association. We constructed polygenic scores for difficulties with language and learning to read from genome-wide data in ~6,600 children, adolescents and young adults, and tested their association with health, socioeconomic outcomes and brain structure measures collected in adults (maximal N = 111,749). Polygenic risk of reading difficulties was associated with reduced income, educational attainment, self-rated health and verbal-numerical reasoning (p < 0.00055). Polygenic risk of language difficulties predicted income (p = 0.0005). The small effect sizes ranged 0.01-0.03 of a standard deviation, but these will increase as genetic studies for reading ability get larger. Polygenic scores for childhood cognitive ability and educational attainment were correlated with polygenic scores of reading and language (up to 0.09 and 0.05, respectively). But when they were included in the prediction models, the observed associations between polygenic reading and adult outcomes mostly remained. This suggests that the pathway from reading ability to social outcomes is not only via associated polygenic loads for general cognitive function and educational attainment. The presence of non-overlapping genetic effect is indicated by the genetic correlations of around 0.40 (childhood intelligence) and 0.70 (educational attainment) with reading ability. Mendelian randomization approaches will be important to dissociate any causal and moderating effects of reading and related traits on social outcomes.
Subject(s)
Polymorphism, Single Nucleotide/genetics , Reading , Social Class , Adolescent , Adult , Brain/physiology , Child , Cognition , Female , Genome-Wide Association Study/methods , Humans , Intelligence/genetics , Language , Linkage Disequilibrium/genetics , Male , Multifactorial Inheritance/genetics , Quality of Life , Young AdultABSTRACT
A core hypothesis in developmental theory predicts that genetic influences on intelligence and academic achievement are suppressed under conditions of socioeconomic privation and more fully realized under conditions of socioeconomic advantage: a Gene × Childhood Socioeconomic Status (SES) interaction. Tests of this hypothesis have produced apparently inconsistent results. We performed a meta-analysis of tests of Gene × SES interaction on intelligence and academic-achievement test scores, allowing for stratification by nation (United States vs. non-United States), and we conducted rigorous tests for publication bias and between-studies heterogeneity. In U.S. studies, we found clear support for moderately sized Gene × SES effects. In studies from Western Europe and Australia, where social policies ensure more uniform access to high-quality education and health care, Gene × SES effects were zero or reversed.
Subject(s)
Educational Measurement/methods , Gene-Environment Interaction , Intelligence/genetics , Social Class , Humans , Models, Genetic , Models, Psychological , United StatesABSTRACT
Gene × environment (G × E) interaction studies test the hypothesis that the strength of genetic influence varies across environmental contexts. Existing latent variable methods for estimating G × E interactions in twin and family data specify parametric (typically linear) functions for the interaction effect. An improper functional form may obscure the underlying shape of the interaction effect and may lead to failures to detect a significant interaction. In this article, we introduce a novel approach to the behavior genetic toolkit, local structural equation modeling (LOSEM). LOSEM is a highly flexible nonparametric approach for estimating latent interaction effects across the range of a measured moderator. This approach opens up the ability to detect and visualize new forms of G × E interaction. We illustrate the approach by using LOSEM to estimate gene × socioeconomic status interactions for six cognitive phenotypes. Rather than continuously and monotonically varying effects as has been assumed in conventional parametric approaches, LOSEM indicated substantial nonlinear shifts in genetic variance for several phenotypes. The operating characteristics of LOSEM were interrogated through simulation studies where the functional form of the interaction effect was known. LOSEM provides a conservative estimate of G × E interaction with sufficient power to detect statistically significant G × E signal with moderate sample size. We offer recommendations for the application of LOSEM and provide scripts for implementing these biometric models in Mplus and in OpenMx under R.
Subject(s)
Gene-Environment Interaction , Models, Genetic , Humans , Models, StatisticalABSTRACT
Evidence from twin studies points to substantial environmental influences on intelligence, but the specifics of this influence are unclear. This study examined one developmental process that potentially causes intelligence differences: learning to read. In 1,890 twin pairs tested at 7, 9, 10, 12, and 16 years, a cross-lagged monozygotic-differences design was used to test for associations of earlier within-pair reading ability differences with subsequent intelligence differences. The results showed several such associations, which were not explained by differences in reading exposure and were not restricted to verbal cognitive domains. The study highlights the potentially important influence of reading ability, driven by the nonshared environment, on intellectual development and raises theoretical questions about the mechanism of this influence.
Subject(s)
Child Development/physiology , Intelligence/physiology , Learning/physiology , Reading , Twins, Monozygotic , Adolescent , Child , Female , Humans , Longitudinal Studies , Male , Multivariate AnalysisABSTRACT
Human facial attractiveness and facial sexual dimorphism (masculinity-femininity) are important facets of mate choice and are hypothesized to honestly advertise genetic quality. However, it is unclear whether genes influencing facial attractiveness and masculinity-femininity have similar, opposing, or independent effects across sex, and the heritability of these phenotypes is poorly characterized. To investigate these issues, we assessed facial attractiveness and facial masculinity-femininity in the largest genetically informative sample (n = 1,580 same- and opposite-sex twin pairs and siblings) to assess these questions to date. The heritability was ~0.50-0.70 for attractiveness and ~0.40-0.50 for facial masculinity-femininity, indicating that, despite ostensible selection on genes influencing these traits, substantial genetic variation persists in both. Importantly, we found evidence for intralocus sexual conflict, whereby alleles that increase masculinity in males have the same effect in females. Additionally, genetic influences on attractiveness were shared across the sexes, suggesting that attractive fathers tend to have attractive daughters and attractive mothers tend to have attractive sons.
Subject(s)
Beauty , Models, Genetic , Sex Characteristics , Choice Behavior , Face , Female , Humans , Male , Sexual BehaviorABSTRACT
Research has shown that in-group favoritism is associated with concerns over the maintenance of social norms. Here we present two studies examining whether genetic factors underpin this association. A classical twin design was used to decompose phenotypic variance into genetic and environmental components in two studies. Study 1 used 812 pairs of adult U.S. twins from the nationally representative MIDUS II sample. Study 2 used 707 pairs of middle-age twins from the Minnesota Twin Registry. In-group favoritism was measured with scales tapping preferences for in-group (vs. out-group) individuals; norm concerns were measured with the Multidimensional Personality Questionnaire-Traditionalism (Study 1) and Right-Wing Authoritarianism (RWA; Study 2) scales. In Study 1, heritable effects underlying traditionalism were moderately (c. 35%) overlapping with the genetic variance underpinning in-group favoritism. In Study 2, heritable influences on RWA were entirely shared with the heritable effects on in-group favoritism. Moreover, we observed that Big Five Openness shared common genetic links to both RWA and in-group favoritism. These results suggest that, at the genetic level, in-group favoritism is linked with a system related to concern over normative social practices, which is, in turn, partially associated with trait Openness.
Subject(s)
Authoritarianism , Hierarchy, Social , Morals , Personality/genetics , Social Norms , Adult , Female , Humans , Male , Middle Aged , Models, Psychological , Surveys and Questionnaires , Twins/geneticsABSTRACT
Specific personality traits and poor social support are risk factors for anxiety and depression. Little work, however, has considered the effects of social support and personality on these aspects of psychopathology simultaneously. We examined whether perceived social support mediates the effects of core personality domains on symptoms of anxiety and depression. Measures of personality (based on the Five-Factor Model [FFM]), perceived social support, and symptoms of depression and anxiety were collected in a large Dutch adult population-based sample (n = 555), and, except for depression symptoms, in an independent U.S. adult population-based sample (n = 511). Path modeling was used to test the effects of FFM traits on symptoms of depression and anxiety, with and without the mediation of perceived social support. Social support showed no link to symptoms of anxiety and only modest links to symptoms of depression when controlling for the FFM traits. Neuroticism had the strongest effect on symptoms of both depression and anxiety, with Extraversion also showing links to symptoms of depression. Social support has limited influence on symptoms of depression, and no effects on anxiety, over and above the effects of personality. Links between social support and anxiety/depression may largely reflect influences of Neuroticism and Extraversion.
Subject(s)
Anxiety/psychology , Depression/psychology , Personality , Social Perception , Social Support , Adult , Female , Humans , Male , Middle Aged , Personality Assessment , Psychiatric Status Rating Scales , Surveys and QuestionnairesABSTRACT
[This corrects the article DOI: 10.1371/journal.pone.0258910.].