Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Genomics ; 24(1): 690, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978434

ABSTRACT

BACKGROUND: As a population genetic tool, mitochondrial DNA is commonly divided into the ~ 1-kb control region (CR), in which single nucleotide variant (SNV) diversity is relatively high, and the coding region, in which selective constraint is greater and diversity lower, but which provides an informative phylogeny. In some species, the CR contains variable tandemly repeated sequences that are understudied due to heteroplasmy. Domestic cats (Felis catus) have a recent origin and therefore traditional CR-based analysis of populations yields only a small number of haplotypes. RESULTS: To increase resolution we used Nanopore sequencing to analyse 119 cat mitogenomes via a long-amplicon approach. This greatly improves discrimination (from 15 to 87 distinct haplotypes in our dataset) and defines a phylogeny showing similar starlike topologies within all major clades (haplogroups), likely reflecting post-domestication expansion. We sequenced RS2, a CR tandem array of 80-bp repeat units, placing RS2 array structures within the phylogeny and increasing overall haplotype diversity. Repeat number varies between 3 and 12 (median: 4) with over 30 different repeat unit types differing largely by SNVs. Five SNVs show evidence of independent recurrence within the phylogeny, and seven are involved in at least 11 instances of rapid spread along repeat arrays within haplogroups. CONCLUSIONS: In defining mitogenome variation our study provides key information for the forensic genetic analysis of cat hair evidence, and for the first time a phylogenetically informed picture of tandem repeat variation that reveals remarkably dynamic mutation processes at work in the mitochondrion.


Subject(s)
Genome, Mitochondrial , Cats/genetics , Animals , Genetic Variation , Minisatellite Repeats/genetics , Mitochondria , Mutation
2.
BMC Public Health ; 22(1): 2136, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36411414

ABSTRACT

BACKGROUND: Air pollution is a global, public health emergency. The effect of living in areas with very poor air quality on adolescents' physical health is largely unknown. The aim of this study was to investigate the prevalence of adverse respiratory health outcomes among adolescents living in a known air pollution hotspot in South Africa. METHODS: Ambient air quality data from 2005 to 2019 for the two areas, Secunda and eMbalenhle, in the Highveld Air Pollution Priority Area in Mpumalanga province, South Africa were gathered and compared against national ambient air pollution standards and the World Health Organization Air Quality Guidelines. In 2019, adolescents attending schools in the areas completed a self-administered questionnaire investigating individual demographics, socio-economic status, health, medical history, and fuel type used in homes. Respiratory health illnesses assessed were doctor-diagnosed hay fever, allergies, frequent cough, wheezing, bronchitis, pneumonia and asthma. The relationship between presence (at least one) or absence (none) of self-reported respiratory illness and risk factors, e.g., fuel use at home, was explored. Logistic regression was used to estimate the odds ratio and 95% confidence interval (CI) of risk factors associated with respiratory illness adjusted for body mass index (measured by field assistants), gender, education level of both parents / guardians and socio-economic status. RESULTS: Particulate matter and ozone were the two pollutants most frequently exceeding national annual air quality standards in the study area. All 233 adolescent participants were between 13 and 17 years of age. Prevalence of self-reported respiratory symptoms among the participants ranged from 2% for 'ever' doctor-diagnosed bronchitis and pneumonia to 42% ever experiencing allergies; wheezing chest was the second most reported symptom (39%). Half (52%) of the adolescents who had respiratory illness were exposed to environmental tobacco smoke in the dwelling. There was a statistically significant difference between the presence or absence of self-reported respiratory illness based on the number of years lived in Secunda or eMbalenhle (p = 0.02). For a one-unit change in the number of years lived in an area, the odds of reporting a respiratory illness increased by a factor of 1.08 (p = 0.025, 95% CI = 1.01-1.16). This association was still statistically significant when the model was adjusted for confounders (p = 0.037). CONCLUSIONS: Adolescents living in air polluted areas experience adverse health impacts Future research should interrogate long-term exposure and health outcomes among adolescents living in the air polluted environment.


Subject(s)
Air Pollution , Bronchitis , Hypersensitivity , Respiratory Tract Diseases , Adolescent , Humans , Respiratory Tract Diseases/epidemiology , Respiratory Tract Diseases/etiology , Respiratory Sounds/etiology , South Africa/epidemiology , Air Pollution/adverse effects , Hypersensitivity/complications , Bronchitis/complications
3.
Mol Psychiatry ; 25(10): 2392-2409, 2020 10.
Article in English | MEDLINE | ID: mdl-30617275

ABSTRACT

Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations with P < 5 × 10-8 in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P < 5 × 10-8) in the discovery samples. Ten novel SNVs, including rs12616219 near TMEM182, were followed-up and five of them (rs462779 in REV3L, rs12780116 in CNNM2, rs1190736 in GPR101, rs11539157 in PJA1, and rs12616219 near TMEM182) replicated at a Bonferroni significance threshold (P < 4.5 × 10-3) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, in CCDC141 and two low-frequency SNVs in CEP350 and HDGFRP2. Functional follow-up implied that decreased expression of REV3L may lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.


Subject(s)
Genetic Loci , Smoking/genetics , Biological Specimen Banks , Databases, Factual , Europe/ethnology , Exome , Female , Humans , Male , Polymorphism, Single Nucleotide/genetics , United Kingdom
4.
Arterioscler Thromb Vasc Biol ; 39(11): 2386-2401, 2019 11.
Article in English | MEDLINE | ID: mdl-31644355

ABSTRACT

OBJECTIVE: The male-specific region of the Y chromosome (MSY) remains one of the most unexplored regions of the genome. We sought to examine how the genetic variants of the MSY influence male susceptibility to coronary artery disease (CAD) and atherosclerosis. Approach and Results: Analysis of 129 133 men from UK Biobank revealed that only one of 7 common MSY haplogroups (haplogroup I1) was associated with CAD-carriers of haplogroup I1 had ≈11% increase in risk of CAD when compared with all other haplogroups combined (odds ratio, 1.11; 95% CI, 1.04-1.18; P=6.8×10-4). Targeted MSY sequencing uncovered 235 variants exclusive to this haplogroup. The haplogroup I1-specific variants showed 2.45- and 1.56-fold respective enrichment for promoter and enhancer chromatin states, in cells/tissues relevant to atherosclerosis, when compared with other MSY variants. Gene set enrichment analysis in CAD-relevant tissues showed that haplogroup I1 was associated with changes in pathways responsible for early and late stages of atherosclerosis development including defence against pathogens, immunity, oxidative phosphorylation, mitochondrial respiration, lipids, coagulation, and extracellular matrix remodeling. UTY was the only Y chromosome gene whose blood expression was associated with haplogroup I1. Experimental reduction of UTY expression in macrophages led to changes in expression of 59 pathways (28 of which overlapped with those associated with haplogroup I1) and a significant reduction in the immune costimulatory signal. CONCLUSIONS: Haplogroup I1 is enriched for regulatory chromatin variants in numerous cells of relevance to CAD and increases cardiovascular risk through proatherosclerotic reprogramming of the transcriptome, partly through UTY.


Subject(s)
Chromosomes, Human, Y , Coronary Artery Disease/genetics , Genetic Pleiotropy , Genetic Predisposition to Disease , Gene Expression , Haplotypes , High-Throughput Nucleotide Sequencing , Humans , Macrophages/metabolism , Male , Minor Histocompatibility Antigens/genetics , Nuclear Proteins/genetics , Phylogeny , Risk Factors , THP-1 Cells
5.
Genome Res ; 26(4): 427-39, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26883546

ABSTRACT

The distribution of genetic diversity in great ape species is likely to have been affected by patterns of dispersal and mating. This has previously been investigated by sequencing autosomal and mitochondrial DNA (mtDNA), but large-scale sequence analysis of the male-specific region of the Y Chromosome (MSY) has not yet been undertaken. Here, we use the human MSY reference sequence as a basis for sequence capture and read mapping in 19 great ape males, combining the data with sequences extracted from the published whole genomes of 24 additional males to yield a total sample of 19 chimpanzees, four bonobos, 14 gorillas, and six orangutans, in which interpretable MSY sequence ranges from 2.61 to 3.80 Mb. This analysis reveals thousands of novel MSY variants and defines unbiased phylogenies. We compare these with mtDNA-based trees in the same individuals, estimating time-to-most-recent common ancestor (TMRCA) for key nodes in both cases. The two loci show high topological concordance and are consistent with accepted (sub)species definitions, but time depths differ enormously between loci and (sub)species, likely reflecting different dispersal and mating patterns. Gorillas and chimpanzees/bonobos present generally low and high MSY diversity, respectively, reflecting polygyny versus multimale-multifemale mating. However, particularly marked differences exist among chimpanzee subspecies: The western chimpanzee MSY phylogeny has a TMRCA of only 13.2 (10.8-15.8) thousand years, but that for central chimpanzees exceeds 1 million years. Cross-species comparison within a single MSY phylogeny emphasizes the low human diversity, and reveals species-specific branch length variation that may reflect differences in long-term generation times.


Subject(s)
DNA, Mitochondrial , Hominidae/classification , Hominidae/genetics , Phylogeny , Y Chromosome , Animal Distribution , Animals , Female , Gene Order , Genome , Genomics , Humans , Male , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Sexual Behavior, Animal
6.
J Virol ; 91(22)2017 11 15.
Article in English | MEDLINE | ID: mdl-28835501

ABSTRACT

The genomes of human herpesvirus 6A (HHV-6A) and HHV-6B have the capacity to integrate into telomeres, the essential capping structures of chromosomes that play roles in cancer and ageing. About 1% of people worldwide are carriers of chromosomally integrated HHV-6 (ciHHV-6), which is inherited as a genetic trait. Understanding the consequences of integration for the evolution of the viral genome, for the telomere, and for the risk of disease associated with carrier status is hampered by a lack of knowledge about ciHHV-6 genomes. Here, we report an analysis of 28 ciHHV-6 genomes and show that they are significantly divergent from the few modern nonintegrated HHV-6 strains for which complete sequences are currently available. In addition, ciHHV-6B genomes in Europeans are more closely related to each other than to ciHHV-6B genomes from China and Pakistan, suggesting regional variation of the trait. Remarkably, at least one group of European ciHHV-6B carriers has inherited the same ciHHV-6B genome, integrated in the same telomere allele, from a common ancestor estimated to have existed 24,500 ± 10,600 years ago. Despite the antiquity of some, and possibly most, germ line HHV-6 integrations, the majority of ciHHV-6B (95%) and ciHHV-6A (72%) genomes contain a full set of intact viral genes and therefore appear to have the capacity for viral gene expression and full reactivation.IMPORTANCE Inheritance of HHV-6A or HHV-6B integrated into a telomere occurs at a low frequency in most populations studied to date, but its characteristics are poorly understood. However, stratification of ciHHV-6 carriers in modern populations due to common ancestry is an important consideration for genome-wide association studies that aim to identify disease risks for these people. Here, we present full sequence analysis of 28 ciHHV-6 genomes and show that ciHHV-6B in many carriers with European ancestry most likely originated from ancient integration events in a small number of ancestors. We propose that ancient ancestral origins for ciHHV-6A and ciHHV-6B are also likely in other populations. Moreover, despite their antiquity, all of the ciHHV-6 genomes appear to retain the capacity to express viral genes, and most are predicted to be capable of full viral reactivation. These discoveries represent potentially important considerations in immunocompromised patients, in particular in organ transplantation and in stem cell therapy.


Subject(s)
Chromosomes, Human , Genome, Human , Herpesvirus 6, Human/genetics , Quantitative Trait, Heritable , Telomere , Virus Integration/genetics , Chromosomes, Human/genetics , Chromosomes, Human/virology , Female , Genome-Wide Association Study , Humans , Male , Telomere/genetics , Telomere/virology
7.
Hum Genet ; 136(5): 547-557, 2017 05.
Article in English | MEDLINE | ID: mdl-28349239

ABSTRACT

Males and females display biological differences that lead to a higher variance of offspring number in males, and this is frequently exacerbated in human societies by mating practices, and possibly by past socio-cultural circumstances. This implies that the genetic record might contain the imprint of past male-mediated expansions, which can be investigated by analysing the male-specific region of the Y chromosome (MSY). Here, we review studies that have used MSY data to infer such expansions. Sets of short-tandem repeats define haplotypes of very low average frequencies, but in a few cases, high-frequency haplotypes are observed, forming the core of descent clusters. Estimates of the ages of such clusters, together with geographical information, have been used to propose powerful historical founders, including Genghis Khan, although without direct supporting evidence. Resequencing of multi-megabase segments of MSY has allowed the construction of detailed phylogenies in which branch lengths are proportional to time, leading to the identification of lineage expansions in the last few millennia as well as the more distant past. Comparisons with maternally-inherited mitochondrial DNA sequence data allow the male specificity of some of these expansions to be demonstrated. These include expansions in Europe in the last ~5000 years that may be associated with a cultural shift during the Bronze Age, as well as expansions elsewhere in the world for which explanations from archaeological evidence are not yet clear.


Subject(s)
Chromosomes, Human, Y/genetics , Evolution, Molecular , Multigene Family , Demography , Europe , Haplotypes , Humans , Male , Microsatellite Repeats , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
8.
Mol Biol Evol ; 32(1): 29-43, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25223418

ABSTRACT

A consensus on Bantu-speaking populations being genetically similar has emerged in the last few years, but the demographic scenarios associated with their dispersal are still a matter of debate. The frontier model proposed by archeologists postulates different degrees of interaction among incoming agropastoralist and resident foraging groups in the presence of "static" and "moving" frontiers. By combining mitochondrial DNA and Y chromosome data collected from several southern African populations, we show that Bantu-speaking populations from regions characterized by a moving frontier developing after a long-term static frontier have larger hunter-gatherer contributions than groups from areas where a static frontier was not followed by further spatial expansion. Differences in the female and male components suggest that the process of assimilation of the long-term resident groups into agropastoralist societies was gender biased. Our results show that the diffusion of Bantu languages and culture in Southern Africa was a process more complex than previously described and suggest that the admixture dynamics between farmers and foragers played an important role in shaping the current patterns of genetic diversity.


Subject(s)
Black People/ethnology , Black People/genetics , Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Africa, Southern/ethnology , Emigration and Immigration , Female , Genetic Variation , Genetics, Population , Humans , Male , Principal Component Analysis , Regression Analysis
9.
Mol Biol Evol ; 32(3): 661-73, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25468874

ABSTRACT

Many studies of human populations have used the male-specific region of the Y chromosome (MSY) as a marker, but MSY sequence variants have traditionally been subject to ascertainment bias. Also, dating of haplogroups has relied on Y-specific short tandem repeats (STRs), involving problems of mutation rate choice, and possible long-term mutation saturation. Next-generation sequencing can ascertain single nucleotide polymorphisms (SNPs) in an unbiased way, leading to phylogenies in which branch-lengths are proportional to time, and allowing the times-to-most-recent-common-ancestor (TMRCAs) of nodes to be estimated directly. Here we describe the sequencing of 3.7 Mb of MSY in each of 448 human males at a mean coverage of 51×, yielding 13,261 high-confidence SNPs, 65.9% of which are previously unreported. The resulting phylogeny covers the majority of the known clades, provides date estimates of nodes, and constitutes a robust evolutionary framework for analyzing the history of other classes of mutation. Different clades within the tree show subtle but significant differences in branch lengths to the root. We also apply a set of 23 Y-STRs to the same samples, allowing SNP- and STR-based diversity and TMRCA estimates to be systematically compared. Ongoing purifying selection is suggested by our analysis of the phylogenetic distribution of nonsynonymous variants in 15 MSY single-copy genes.


Subject(s)
Chromosomes, Human, Y/genetics , Polymorphism, Single Nucleotide/genetics , Evolution, Molecular , HapMap Project , Humans , Male , Phylogeny , Sequence Analysis, DNA
10.
BMC Evol Biol ; 13: 24, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23360301

ABSTRACT

BACKGROUND: When studying the genetic structure of human populations, the role of cultural factors may be difficult to ascertain due to a lack of formal models. Linguistic diversity is a typical example of such a situation. Patrilocality, on the other hand, can be integrated into a biological framework, allowing the formulation of explicit working hypotheses. The present study is based on the assumption that patrilocal traditions make the hypervariable region I of the mtDNA a valuable tool for the exploration of migratory dynamics, offering the opportunity to explore the relationships between genetic and linguistic diversity. We studied 85 Niger-Congo-speaking patrilocal populations that cover regions from Senegal to Central African Republic. A total of 4175 individuals were included in the study. RESULTS: By combining a multivariate analysis aimed at investigating the population genetic structure, with a Bayesian approach used to test models and extent of migration, we were able to detect a stepping-stone migration model as the best descriptor of gene flow across the region, with the main discontinuities corresponding to forested areas. CONCLUSIONS: Our analyses highlight an aspect of the influence of habitat variation on human genetic diversity that has yet to be understood. Rather than depending simply on geographic linear distances, patterns of female genetic variation vary substantially between savannah and rainforest environments. Our findings may be explained by the effects of recent gene flow constrained by environmental factors, which superimposes on a background shaped by pre-agricultural peopling.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Variation , Genetics, Population , Human Migration , Africa, Central , Africa, Western , Bayes Theorem , Female , Humans , Linguistics , Male , Molecular Sequence Data , Multivariate Analysis
11.
Hum Biol ; 85(4): 597-606, 2013 Aug.
Article in English | MEDLINE | ID: mdl-25019191

ABSTRACT

In a previous study, we proposed a model for genetic admixture between African hunter-gatherers and food producers, in which we integrated demographic and genetic aspects together with ethnographic knowledge (Destro-Bisol et al. 2004b). In that study it was possible to test the model only using genetic information from widely dispersed and genetically heterogeneous populations. Here we reevaluate the congruence between the model and patterns of genetic variation using an anthropologically and geographically more homogeneous data set that includes Pygmies and farmers from Cameroon, Congo, and the Central African Republic. As implied by the model, the ratios of mtDNA to Y chromosome Nm estimates (effective population size, N, times the migration rate, m; 0.154 in Pygmies and 6.759 in farmers), support an asymmetric gene flow, with a higher Bantu-to-Pygmy gene flow for paternal than for maternal lineages, and vice versa for farmers. Analyses of intra- and interpopulation genetic variation further support the above observation, showing a prevailing effect of genetic drift on maternal lineages and gene flow on paternal lineages among Pygmies, and an opposite pattern among farmers. We also detected differences between patterns for classical and molecular measures of Y chromosome intrapopulation variation, which likely represent signatures of the introgression of Bantu lineages into the gene pool of Pygmy populations. On the whole, our results seem to reflect differences in the demographic history and the degree of patrilocality and polygyny between the two population groups, thus providing further support to our microevolutionary model in an anthropologically coherent framework.


Subject(s)
Black People/genetics , Chromosomes, Human, Y , DNA, Mitochondrial/genetics , Gene Flow , Models, Genetic , Africa South of the Sahara , Agriculture , Female , Genetics, Population , Humans , Male
12.
Nat Commun ; 14(1): 6713, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872160

ABSTRACT

Thyroid hormones play a critical role in regulation of multiple physiological functions and thyroid dysfunction is associated with substantial morbidity. Here, we use electronic health records to undertake a genome-wide association study of thyroid-stimulating hormone (TSH) levels, with a total sample size of 247,107. We identify 158 novel genetic associations, more than doubling the number of known associations with TSH, and implicate 112 putative causal genes, of which 76 are not previously implicated. A polygenic score for TSH is associated with TSH levels in African, South Asian, East Asian, Middle Eastern and admixed American ancestries, and associated with hypothyroidism and other thyroid disease in South Asians. In Europeans, the TSH polygenic score is associated with thyroid disease, including thyroid cancer and age-of-onset of hypothyroidism and hyperthyroidism. We develop pathway-specific genetic risk scores for TSH levels and use these in phenome-wide association studies to identify potential consequences of pathway perturbation. Together, these findings demonstrate the potential utility of genetic associations to inform future therapeutics and risk prediction for thyroid diseases.


Subject(s)
Hyperthyroidism , Hypothyroidism , Thyroid Diseases , Humans , Thyrotropin/genetics , Genome-Wide Association Study , Thyroid Diseases/genetics , Hypothyroidism/genetics , Hyperthyroidism/genetics , Thyroxine
13.
Nat Genet ; 55(3): 410-422, 2023 03.
Article in English | MEDLINE | ID: mdl-36914875

ABSTRACT

Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies.


Subject(s)
Lung , Pulmonary Disease, Chronic Obstructive , Humans , Genome-Wide Association Study , Genetic Predisposition to Disease/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Smoking/adverse effects , Smoking/genetics , Polymorphism, Single Nucleotide/genetics
14.
Mol Biol Evol ; 28(2): 1099-110, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21041797

ABSTRACT

Pygmy populations are among the few hunter-gatherers currently living in sub-Saharan Africa and are mainly represented by two groups, Eastern and Western, according to their current geographical distribution. They are scattered across the Central African belt and surrounded by Bantu-speaking farmers, with whom they have complex social and economic interactions. To investigate the demographic history of Pygmy groups, a population approach was applied to the analysis of 205 complete mitochondrial DNA (mtDNA) sequences from ten central African populations. No sharing of maternal lineages was observed between the two Pygmy groups, with haplogroup L1c being characteristic of the Western group but most of Eastern Pygmy lineages falling into subclades of L0a, L2a, and L5. Demographic inferences based on Bayesian coalescent simulations point to an early split among the maternal ancestors of Pygmies and those of Bantu-speaking farmers (∼ 70,000 years ago [ya]). Evidence for population growth in the ancestors of Bantu-speaking farmers has been observed, starting ∼ 65,000 ya, well before the diffusion of Bantu languages. Subsequently, the effective population size of the ancestors of Pygmies remained constant over time and ∼ 27,000 ya, coincident with the Last Glacial Maximum, Eastern and Western Pygmies diverged, with evidence of subsequent migration only among the Western group and the Bantu-speaking farmers. Western Pygmies show signs of a recent bottleneck 4,000-650 ya, coincident with the diffusion of Bantu languages, whereas Eastern Pygmies seem to have experienced a more ancient decrease in population size (20,000-4,000 ya). In conclusion, the results of this first attempt at analyzing complete mtDNA sequences at the population level in sub-Saharan Africa not only support previous findings but also offer new insights into the demographic history of Pygmy populations, shedding new light on the ancient peopling of the African continent.


Subject(s)
Black People/genetics , Genetics, Population , Genome, Mitochondrial , Africa South of the Sahara , DNA, Mitochondrial/genetics , Humans
15.
Mol Biol Evol ; 28(9): 2603-13, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21478374

ABSTRACT

The study of Y chromosome variation has helped reconstruct demographic events associated with the spread of languages, agriculture, and pastoralism in sub-Saharan Africa, but little attention has been given to the early history of the continent. In order to overcome this lack of knowledge, we carried out a phylogeographic analysis of haplogroups A and B in a broad data set of sub-Saharan populations. These two lineages are particularly suitable for this objective because they are the two most deeply rooted branches of the Y chromosome genealogy. Their distribution is almost exclusively restricted to sub-Saharan Africa where their frequency peaks at 65% in groups of foragers. The combined high-resolution single nucleotide polymorphism analysis with short tandem repeats variation of their subclades reveals strong geographic and population structure for both haplogroups. This has allowed us to identify specific lineages related to regional preagricultural dynamics in different areas of sub-Saharan Africa. In addition, we observed signatures of relatively recent contact, both among Pygmies and between them and Khoisan speaker groups from southern Africa, thus contributing to the understanding of the complex evolutionary relationships among African hunter-gatherers. Finally, by revising the phylogeography of the very early human Y chromosome lineages, we have obtained support for the role of southern Africa as a sink, rather than a source, of the first migrations of modern humans from eastern and central parts of the continent. These results open new perspectives on the early history of Homo sapiens in Africa, with particular attention to areas of the continent where human fossil remains and archaeological data are scant.


Subject(s)
Chromosomes, Human, Y/genetics , Demography , Genetics, Population , Haplotypes/genetics , Phylogeography , Africa South of the Sahara , Black People , DNA, Mitochondrial/genetics , Emigration and Immigration , Humans , Microsatellite Repeats/genetics
16.
Sci Rep ; 12(1): 18828, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36335192

ABSTRACT

Smoking is a leading risk factor for many of the top ten causes of death worldwide. Of the 1.3 billion smokers globally, 80% live in low- and middle-income countries, where the number of deaths due to tobacco use is expected to double in the next decade according to the World Health Organization. Genetic studies have helped to identify biological pathways for smoking behaviours, but have mostly focussed on individuals of European ancestry or living in either North America or Europe. We performed a genome-wide association study of two smoking behaviour traits in 10,558 men of African ancestry living in five African countries and the UK. Eight independent variants were associated with either smoking initiation or cessation at P-value < 5 × 10-6, four being monomorphic or rare in European populations. Gene prioritisation strategy highlighted five genes, including SEMA6D, previously described as associated with several smoking behaviour traits. These results confirm the importance of analysing underrepresented populations in genetic epidemiology, and the urgent need for larger genomic studies to boost discovery power to better understand smoking behaviours, as well as many other traits.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Male , Humans , Smoking/genetics , Black People/genetics , United Kingdom/epidemiology
17.
Ann Glob Health ; 88(1): 3, 2022.
Article in English | MEDLINE | ID: mdl-35087703

ABSTRACT

Background: Household air pollution (HAP) is associated with adverse human health impacts. During COVID-19 Lockdown Levels 5 and 4 (the most stringent levels), South Africans remained at home, potentially increasing their exposure to HAP. Objectives: To investigate changes in fuel use behaviours/patterns of use affecting HAP exposure and associated HAP-related respiratory health outcomes during COVID-19 Lockdown Levels 5 and 4. Methods: This was a cross-sectional online and telephonic survey of participants from an existing database. Logistic regression and McNemar's test were used to analyse household-level data. Results: Among 2 505 participants, while electricity was the main energy source for cooking and heating the month before and during Lockdown Levels 5 and 4, some households used less electricity during Lockdown Levels 5 and 4 or switched to "dirty fuels." One third of participants reported presence of environmental tobacco smoke in the home, a source of HAP associated with respiratory illnesses. Prevalence of HAP-related respiratory health outcomes were <10% (except dry cough). Majority of households reported cooking more, cleaning more and spending more time indoors during Lockdown Levels 5 and 4 - potentially exposed to HAP. Conclusion: Should South Africa return to Lockdown Levels 5 or 4, awareness raising about the risks associated with HAP as well as messaging information for prevention of exposure to HAP, including environmental tobacco smoke, and associated adverse health impacts will be necessary.


Subject(s)
Air Pollution, Indoor , COVID-19 , Air Pollution/analysis , Air Pollution/statistics & numerical data , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , COVID-19/epidemiology , Communicable Disease Control , Cooking , Cross-Sectional Studies , Humans , SARS-CoV-2 , South Africa/epidemiology
18.
Mol Ecol ; 20(13): 2693-708, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21627702

ABSTRACT

The current distribution of Bantu languages is commonly considered to be a consequence of a relatively recent population expansion (3-5kya) in Central Western Africa. While there is a substantial consensus regarding the centre of origin of Bantu languages (the Benue River Valley, between South East Nigeria and Western Cameroon), the identification of the area from where the population expansion actually started, the relation between the processes leading to the spread of languages and peoples and the relevance of local migratory events remain controversial. In order to shed new light on these aspects, we studied Y chromosome variation in a broad dataset of populations encompassing Nigeria, Cameroon, Gabon and Congo. Our results evidence an evolutionary scenario which is more complex than had been previously thought, pointing to a marked differentiation of Cameroonian populations from the rest of the dataset. In fact, in contrast with the current view of Bantu speakers as a homogeneous group of populations, we observed an unexpectedly high level of interpopulation genetic heterogeneity and highlighted previously undetected diversity for lineages associated with the diffusion of Bantu languages (E1b1a (M2) sub-branches). We also detected substantial differences in local demographic histories, which concord with the hypotheses regarding an early diffusion of Bantu languages into the forest area and a subsequent demographic expansion and migration towards eastern and western Africa.


Subject(s)
Chromosomes, Human, Y/genetics , Genetic Variation/genetics , Genetics, Population , Language , Africa, Central , Africa, Western , Analysis of Variance , Demography , Emigration and Immigration , Haplotypes , Humans , Male
19.
Eur J Hum Genet ; 29(3): 512-523, 2021 03.
Article in English | MEDLINE | ID: mdl-33139852

ABSTRACT

The influence of Viking-Age migrants to the British Isles is obvious in archaeological and place-names evidence, but their demographic impact has been unclear. Autosomal genetic analyses support Norse Viking contributions to parts of Britain, but show no signal corresponding to the Danelaw, the region under Scandinavian administrative control from the ninth to eleventh centuries. Y-chromosome haplogroup R1a1 has been considered as a possible marker for Viking migrations because of its high frequency in peninsular Scandinavia (Norway and Sweden). Here we select ten Y-SNPs to discriminate informatively among hg R1a1 sub-haplogroups in Europe, analyse these in 619 hg R1a1 Y chromosomes including 163 from the British Isles, and also type 23 short-tandem repeats (Y-STRs) to assess internal diversity. We find three specifically Western-European sub-haplogroups, two of which predominate in Norway and Sweden, and are also found in Britain; star-like features in the STR networks of these lineages indicate histories of expansion. We ask whether geographical distributions of hg R1a1 overall, and of the two sub-lineages in particular, correlate with regions of Scandinavian influence within Britain. Neither shows any frequency difference between regions that have higher (≥10%) or lower autosomal contributions from Norway and Sweden, but both are significantly overrepresented in the region corresponding to the Danelaw. These differences between autosomal and Y-chromosomal histories suggest either male-specific contribution, or the influence of patrilocality. Comparison of modern DNA with recently available ancient DNA data supports the interpretation that two sub-lineages of hg R1a1 spread with the Vikings from peninsular Scandinavia.


Subject(s)
Chromosomes, Human, Y/genetics , Haplotypes , Human Migration , Evolution, Molecular , Humans , Male , Minisatellite Repeats , Pedigree , Polymorphism, Single Nucleotide , Scandinavian and Nordic Countries , United Kingdom
20.
Nat Commun ; 11(1): 5182, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33057025

ABSTRACT

Chronic obstructive pulmonary disease (COPD), diagnosed by reduced lung function, is a leading cause of morbidity and mortality. We performed whole genome sequence (WGS) analysis of lung function and COPD in a multi-ethnic sample of 11,497 participants from population- and family-based studies, and 8499 individuals from COPD-enriched studies in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program. We identify at genome-wide significance 10 known GWAS loci and 22 distinct, previously unreported loci, including two common variant signals from stratified analysis of African Americans. Four novel common variants within the regions of PIAS1, RGN (two variants) and FTO show evidence of replication in the UK Biobank (European ancestry n ~ 320,000), while colocalization analyses leveraging multi-omic data from GTEx and TOPMed identify potential molecular mechanisms underlying four of the 22 novel loci. Our study demonstrates the value of performing WGS analyses and multi-omic follow-up in cohorts of diverse ancestry.


Subject(s)
Black or African American/genetics , Genetic Loci , Pulmonary Disease, Chronic Obstructive/genetics , Respiratory Physiological Phenomena/genetics , Whole Genome Sequencing , Adult , Aged , Aged, 80 and over , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Calcium-Binding Proteins/genetics , Feasibility Studies , Female , Follow-Up Studies , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins/genetics , Lung/physiopathology , Male , Middle Aged , Polymorphism, Single Nucleotide , Protein Inhibitors of Activated STAT/genetics , Pulmonary Disease, Chronic Obstructive/ethnology , Pulmonary Disease, Chronic Obstructive/physiopathology , Small Ubiquitin-Related Modifier Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL