Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Immunol ; 22(7): 880-892, 2021 07.
Article in English | MEDLINE | ID: mdl-34099917

ABSTRACT

Multidimensional single-cell analyses of T cells have fueled the debate about whether there is extensive plasticity or 'mixed' priming of helper T cell subsets in vivo. Here, we developed an experimental framework to probe the idea that the site of priming in the systemic immune compartment is a determinant of helper T cell-induced immunopathology in remote organs. By site-specific in vivo labeling of antigen-specific T cells in inguinal (i) or gut draining mesenteric (m) lymph nodes, we show that i-T cells and m-T cells isolated from the inflamed central nervous system (CNS) in a model of multiple sclerosis (MS) are distinct. i-T cells were Cxcr6+, and m-T cells expressed P2rx7. Notably, m-T cells infiltrated white matter, while i-T cells were also recruited to gray matter. Therefore, we propose that the definition of helper T cell subsets by their site of priming may guide an advanced understanding of helper T cell biology in health and disease.


Subject(s)
Autoimmunity , Brain/immunology , Cell Lineage , Encephalomyelitis, Autoimmune, Experimental/immunology , Intestines/immunology , Skin/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adoptive Transfer , Animals , Autoimmunity/drug effects , Brain/drug effects , Brain/metabolism , Calcium Signaling , Cerebrospinal Fluid/immunology , Cerebrospinal Fluid/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Fingolimod Hydrochloride/pharmacology , Gene Expression Profiling , Genes, T-Cell Receptor , HEK293 Cells , Humans , Immunosuppressive Agents/pharmacology , Intestines/drug effects , Intravital Microscopy , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Multiple Sclerosis, Relapsing-Remitting/genetics , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/metabolism , Phenotype , Prospective Studies , RNA-Seq , Receptors, CXCR6/genetics , Receptors, CXCR6/metabolism , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Single-Cell Analysis , Skin/drug effects , Skin/metabolism , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Helper-Inducer/transplantation , Transcriptome
2.
Proc Natl Acad Sci U S A ; 120(30): e2302697120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37467267

ABSTRACT

Autoreactive encephalitogenic T cells exist in the healthy immune repertoire but need a trigger to induce CNS inflammation. The underlying mechanisms remain elusive, whereby microbiota were shown to be involved in the manifestation of CNS autoimmunity. Here, we used intravital imaging to explore how microbiota affect the T cells as trigger of CNS inflammation. Encephalitogenic CD4+ T cells transduced with the calcium-sensing protein Twitch-2B showed calcium signaling with higher frequency than polyclonal T cells in the small intestinal lamina propria (LP) but not in Peyer's patches. Interestingly, nonencephalitogenic T cells specific for OVA and LCMV also showed calcium signaling in the LP, indicating a general stimulating effect of microbiota. The observed calcium signaling was microbiota and MHC class II dependent as it was significantly reduced in germfree animals and after administration of anti-MHC class II antibody, respectively. As a consequence of T cell stimulation in the small intestine, the encephalitogenic T cells start expressing Th17-axis genes. Finally, we show the migration of CD4+ T cells from the small intestine into the CNS. In summary, our direct in vivo visualization revealed that microbiota induced T cell activation in the LP, which directed T cells to adopt a Th17-like phenotype as a trigger of CNS inflammation.


Subject(s)
Intestinal Mucosa , Intestine, Small , Animals , Duodenum , Inflammation , Ileum
3.
Proc Natl Acad Sci U S A ; 114(31): E6381-E6389, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28716943

ABSTRACT

In experimental autoimmune encephalitis (EAE), autoimmune T cells are activated in the periphery before they home to the CNS. On their way, the T cells pass through a series of different cellular milieus where they receive signals that instruct them to invade their target tissues. These signals involve interaction with the surrounding stroma cells, in the presence or absence of autoantigens. To portray the serial signaling events, we studied a T-cell-mediated model of EAE combining in vivo two-photon microscopy with two different activation reporters, the FRET-based calcium biosensor Twitch1 and fluorescent NFAT. In vitro activated T cells first settle in secondary (2°) lymphatic tissues (e.g., the spleen) where, in the absence of autoantigen, they establish transient contacts with stroma cells as indicated by sporadic short-lived calcium spikes. The T cells then exit the spleen for the CNS where they first roll and crawl along the luminal surface of leptomeningeal vessels without showing calcium activity. Having crossed the blood-brain barrier, the T cells scan the leptomeningeal space for autoantigen-presenting cells (APCs). Sustained contacts result in long-lasting calcium activity and NFAT translocation, a measure of full T-cell activation. This process is sensitive to anti-MHC class II antibodies. Importantly, the capacity to activate T cells is not a general property of all leptomeningeal phagocytes, but varies between individual APCs. Our results identify distinct checkpoints of T-cell activation, controlling the capacity of myelin-specific T cells to invade and attack the CNS. These processes may be valuable therapeutic targets.


Subject(s)
Antigen-Presenting Cells/immunology , Calcium Signaling/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Lymphocyte Activation/immunology , Microscopy, Fluorescence, Multiphoton/methods , T-Lymphocytes/immunology , Animals , Autoantigens/immunology , Autoimmunity/immunology , Blood-Brain Barrier/immunology , Brain/immunology , Cell Line , Female , NFATC Transcription Factors/metabolism , Rats , Rats, Inbred Lew , Transendothelial and Transepithelial Migration/immunology
4.
Nat Neurosci ; 26(10): 1713-1725, 2023 10.
Article in English | MEDLINE | ID: mdl-37709997

ABSTRACT

Multiple sclerosis (MS) involves the infiltration of autoreactive T cells into the CNS, yet we lack a comprehensive understanding of the signaling pathways that regulate this process. Here, we conducted a genome-wide in vivo CRISPR screen in a rat MS model and identified 5 essential brakes and 18 essential facilitators of T cell migration to the CNS. While the transcription factor ETS1 limits entry to the CNS by controlling T cell responsiveness, three functional modules, centered around the adhesion molecule α4-integrin, the chemokine receptor CXCR3 and the GRK2 kinase, are required for CNS migration of autoreactive CD4+ T cells. Single-cell analysis of T cells from individuals with MS confirmed that the expression of these essential regulators correlates with the propensity of CD4+ T cells to reach the CNS. Our data thus reveal key regulators of the fundamental step in the induction of MS lesions.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Rats , Animals , Multiple Sclerosis/pathology , Central Nervous System/pathology , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , T-Lymphocytes/metabolism , Cell Movement/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology
5.
Acta Neuropathol Commun ; 8(1): 49, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32293546

ABSTRACT

Most cases of neuromyelitis optica spectrum disorders (NMOSD) harbor pathogenic autoantibodies against the water channel aquaporin 4 (AQP4). Binding of these antibodies to AQP4 on astrocytes initiates damage to these cells, which culminates in the formation of large tissue destructive lesions in the central nervous system (CNS). Consequently, untreated patients may become permanently blind or paralyzed. Studies on the induction and breakage of tolerance to AQP4 could be of great benefit for NMOSD patients. So far, however, all attempts to create suitable animal models by active sensitization have failed. We addressed this challenge and identified peptides, which mimic the conformational AQP4 epitopes recognized by pathogenic antibodies of NMOSD patients. Here we show that these mimotopes can induce the production of AQP4-reactive antibodies in Lewis rats. Hence, our results provide a conceptual framework for the formation of such antibodies in NMOSD patients, and aid to improve immunization strategies for the creation of animal models suitable for tolerance studies in this devastating disease.


Subject(s)
Aquaporin 4/immunology , Autoantibodies/immunology , Disease Models, Animal , Epitopes/immunology , Neuromyelitis Optica/immunology , Animals , Autoantigens/immunology , Humans , Immunoglobulin G/immunology , Rats , Rats, Inbred Lew
6.
Acta Neuropathol Commun ; 8(1): 207, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33256847

ABSTRACT

Autoimmune disorders of the central nervous system (CNS) comprise a broad spectrum of clinical entities. The stratification of patients based on the recognized autoantigen is of great importance for therapy optimization and for concepts of pathogenicity, but for most of these patients, the actual target of their autoimmune response is unknown. Here we investigated oligodendrocyte myelin glycoprotein (OMGP) as autoimmune target, because OMGP is expressed specifically in the CNS and there on oligodendrocytes and neurons. Using a stringent cell-based assay, we detected autoantibodies to OMGP in serum of 8/352 patients with multiple sclerosis, 1/28 children with acute disseminated encephalomyelitis and unexpectedly, also in one patient with psychosis, but in none of 114 healthy controls. Since OMGP is GPI-anchored, we validated its recognition also in GPI-anchored form. The autoantibodies to OMGP were largely IgG1 with a contribution of IgG4, indicating cognate T cell help. We found high levels of soluble OMGP in human spinal fluid, presumably due to shedding of the GPI-linked OMGP. Analyzing the pathogenic relevance of autoimmunity to OMGP in an animal model, we found that OMGP-specific T cells induce a novel type of experimental autoimmune encephalomyelitis dominated by meningitis above the cortical convexities. This unusual localization may be directed by intrathecal uptake and presentation of OMGP by meningeal phagocytes. Together, OMGP-directed autoimmunity provides a new element of heterogeneity, helping to improve the stratification of patients for diagnostic and therapeutic purposes.


Subject(s)
Autoantibodies/immunology , Autoimmunity/immunology , Encephalomyelitis, Acute Disseminated/immunology , Multiple Sclerosis/immunology , Oligodendrocyte-Myelin Glycoprotein/immunology , Adult , Animals , Case-Control Studies , Child , Child, Preschool , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Humans , Immunoglobulin G/immunology , Male , Mice , Middle Aged , Psychotic Disorders/immunology , Rats , T-Lymphocytes/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL