Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
RNA ; 29(12): 1896-1909, 2023 12.
Article in English | MEDLINE | ID: mdl-37793790

ABSTRACT

The characterization of the conformational landscape of the RNA backbone is rather complex due to the ability of RNA to assume a large variety of conformations. These backbone conformations can be depicted by pseudotorsional angles linking RNA backbone atoms, from which Ramachandran-like plots can be built. We explore here different definitions of these pseudotorsional angles, finding that the most accurate ones are the traditional η (eta) and θ (theta) angles, which represent the relative position of RNA backbone atoms P and C4'. We explore the distribution of η - θ in known experimental structures, comparing the pseudotorsional space generated with structures determined exclusively by one experimental technique. We found that the complete picture only appears when combining data from different sources. The maps provide a quite comprehensive representation of the RNA accessible space, which can be used in RNA-structural predictions. Finally, our results highlight that protein interactions lead to significant changes in the population of the η - θ space, pointing toward the role of induced-fit mechanisms in protein-RNA recognition.


Subject(s)
Proteins , RNA , RNA/genetics , RNA/chemistry , Proteins/chemistry , Nucleic Acid Conformation
2.
Mol Cell ; 68(4): 797-807.e7, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29149600

ABSTRACT

DNA lesions caused by UV damage are thought to be repaired solely by the nucleotide excision repair (NER) pathway in human cells. Patients carrying mutations within genes functioning in this pathway display a range of pathologies, including an increased susceptibility to cancer, premature aging, and neurological defects. There are currently no curative therapies available. Here we performed a high-throughput chemical screen for agents that could alleviate the cellular sensitivity of NER-deficient cells to UV-induced DNA damage. This led to the identification of the clinically approved anti-diabetic drug acetohexamide, which promoted clearance of UV-induced DNA damage without the accumulation of chromosomal aberrations, hence promoting cellular survival. Acetohexamide exerted this protective function by antagonizing expression of the DNA glycosylase, MUTYH. Together, our data reveal the existence of an NER-independent mechanism to remove UV-induced DNA damage and prevent cell death.


Subject(s)
DNA Damage , DNA Glycosylases/metabolism , DNA Repair/radiation effects , Ultraviolet Rays , Acetohexamide/pharmacology , Cell Line, Tumor , DNA Glycosylases/biosynthesis , DNA Glycosylases/genetics , DNA Repair/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/radiation effects , Humans , Male
3.
Nucleic Acids Res ; 51(6): 2633-2640, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36912082

ABSTRACT

Traditional mesoscopic models of DNA flexibility use a reductionist-local approach, which assumes that the flexibility of DNA can be expressed as local harmonic movements (at the base-pair step level) in the helical space, ignoring multimodality and correlations in DNA movements, which have in reality a large impact in modulating DNA movements. We present a new multimodal-harmonic correlated model, which takes both contributions into account, providing, with a small computational cost, results of an unprecedented local and global quality. The accuracy of this method and its computational efficiency make it an alternative to explore the dynamics of long segments of DNA, approaching the chromatin range.


Subject(s)
DNA , Nucleic Acid Conformation , Models, Molecular , Base Pairing , Motion
4.
Nucleic Acids Res ; 51(11): 5864-5882, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37207342

ABSTRACT

The compaction of mitochondrial DNA (mtDNA) is regulated by architectural HMG-box proteins whose limited cross-species similarity suggests diverse underlying mechanisms. Viability of Candida albicans, a human antibiotic-resistant mucosal pathogen, is compromised by altering mtDNA regulators. Among them, there is the mtDNA maintenance factor Gcf1p, which differs in sequence and structure from its human and Saccharomyces cerevisiae counterparts, TFAM and Abf2p. Our crystallographic, biophysical, biochemical and computational analysis showed that Gcf1p forms dynamic protein/DNA multimers by a combined action of an N-terminal unstructured tail and a long helix. Furthermore, an HMG-box domain canonically binds the minor groove and dramatically bends the DNA while, unprecedentedly, a second HMG-box binds the major groove without imposing distortions. This architectural protein thus uses its multiple domains to bridge co-aligned DNA segments without altering the DNA topology, revealing a new mechanism of mtDNA condensation.


Subject(s)
Candida albicans , DNA, Mitochondrial , DNA-Binding Proteins , Fungal Proteins , Humans , Candida albicans/genetics , Candida albicans/metabolism , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription Factors/metabolism , Fungal Proteins/metabolism
5.
J Transl Med ; 22(1): 343, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600563

ABSTRACT

BACKGROUND: Accumulating evidence suggests that autonomic dysfunction and persistent systemic inflammation are common clinical features in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID. However, there is limited knowledge regarding their potential association with circulating biomarkers and illness severity in these conditions. METHODS: This single-site, prospective, cross-sectional, pilot cohort study aimed to distinguish between the two patient populations by using self-reported outcome measures and circulating biomarkers of endothelial function and systemic inflammation status. Thirty-one individuals with ME/CFS, 23 individuals with long COVID, and 31 matched sedentary healthy controls were included. All study participants underwent non-invasive cardiovascular hemodynamic challenge testing (10 min NASA lean test) for assessment of orthostatic intolerance. Regression analysis was used to examine associations between outcome measures and circulating biomarkers in the study participants. Classification across groups was based on principal component and discriminant analyses. RESULTS: Four ME/CFS patients (13%), 1 with long COVID (4%), and 1 healthy control (3%) presented postural orthostatic tachycardia syndrome (POTS) using the 10-min NASA lean test. Compared with matched healthy controls, ME/CFS and long COVID subjects showed higher levels of ET-1 (p < 0.05) and VCAM-1 (p < 0.001), and lower levels of nitrites (NOx assessed as NO2- + NO3-) (p < 0.01). ME/CFS patients also showed higher levels of serpin E1 (PAI-1) and E-selectin than did both long COVID and matched control subjects (p < 0.01 in all cases). Long COVID patients had lower TSP-1 levels than did ME/CFS patients and matched sedentary healthy controls (p < 0.001). As for inflammation biomarkers, both long COVID and ME/CFS subjects had higher levels of TNF-α than did matched healthy controls (p < 0.01 in both comparisons). Compared with controls, ME/CFS patients had higher levels of IL-1ß (p < 0.001), IL-4 (p < 0.001), IL-6 (p < 0.01), IL-10 (p < 0.001), IP-10 (p < 0.05), and leptin (p < 0.001). Principal component analysis supported differentiation between groups based on self-reported outcome measures and biomarkers of endothelial function and inflammatory status in the study population. CONCLUSIONS: Our findings revealed that combining biomarkers of endothelial dysfunction and inflammation with outcome measures differentiate ME/CFS and Long COVID using robust discriminant analysis of principal components. Further research is needed to provide a more comprehensive characterization of these underlying pathomechanisms, which could be promising targets for therapeutic and preventive strategies in these conditions.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Humans , Fatigue Syndrome, Chronic/epidemiology , Post-Acute COVID-19 Syndrome , Cross-Sectional Studies , Pilot Projects , Prospective Studies , Cohort Studies , Patient Acuity , Biomarkers , Inflammation
6.
Nucleic Acids Res ; 50(16): 9105-9114, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36018808

ABSTRACT

We present a physics-based machine learning approach to predict in vitro transcription factor binding affinities from structural and mechanical DNA properties directly derived from atomistic molecular dynamics simulations. The method is able to predict affinities obtained with techniques as different as uPBM, gcPBM and HT-SELEX with an excellent performance, much better than existing algorithms. Due to its nature, the method can be extended to epigenetic variants, mismatches, mutations, or any non-coding nucleobases. When complemented with chromatin structure information, our in vitro trained method provides also good estimates of in vivo binding sites in yeast.


Subject(s)
Machine Learning , Transcription Factors , Transcription Factors/metabolism , Binding Sites , Protein Binding , DNA/chemistry , Algorithms
7.
PLoS Comput Biol ; 18(1): e1009749, 2022 01.
Article in English | MEDLINE | ID: mdl-35007284

ABSTRACT

We have used a variety of theoretical and experimental techniques to study the role of four basic amino acids-Arginine, Lysine, Ornithine and L-2,4-Diaminobutyric acid-on the structure, flexibility and sequence-dependent stability of DNA. We found that the presence of organic ions stabilizes the duplexes and significantly reduces the difference in stability between AT- and GC-rich duplexes with respect to the control conditions. This suggests that these amino acids, ingredients of the primordial soup during abiogenesis, could have helped to equalize the stability of AT- and GC-rich DNA oligomers, facilitating a general non-catalysed self-replication of DNA. Experiments and simulations demonstrate that organic ions have an effect that goes beyond the general electrostatic screening, involving specific interactions along the grooves of the double helix. We conclude that organic ions, largely ignored in the DNA world, should be reconsidered as crucial structural elements far from mimics of small inorganic cations.


Subject(s)
Amino Acids, Basic , Base Sequence , DNA , Amino Acids, Basic/analysis , Amino Acids, Basic/chemistry , Aminobutyrates/chemistry , Base Composition , DNA/analysis , DNA/chemistry , Molecular Dynamics Simulation , Origin of Life , Thermodynamics
8.
J Chem Inf Model ; 63(16): 5259-5271, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37577978

ABSTRACT

Sequence-dependent properties of the DNA duplex have been accurately described using extensive molecular dynamics simulations. The RNA duplex meanwhile─which is typically represented as a sequence-averaged rigid rod─does not benefit from having equivalent molecular dynamics simulations. In this paper, we present a massive simulation effort using a set of ABC-optimized duplexes from which we derived tetramer-resolution properties of the RNA duplex and a simple mesoscopic model that can represent elastic properties of long RNA duplexes. Despite the extreme chemical similarity between DNA and RNA, the local and global elastic properties of the duplexes are very different. DNA duplexes show a complex and nonelastic pattern of flexibility, for instance, while RNA duplexes behave as an elastic system whose deformations can be represented by simple harmonic potentials. In RNA duplexes (RNA2), not only are intra- and interbase pair parameters (equilibrium and mechanical) different from those in the equivalent DNA duplex sequences (DNA2) but the correlations between movements also differ. Simple statements on the relative flexibility or stability of both polymers are meaningless and should be substituted by a more detailed description depending on the sequence and the type of deformation considered.


Subject(s)
DNA , RNA , RNA/chemistry , Nucleic Acid Conformation , DNA/chemistry , Molecular Dynamics Simulation , Polymers , Thermodynamics
9.
PLoS Comput Biol ; 17(11): e1009547, 2021 11.
Article in English | MEDLINE | ID: mdl-34748533

ABSTRACT

We present a comprehensive, experimental and theoretical study of the impact of 5-hydroxymethylation of DNA cytosine. Using molecular dynamics, biophysical experiments and NMR spectroscopy, we found that Ten-Eleven translocation (TET) dioxygenases generate an epigenetic variant with structural and physical properties similar to those of 5-methylcytosine. Experiments and simulations demonstrate that 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC) generally lead to stiffer DNA than normal cytosine, with poorer circularization efficiencies and lower ability to form nucleosomes. In particular, we can rule out the hypothesis that hydroxymethylation reverts to unmodified cytosine physical properties, as hmC is even more rigid than mC. Thus, we do not expect dramatic changes in the chromatin structure induced by differences in physical properties between d(mCpG) and d(hmCpG). Conversely, our simulations suggest that methylated-DNA binding domains (MBDs), associated with repression activities, are sensitive to the substitution d(mCpG) ➔ d(hmCpG), while MBD3 which has a dual activation/repression activity is not sensitive to the d(mCpG) d(hmCpG) change. Overall, while gene activity changes due to cytosine methylation are the result of the combination of stiffness-related chromatin reorganization and MBD binding, those associated to 5-hydroxylation of methylcytosine could be explained by a change in the balance of repression/activation pathways related to differential MBD binding.


Subject(s)
5-Methylcytosine/analogs & derivatives , DNA Methylation , DNA/chemistry , DNA/metabolism , Epigenesis, Genetic , 5-Methylcytosine/chemistry , 5-Methylcytosine/metabolism , Binding Sites , Biophysical Phenomena , Computational Biology , DNA/genetics , Humans , Magnetic Resonance Spectroscopy , Models, Biological , Molecular Dynamics Simulation , Nucleic Acid Conformation
10.
Nucleic Acids Res ; 47(18): 9511-9523, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31504766

ABSTRACT

We present Nucleosome Dynamics, a suite of programs integrated into a virtual research environment and created to define nucleosome architecture and dynamics from noisy experimental data. The package allows both the definition of nucleosome architectures and the detection of changes in nucleosomal organization due to changes in cellular conditions. Results are displayed in the context of genomic information thanks to different visualizers and browsers, allowing the user a holistic, multidimensional view of the genome/transcriptome. The package shows good performance for both locating equilibrium nucleosome architecture and nucleosome dynamics and provides abundant useful information in several test cases, where experimental data on nucleosome position (and for some cases expression level) have been collected for cells under different external conditions (cell cycle phase, yeast metabolic cycle progression, changes in nutrients or difference in MNase digestion level). Nucleosome Dynamics is a free software and is provided under several distribution models.


Subject(s)
Genomics/methods , Nucleosomes/genetics , Software , Cell Cycle/genetics , Chromatin Assembly and Disassembly/genetics , Genome/genetics , Nucleosomes/chemistry , Nucleosomes/ultrastructure , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription Initiation Site , Transcriptome/genetics
11.
Nucleic Acids Res ; 47(12): 6519-6537, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31114891

ABSTRACT

Human mitochondrial DNA (h-mtDNA) codes for 13 subunits of the oxidative phosphorylation pathway, the essential route that produces ATP. H-mtDNA transcription and replication depends on the transcription factor TFAM, which also maintains and compacts this genome. It is well-established that TFAM activates the mtDNA promoters LSP and HSP1 at the mtDNA control region where DNA regulatory elements cluster. Previous studies identified still uncharacterized, additional binding sites at the control region downstream from and slightly similar to LSP, namely sequences X and Y (Site-X and Site-Y) (Fisher et al., Cell 50, pp 247-258, 1987). Here, we explore TFAM binding at these two sites and compare them to LSP by multiple experimental and in silico methods. Our results show that TFAM binding is strongly modulated by the sequence-dependent properties of Site-X, Site-Y and LSP. The high binding versatility of Site-Y or the considerable stiffness of Site-X tune TFAM interactions. In addition, we show that increase in TFAM/DNA complex concentration induces multimerization, which at a very high concentration triggers disruption of preformed complexes. Therefore, our results suggest that mtDNA sequences induce non-uniform TFAM binding and, consequently, direct an uneven distribution of TFAM aggregation sites during the essential process of mtDNA compaction.


Subject(s)
DNA, Mitochondrial/chemistry , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Base Sequence , Humans , Poly A , Promoter Regions, Genetic , Protein Binding , Protein Multimerization , Thermodynamics
12.
Nat Methods ; 13(1): 55-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26569599

ABSTRACT

We present parmbsc1, a force field for DNA atomistic simulation, which has been parameterized from high-level quantum mechanical data and tested for nearly 100 systems (representing a total simulation time of ∼ 140 µs) covering most of DNA structural space. Parmbsc1 provides high-quality results in diverse systems. Parameters and trajectories are available at http://mmb.irbbarcelona.org/ParmBSC1/.


Subject(s)
DNA/chemistry , Quantum Theory
13.
Nucleic Acids Res ; 45(2): 951-967, 2017 01 25.
Article in English | MEDLINE | ID: mdl-27899643

ABSTRACT

The mitochondrial genome (mtDNA) is assembled into nucleo-protein structures termed nucleoids and maintained differently compared to nuclear DNA, the involved molecular basis remaining poorly understood. In yeast (Saccharomyces cerevisiae), mtDNA is a ∼80 kbp linear molecule and Abf2p, a double HMG-box protein, packages and maintains it. The protein binds DNA in a non-sequence-specific manner, but displays a distinct 'phased-binding' at specific DNA sequences containing poly-adenine tracts (A-tracts). We present here two crystal structures of Abf2p in complex with mtDNA-derived fragments bearing A-tracts. Each HMG-box of Abf2p induces a 90° bend in the contacted DNA, causing an overall U-turn. Together with previous data, this suggests that U-turn formation is the universal mechanism underlying mtDNA compaction induced by HMG-box proteins. Combining this structural information with mutational, biophysical and computational analyses, we reveal a unique DNA binding mechanism for Abf2p where a characteristic N-terminal flag and helix are crucial for mtDNA maintenance. Additionally, we provide the molecular basis for A-tract mediated exclusion of Abf2p binding. Due to high prevalence of A-tracts in yeast mtDNA, this has critical relevance for nucleoid architecture. Therefore, an unprecedented A-tract mediated protein positioning mechanism regulates DNA packaging proteins in the mitochondria, and in combination with DNA-bending and U-turn formation, governs mtDNA compaction.


Subject(s)
DNA, Mitochondrial/chemistry , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/metabolism , Genome, Mitochondrial , Nucleic Acid Conformation , Base Sequence , DNA-Binding Proteins/chemistry , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Poly A , Protein Binding , Protein Interaction Domains and Motifs , Replication Origin , Thermodynamics
14.
Biophys J ; 114(10): 2386-2396, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29248151

ABSTRACT

Human mitochondrial transcription factor A (TFAM) distorts DNA into a U-turn, as shown by crystallographic studies. The relevance of this U-turn is associated with transcription initiation at the mitochondrial light strand promoter (LSP). However, it has not been yet discerned whether a tight U-turn or an alternative conformation, such as a V-shape, is formed in solution. Here, single-molecule FRET experiments on freely diffusing TFAM/LSP complexes containing different DNA lengths show that a DNA U-turn is induced by progressive and cooperative binding of the two TFAM HMG-box domains and the linker between them. SAXS studies further show compaction of the protein upon complex formation. Finally, molecular dynamics simulations reveal that TFAM/LSP complexes are dynamic entities, and the HMG boxes induce the U-turn against the tendency of the DNA to adopt a straighter conformation. This tension is resolved by reversible unfolding of the linker, which is a singular mechanism that allows a flexible protein to stabilize a tight bending of DNA.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA/chemistry , DNA/metabolism , Mechanical Phenomena , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Biomechanical Phenomena , Diffusion , Humans , Molecular Dynamics Simulation , Nucleic Acid Conformation , Protein Domains , Solutions
15.
Nucleic Acids Res ; 44(D1): D272-8, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26612862

ABSTRACT

Molecular dynamics simulation (MD) is, just behind genomics, the bioinformatics tool that generates the largest amounts of data, and that is using the largest amount of CPU time in supercomputing centres. MD trajectories are obtained after months of calculations, analysed in situ, and in practice forgotten. Several projects to generate stable trajectory databases have been developed for proteins, but no equivalence exists in the nucleic acids world. We present here a novel database system to store MD trajectories and analyses of nucleic acids. The initial data set available consists mainly of the benchmark of the new molecular dynamics force-field, parmBSC1. It contains 156 simulations, with over 120 µs of total simulation time. A deposition protocol is available to accept the submission of new trajectory data. The database is based on the combination of two NoSQL engines, Cassandra for storing trajectories and MongoDB to store analysis results and simulation metadata. The analyses available include backbone geometries, helical analysis, NMR observables and a variety of mechanical analyses. Individual trajectories and combined meta-trajectories can be downloaded from the portal. The system is accessible through http://mmb.irbbarcelona.org/BIGNASim/. Supplementary Material is also available on-line at http://mmb.irbbarcelona.org/BIGNASim/SuppMaterial/.


Subject(s)
Databases, Nucleic Acid , Molecular Dynamics Simulation , Nucleic Acids/chemistry
16.
Nucleic Acids Res ; 44(9): 4052-66, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27084952

ABSTRACT

We present a systematic study of the long-timescale dynamics of the Drew-Dickerson dodecamer (DDD: d(CGCGAATTGCGC)2) a prototypical B-DNA duplex. Using our newly parameterized PARMBSC1 force field, we describe the conformational landscape of DDD in a variety of ionic environments from minimal salt to 2 M Na(+)Cl(-) or K(+)Cl(-) The sensitivity of the simulations to the use of different solvent and ion models is analyzed in detail using multi-microsecond simulations. Finally, an extended (10 µs) simulation is used to characterize slow and infrequent conformational changes in DDD, leading to the identification of previously uncharacterized conformational states of this duplex which can explain biologically relevant conformational transitions. With a total of more than 43 µs of unrestrained molecular dynamics simulation, this study is the most extensive investigation of the dynamics of the most prototypical DNA duplex.


Subject(s)
DNA, B-Form/chemistry , DNA, B-Form/ultrastructure , Molecular Dynamics Simulation , Nucleic Acid Conformation , Models, Molecular , Potassium Chloride/chemistry , Sodium Chloride/chemistry
17.
Nucleic Acids Res ; 42(18): 11304-20, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25223784

ABSTRACT

We have made a detailed study of one of the most surprising sources of polymorphism in B-DNA: the high twist/low twist (HT/LT) conformational change in the d(CpG) base pair step. Using extensive computations, complemented with database analysis, we were able to characterize the twist polymorphism in the d(CpG) step in all the possible tetranucleotide environment. We found that twist polymorphism is coupled with BI/BII transitions, and, quite surprisingly, with slide polymorphism in the neighboring step. Unexpectedly, the penetration of cations into the minor groove of the d(CpG) step seems to be the key element in promoting twist transitions. The tetranucleotide environment also plays an important role in the sequence-dependent d(CpG) polymorphism. In this connection, we have detected a previously unexplored intramolecular C-H···O hydrogen bond interaction that stabilizes the low twist state when 3'-purines flank the d(CpG) step. This work explains a coupled mechanism involving several apparently uncorrelated conformational transitions that has only been partially inferred by earlier experimental or theoretical studies. Our results provide a complete description of twist polymorphism in d(CpG) steps and a detailed picture of the molecular choreography associated with this conformational change.


Subject(s)
CpG Islands , DNA, B-Form/chemistry , Base Sequence , Cations/chemistry , Hydrogen Bonding , Nucleic Acid Conformation , Thermodynamics , Torsion, Mechanical
18.
PLoS Comput Biol ; 9(11): e1003354, 2013.
Article in English | MEDLINE | ID: mdl-24278005

ABSTRACT

Cytosine methylation is one of the most important epigenetic marks that regulate the process of gene expression. Here, we have examined the effect of epigenetic DNA methylation on nucleosomal stability using molecular dynamics simulations and elastic deformation models. We found that methylation of CpG steps destabilizes nucleosomes, especially when these are placed in sites where the DNA minor groove faces the histone core. The larger stiffness of methylated CpG steps is a crucial factor behind the decrease in nucleosome stability. Methylation changes the positioning and phasing of the nucleosomal DNA, altering the accessibility of DNA to regulatory proteins, and accordingly gene functionality. Our theoretical calculations highlight a simple physical-based explanation on the foundations of epigenetic signaling.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Models, Genetic , Nucleosomes/genetics , Computational Biology , Cytosine/chemistry , Cytosine/metabolism , Molecular Dynamics Simulation , Thermodynamics
19.
RSC Chem Biol ; 4(7): 486-493, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37415868

ABSTRACT

We report the modelling of the DNA complex of an artificial miniprotein composed of two zinc finger modules and an AT-hook linking peptide. The computational study provides for the first time a structural view of these types of complexes, dissecting interactions that are key to modulate their stability. The relevance of these interactions was validated experimentally. These results confirm the potential of this type of computational approach for studying peptide-DNA complexes and suggest that they could be very useful for the rational design of non-natural, DNA binding miniproteins.

20.
Biophys J ; 102(9): 2140-8, 2012 May 02.
Article in English | MEDLINE | ID: mdl-22824278

ABSTRACT

There is increasing evidence for the presence of an alternative code imprinted in the genome that might contribute to gene expression regulation through an indirect reading mechanism. In mammals, components of this coarse-grained regulatory mechanism include chromatin structure and epigenetic signatures, where d(CpG) nucleotide steps are key players. We report a comprehensive experimental and theoretical study of d(CpG) steps that provides a detailed description of their physical characteristics and the impact of cytosine methylation on these properties. We observed that methylation changes the physical properties of d(CpG) steps, having a dramatic effect on enriched CpG segments, such as CpG islands. We demonstrate that methylation reduces the affinity of DNA to assemble into nucleosomes, and can affect nucleosome positioning around transcription start sites. Overall, our results suggest a mechanism by which the basic physical properties of the DNA fiber can explain parts of the cellular epigenetic regulatory mechanisms.


Subject(s)
CpG Islands , Cytosine/chemistry , DNA Methylation , DNA/chemistry , DNA/ultrastructure , Models, Chemical , Models, Molecular , Computer Simulation , Molecular Weight , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL