Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 617(7962): 769-776, 2023 May.
Article in English | MEDLINE | ID: mdl-37138089

ABSTRACT

Sensory processing in the neocortex requires both feedforward and feedback information flow between cortical areas1. In feedback processing, higher-level representations provide contextual information to lower levels, and facilitate perceptual functions such as contour integration and figure-ground segmentation2,3. However, we have limited understanding of the circuit and cellular mechanisms that mediate feedback influence. Here we use long-range all-optical connectivity mapping in mice to show that feedback influence from the lateromedial higher visual area (LM) to the primary visual cortex (V1) is spatially organized. When the source and target of feedback represent the same area of visual space, feedback is relatively suppressive. By contrast, when the source is offset from the target in visual space, feedback is relatively facilitating. Two-photon calcium imaging data show that this facilitating feedback is nonlinearly integrated in the apical tuft dendrites of V1 pyramidal neurons: retinotopically offset (surround) visual stimuli drive local dendritic calcium signals indicative of regenerative events, and two-photon optogenetic activation of LM neurons projecting to identified feedback-recipient spines in V1 can drive similar branch-specific local calcium signals. Our results show how neocortical feedback connectivity and nonlinear dendritic integration can together form a substrate to support both predictive and cooperative contextual interactions.


Subject(s)
Dendrites , Feedback, Physiological , Visual Cortex , Visual Pathways , Animals , Mice , Calcium/metabolism , Dendrites/physiology , Visual Cortex/cytology , Visual Cortex/physiology , Visual Pathways/cytology , Visual Pathways/physiology , Feedback, Physiological/physiology , Primary Visual Cortex/cytology , Primary Visual Cortex/physiology , Pyramidal Cells/cytology , Pyramidal Cells/physiology , Optogenetics , Calcium Signaling
2.
Nat Immunol ; 16(1): 67-74, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25419628

ABSTRACT

Immune responses are tightly regulated to ensure efficient pathogen clearance while avoiding tissue damage. Here we report that Setdb2 was the only protein lysine methyltransferase induced during infection with influenza virus. Setdb2 expression depended on signaling via type I interferons, and Setdb2 repressed expression of the gene encoding the neutrophil attractant CXCL1 and other genes that are targets of the transcription factor NF-κB. This coincided with occupancy by Setdb2 at the Cxcl1 promoter, which in the absence of Setdb2 displayed diminished trimethylation of histone H3 Lys9 (H3K9me3). Mice with a hypomorphic gene-trap construct of Setdb2 exhibited increased infiltration of neutrophils during sterile lung inflammation and were less sensitive to bacterial superinfection after infection with influenza virus. This suggested that a Setdb2-mediated regulatory crosstalk between the type I interferons and NF-κB pathways represents an important mechanism for virus-induced susceptibility to bacterial superinfection.


Subject(s)
Histone-Lysine N-Methyltransferase/immunology , NF-kappa B/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae/immunology , Pneumonia/immunology , Superinfection/immunology , Animals , Chemokine CXCL1/immunology , Disease Susceptibility , Female , Interferon Type I/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Orthomyxoviridae Infections/enzymology , Orthomyxoviridae Infections/virology , Pneumonia/enzymology , Pneumonia/virology , RNA/chemistry , RNA/genetics , Real-Time Polymerase Chain Reaction , Specific Pathogen-Free Organisms , Superinfection/enzymology , Superinfection/microbiology
3.
J Virol ; 98(3): e0187423, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38329336

ABSTRACT

Subacute sclerosing panencephalitis (SSPE) is a rare but fatal late neurological complication of measles, caused by persistent measles virus (MeV) infection of the central nervous system. There are no drugs approved for the treatment of SSPE. Here, we followed the clinical progression of a 5-year-old SSPE patient after treatment with the nucleoside analog remdesivir, conducted a post-mortem evaluation of the patient's brain, and characterized the MeV detected in the brain. The quality of life of the patient transiently improved after the first two courses of remdesivir, but a third course had no further clinical effect, and the patient eventually succumbed to his condition. Post-mortem evaluation of the brain displayed histopathological changes including loss of neurons and demyelination paired with abundant presence of MeV RNA-positive cells throughout the brain. Next-generation sequencing of RNA isolated from the brain revealed a complete MeV genome with mutations that are typically detected in SSPE, characterized by a hypermutated M gene. Additional mutations were detected in the polymerase (L) gene, which were not associated with resistance to remdesivir. Functional characterization showed that mutations in the F gene led to a hyperfusogenic phenotype predominantly mediated by N465I. Additionally, recombinant wild-type-based MeV with the SSPE-F gene or the F gene with the N465I mutation was no longer lymphotropic but instead efficiently disseminated in neural cultures. Altogether, this case encourages further investigation of remdesivir as a potential treatment of SSPE and highlights the necessity to functionally understand SSPE-causing MeV.IMPORTANCEMeasles virus (MeV) causes acute, systemic disease and remains an important cause of morbidity and mortality in humans. Despite the lack of known entry receptors in the brain, MeV can persistently infect the brain causing the rare but fatal neurological disorder subacute sclerosing panencephalitis (SSPE). SSPE-causing MeVs are characterized by a hypermutated genome and a hyperfusogenic F protein that facilitates the rapid spread of MeV throughout the brain. No treatment against SSPE is available, but the nucleoside analog remdesivir was recently demonstrated to be effective against MeV in vitro. We show that treatment of an SSPE patient with remdesivir led to transient clinical improvement and did not induce viral escape mutants, encouraging the future use of remdesivir in SSPE patients. Functional characterization of the viral proteins sheds light on the shared properties of SSPE-causing MeVs and further contributes to understanding how those viruses cause disease.


Subject(s)
Adenosine Monophosphate , Alanine , Measles virus , Measles , Subacute Sclerosing Panencephalitis , Viral Proteins , Child, Preschool , Humans , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/administration & dosage , Alanine/analogs & derivatives , Alanine/therapeutic use , Autopsy , Brain/metabolism , Brain/pathology , Brain/virology , Disease Progression , Fatal Outcome , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing , Measles/complications , Measles/drug therapy , Measles/virology , Measles virus/drug effects , Measles virus/genetics , Measles virus/metabolism , Mutant Proteins/analysis , Mutant Proteins/genetics , Mutant Proteins/metabolism , Quality of Life , RNA, Viral/analysis , RNA, Viral/genetics , Subacute Sclerosing Panencephalitis/drug therapy , Subacute Sclerosing Panencephalitis/etiology , Subacute Sclerosing Panencephalitis/virology , Viral Proteins/analysis , Viral Proteins/genetics , Viral Proteins/metabolism
4.
Phys Rev Lett ; 132(22): 224002, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38877904

ABSTRACT

Charge separation behind moving water drops occurs in nature and technology. Yet, the physical mechanism has remained obscure, as charge deposition is energetically unfavorable. Here, we analyze how a part of the electric double layer charge remains on the dewetted surface. At the contact line, the chemical equilibrium of bound surface charge and diffuse charge in the liquid is influenced by the contact angle and fluid flow. We summarize the mechanism in an analytical model that compares well with experiments and simulations. It correctly predicts that charge separation increases with increasing contact angle and decreases with increasing velocity.

6.
J Neurosci ; 42(46): 8716-8728, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36253083

ABSTRACT

Sensory driven activity during early life is critical for setting up the proper connectivity of the sensory cortices. We ask here whether social play behavior, a particular form of social interaction that is highly abundant during postweaning development, is equally important for setting up connections in the developing prefrontal cortex (PFC). Young male rats were deprived from social play with peers during the period in life when social play behavior normally peaks [postnatal day 21-42] (SPD rats), followed by resocialization until adulthood. We recorded synaptic currents in layer 5 cells in slices from medial PFC of adult SPD and control rats and observed that inhibitory synaptic currents were reduced in SPD slices, while excitatory synaptic currents were unaffected. This was associated with a decrease in perisomatic inhibitory synapses from parvalbumin-positive GABAergic cells. In parallel experiments, adult SPD rats achieved more reversals in a probabilistic reversal learning (PRL) task, which depends on the integrity of the PFC, by using a more simplified cognitive strategy than controls. Interestingly, we observed that one daily hour of play during SPD partially rescued the behavioral performance in the PRL, but did not prevent the decrease in PFC inhibitory synaptic inputs. Our data demonstrate the importance of unrestricted social play for the development of inhibitory synapses in the PFC and cognitive skills in adulthood and show that specific synaptic alterations in the PFC can result in a complex behavioral outcome.SIGNIFICANCE STATEMENT This study addressed the question whether social play behavior in juvenile rats contributes to functional development of the prefrontal cortex (PFC). We found that rats that had been deprived from juvenile social play (social play deprivation - SPD) showed a reduction in inhibitory synapses in the PFC and a simplified strategy to solve a complex behavioral task in adulthood. Providing one daily hour of play during SPD partially rescued the cognitive skills in these rats, but did not prevent the reduction in PFC inhibitory synapses. Our results demonstrate a key role for unrestricted juvenile social play in PFC development and emphasize the complex relation between PFC circuit connectivity and cognitive function.


Subject(s)
Prefrontal Cortex , Synapses , Rats , Male , Animals , Synapses/metabolism , Prefrontal Cortex/metabolism , Parvalbumins/metabolism , Cognition , Neurogenesis
7.
Strahlenther Onkol ; 199(12): 1214-1224, 2023 12.
Article in English | MEDLINE | ID: mdl-37658922

ABSTRACT

PURPOSE: Radiotherapy is a major pillar in the treatment of solid tumors including breast cancer. However, epidemiological studies have revealed an increase in cardiac diseases approximately a decade after exposure of the thorax to ionizing irradiation, which might be related to vascular inflammation. Therefore, chronic inflammatory effects were examined in primary heart and lung endothelial cells (ECs) of mice after local heart irradiation. METHODS: Long-lasting effects on primary ECs of the heart and lung were studied 20-50 weeks after local irradiation of the heart of mice (8 and 16 Gy) in vivo by multiparameter flow cytometry using antibodies directed against cell surface markers related to proliferation, stemness, lipid metabolism, and inflammation, and compared to those induced by occlusion of the left anterior descending coronary artery. RESULTS: In vivo irradiation of the complete heart caused long-lasting persistent upregulation of inflammatory (HCAM, ICAM­1, VCAM-1), proliferation (CD105), and lipid (CD36) markers on primary heart ECs and an upregulation of ICAM­1 and VCAM­1 on primary ECs of the partially irradiated lung lobe. An artificially induced heart infarction induces similar effects with respect to inflammatory markers, albeit in a shorter time period. CONCLUSION: The long-lasting upregulation of prominent inflammatory markers on primary heart and lung ECs suggests that local heart irradiation induces chronic inflammation in the microvasculature of the heart and partially irradiated lung that leads to cardiac injury which might be related to altered lipid metabolism in the heart.


Subject(s)
Atherosclerosis , Intercellular Adhesion Molecule-1 , Mice , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Vascular Cell Adhesion Molecule-1 , Inflammation , Atherosclerosis/etiology , Thorax , Mice, Inbred C57BL
8.
Cytotherapy ; 25(12): 1277-1284, 2023 12.
Article in English | MEDLINE | ID: mdl-37815775

ABSTRACT

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) are polymorphic, adherent cells with the capability to stimulate tissue regeneration and modulate immunity. MSCs have been broadly investigated for potential therapeutic applications, particularly immunomodulatory properties, wound healing and tissue regeneration. The exact physiologic role of MSCs, however, remains poorly understood, and this gap in knowledge significantly impedes the rational development of therapeutic cells. Here, we considered interferon γ (IFN-γ) and tumor necrosis factor alpha (TNF-α), two cytokines likely encountered physiologically and commonly used in cell manufacturing. For comparison, we studied interleukin-10 (IL-10) (anti-inflammatory) and interleukin-4 (IL-4) (type 2 cytokine). METHODS: We directly assessed the effects of these cytokines on bone marrow MSCs by comparing RNA Seq transcriptional profiles. Western blotting and flow cytometry were also used to evaluate effects of cytokine priming. RESULTS: The type 1 cytokines (IFN-γ and TNF-α) induced striking changes in gene expression and remarkably different profiles from one another. Importantly, priming MSCs with either of these cytokines did not increase variability among multiple donors beyond what is intrinsic to non-primed MSCs from different donors. IFN-γ-primed MSCs expressed IDO1 and chemokines that recruit activated T cells. In contrast, TNF-α-primed MSCs expressed genes in alternate pathways, namely PGE2 and matrix metalloproteinases synthesis, and chemokines that recruit neutrophils. IL-10 and IL-4 priming had little to no effect. CONCLUSIONS: Our data suggest that IFN-γ-primed MSCs may be a more efficacious immunosuppressive therapy aimed at diseases that target T cells (ie, graft-versus-host disease) compared with TNF-α-primed or non-primed MSCs, which may be better suited for therapies in other disease settings. These results contribute to our understanding of MSC bioactivity and suggest rational ex vivo cytokine priming approaches for MSC manufacturing and therapeutic applications.


Subject(s)
Cytokines , Mesenchymal Stem Cells , Interleukin-10 , Tumor Necrosis Factor-alpha , Interleukin-4/pharmacology , Interferon-gamma , Chemokines
9.
PLoS Biol ; 18(11): e3000904, 2020 11.
Article in English | MEDLINE | ID: mdl-33156822

ABSTRACT

There is a great need for antiviral drugs to treat enterovirus (EV) and rhinovirus (RV) infections, which can be severe and occasionally life-threatening. The conserved nonstructural protein 2C, which is an AAA+ ATPase, is a promising target for drug development. Here, we present a structure-activity relationship study of a previously identified compound that targets the 2C protein of EV-A71 and several EV-B species members, but not poliovirus (PV) (EV-C species). This compound is structurally related to the Food and Drug Administration (FDA)-approved drug fluoxetine-which also targets 2C-but has favorable chemical properties. We identified several compounds with increased antiviral potency and broadened activity. Four compounds showed broad-spectrum EV and RV activity and inhibited contemporary strains of emerging EVs of public health concern, including EV-A71, coxsackievirus (CV)-A24v, and EV-D68. Importantly, unlike (S)-fluoxetine, these compounds are no longer neuroactive. By raising resistant EV-A71, CV-B3, and EV-D68 variants against one of these inhibitors, we identified novel 2C resistance mutations. Reverse engineering of these mutations revealed a conserved mechanism of resistance development. Resistant viruses first acquired a mutation in, or adjacent to, the α2 helix of 2C. This mutation disrupted compound binding and provided drug resistance, but this was at the cost of viral fitness. Additional mutations at distantly localized 2C residues were then acquired to increase resistance and/or to compensate for the loss of fitness. Using computational methods to identify solvent accessible tunnels near the α2 helix in the EV-A71 and PV 2C crystal structures, a conserved binding pocket of the inhibitors is proposed.


Subject(s)
Antiviral Agents/pharmacology , Carrier Proteins/drug effects , Enterovirus/drug effects , Viral Nonstructural Proteins/drug effects , Antigens, Viral , Carrier Proteins/metabolism , Drug Discovery/methods , Enterovirus/pathogenicity , Enterovirus Infections/virology , Fluoxetine/pharmacology , HeLa Cells , Humans , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism , Virus Replication
10.
Mol Cell ; 56(4): 481-95, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25459880

ABSTRACT

Receptor-interacting protein kinase 3 (RIP3 or RIPK3) has emerged as a central player in necroptosis and a potential target to control inflammatory disease. Here, three selective small-molecule compounds are shown to inhibit RIP3 kinase-dependent necroptosis, although their therapeutic value is undermined by a surprising, concentration-dependent induction of apoptosis. These compounds interact with RIP3 to activate caspase 8 (Casp8) via RHIM-driven recruitment of RIP1 (RIPK1) to assemble a Casp8-FADD-cFLIP complex completely independent of pronecrotic kinase activities and MLKL. RIP3 kinase-dead D161N mutant induces spontaneous apoptosis independent of compound, whereas D161G, D143N, and K51A mutants, like wild-type, only trigger apoptosis when compound is present. Accordingly, RIP3-K51A mutant mice (Rip3(K51A/K51A)) are viable and fertile, in stark contrast to the perinatal lethality of Rip3(D161N/D161N) mice. RIP3 therefore holds both necroptosis and apoptosis in balance through a Ripoptosome-like platform. This work highlights a common mechanism unveiling RHIM-driven apoptosis by therapeutic or genetic perturbation of RIP3.


Subject(s)
Apoptosis , Receptor-Interacting Protein Serine-Threonine Kinases/physiology , Animals , Caspase 8/metabolism , Fas-Associated Death Domain Protein/metabolism , Gene Knock-In Techniques , HT29 Cells , Humans , Mice , Mice, Transgenic , NIH 3T3 Cells , Necrosis/enzymology , Nuclear Pore Complex Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , RNA-Binding Proteins/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors
11.
Proc Natl Acad Sci U S A ; 116(30): 15170-15177, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31285326

ABSTRACT

The magnitude of CD8 T cell responses against viruses is checked by the balance of proliferation and death. Caspase-8 (CASP8) has the potential to influence response characteristics through initiation of apoptosis, suppression of necroptosis, and modulation of cell death-independent signal transduction. Mice deficient in CASP8 and RIPK3 (Casp8-/-Ripk3-/- ) mount enhanced peak CD8 T cell levels against the natural mouse pathogen murine cytomegalovirus (MCMV) or the human pathogen herpes simplex virus-1 compared with littermate control RIPK3-deficient or WT C57BL/6 mice, suggesting an impact of CASP8 on the magnitude of antiviral CD8 T cell expansion and not on contraction. The higher peak response to MCMV in Casp8-/-Ripk3-/- mice resulted from accumulation of greater numbers of terminally differentiated KLRG1hi effector CD8 T cell subsets. Antiviral Casp8-/-Ripk3-/- T cells exhibited enhanced proliferation when splenocytes were transferred into WT recipient mice. Thus, cell-autonomous CASP8 normally restricts CD8 T cell proliferation following T cell receptor activation in response to foreign antigen. Memory inflation is a hallmark quality of the T cell response to cytomegalovirus infection. Surprisingly, MCMV-specific memory inflation was not sustained long-term in Casp8-/-Ripk3-/- mice even though these mice retained immunity to secondary challenge. In addition, the accumulation of abnormal B220+CD3+ T cells in these viable CASP8-deficient mice was reduced by chronic MCMV infection. Combined, these data brings to light the cell death-independent role of CASP8 during CD8 T cell expansion in mice lacking the confounding impact of RIPK3-mediated necroptosis.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Caspase 8/genetics , Cytomegalovirus Infections/immunology , Muromegalovirus/immunology , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , T-Lymphocyte Subsets/immunology , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/virology , Caspase 8/immunology , Cell Proliferation , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/virology , Female , Gene Expression Regulation , Herpes Simplex/genetics , Herpes Simplex/immunology , Herpes Simplex/virology , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/pathogenicity , Immunologic Memory , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muromegalovirus/pathogenicity , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Signal Transduction , T-Lymphocyte Subsets/virology
12.
Immunity ; 37(1): 122-33, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-22840843

ABSTRACT

Inflammatory monocytes are key early responders to infection that contribute to pathogen-host interactions in diverse ways. Here, we report that the murine cytomegalovirus-encoded CC chemokine, MCK2, enhanced CCR2-dependent recruitment of these cells to modulate antiviral immunity, impairing virus-specific CD8(+) T cell expansion and differentiation into effector cytotoxic T lymphocytes, thus reducing the capacity to eliminate viral antigen-bearing cells and slowing viral clearance. Adoptive transfer of inflammatory monocytes into Ccr2(-/-)Ccl2(-/-) mice impaired virus antigen-specific clearance. Cytomegalovirus therefore enhances a natural CCR2-dependent immune regulatory network to modulate adaptive immunity via nitric oxide production, reminiscent of the monocytic subtype of myeloid-derived suppressor cells primarily implicated in cancer immunomodulation.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Herpesviridae Infections/immunology , Monocytes/immunology , Muromegalovirus/immunology , Animals , Cell Line , Chemokine CCL2/genetics , Chemokine CCL2/immunology , Chemokine CCL2/metabolism , Chemokines, CC/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/biosynthesis , Viral Proteins/immunology
13.
J Immunol ; 201(8): 2244-2255, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30194111

ABSTRACT

Caspase-8 (Casp8)-mediated signaling triggers extrinsic apoptosis while suppressing receptor-interacting protein kinase (RIPK) 3-dependent necroptosis. Although Casp8 is dispensable for the development of innate and adaptive immune compartments in mice, the importance of this proapoptotic protease in the orchestration of immune response to pathogens remains to be fully explored. In this study, Casp8-/-Ripk3-/- C57BL/6 mice show robust innate and adaptive immune responses to the natural mouse pathogen, murine CMV. When young, these mice lack lpr-like lymphoid hyperplasia and accumulation of either B220 + CD3+ or B220-CD3+CD4+ and CD8+ T cells with increased numbers of immature myeloid cells that are evident in older mice. Dendritic cell activation and cytokine production drive both NK and T cell responses to control viral infection in these mice, suggesting that Casp8 is dispensable to the generation of antiviral host defense. Curiously, NK and T cell expansion is amplified, with greater numbers observed by 7 d postinfection compared with either Casp8+/-Ripk3-/- or wild type (Casp8+/+Ripk3+/+ ) littermate controls. Casp8 and RIPK3 are natural targets of virus-encoded cell death suppressors that prevent infected cell apoptosis and necroptosis, respectively. It is clear from the current studies that the initiation of innate immunity and the execution of cytotoxic lymphocyte functions are all preserved despite the absence of Casp8 in responding cells. Thus, Casp8 and RIPK3 signaling is completely dispensable to the generation of immunity against this natural herpesvirus infection, although the pathways driven by these initiators serve as a crucial first line for host defense within virus-infected cells.


Subject(s)
Caspase 8/genetics , Dendritic Cells/immunology , Herpesviridae Infections/immunology , Muromegalovirus/physiology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Adaptive Immunity , Animals , Antigens, Viral/immunology , Apoptosis , Dendritic Cells/virology , Humans , Immunity, Innate , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Necrosis , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction
14.
Proc Natl Acad Sci U S A ; 114(13): E2786-E2795, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28292903

ABSTRACT

The complex interplay between caspase-8 and receptor-interacting protein (RIP) kinase RIP 3 (RIPK3) driving extrinsic apoptosis and necroptosis is not fully understood. Murine cytomegalovirus triggers both apoptosis and necroptosis in infected cells; however, encoded inhibitors of caspase-8 activity (M36) and RIP3 signaling (M45) suppress these antiviral responses. Here, we report that this virus activates caspase-8 in macrophages to trigger apoptosis that gives rise to secondary necroptosis. Infection with double-mutant ΔM36/M45mutRHIM virus reveals a signaling pattern in which caspase-8 activates caspase-3 to drive apoptosis with subsequent RIP3-dependent activation of mixed lineage kinase domain-like (MLKL) leading to necroptosis. This combined cell death signaling is highly inflammatory, greater than either apoptosis induced by ΔM36 or necroptosis induced by M45mutRHIM virus. IL-6 production by macrophages is dramatically increased during double-mutant virus infection and correlates with faster antiviral responses in the host. Collaboratively, M36 and M45 target caspase-8 and RIP3 pathways together to suppress this proinflammatory cell death. This study reveals the effect of antiviral programmed cell death pathways on inflammation, shows that caspase-8 activation may go hand-in-hand with necroptosis in macrophages, and revises current understanding of independent and collaborative functions of M36 and M45 in blocking apoptotic and necroptotic cell death responses.


Subject(s)
Apoptosis , Herpesviridae Infections/veterinary , Muromegalovirus/metabolism , Ribonucleotide Reductases/metabolism , Rodent Diseases/physiopathology , Viral Proteins/metabolism , Animals , Caspase 8/genetics , Caspase 8/immunology , Herpesviridae Infections/immunology , Herpesviridae Infections/physiopathology , Herpesviridae Infections/virology , Host-Pathogen Interactions , Mice , Muromegalovirus/classification , Muromegalovirus/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/immunology , Ribonucleotide Reductases/genetics , Rodent Diseases/genetics , Rodent Diseases/immunology , Rodent Diseases/virology , Viral Proteins/genetics
15.
Med Microbiol Immunol ; 208(3-4): 555-571, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31098689

ABSTRACT

Caspase-8 (CASP8) impacts antiviral immunity in expected as well as unexpected ways. Mice with combined deficiency in CASP8 and RIPK3 cannot support extrinsic apoptosis or RIPK3-dependent programmed necrosis, enabling studies of CASP8 function without complications of unleashed necroptosis. These extrinsic cell death pathways are naturally targeted by murine cytomegalovirus (MCMV)-encoded cell death suppressors, showing they are key to cell-autonomous host defense. Remarkably, Casp8-/-Ripk3-/-, Ripk1-/-Casp8-/-Ripk3-/- and Casp8-/-Ripk3K51A/K51A mice mount robust antiviral T cell responses to control MCMV infection. Studies in Casp8-/-Ripk3-/- mice show that CASP8 restrains expansion of MCMV-specific natural killer (NK) and CD8 T cells without compromising contraction or immune memory. Infected Casp8-/-Ripk3-/- or Casp8-/-Ripk3K51A/K51A mice have higher levels of virus-specific NK cells and CD8 T cells compared to matched RIPK3-deficient littermates or WT mice. CASP8, likely acting downstream of Fas death receptor, dampens proliferation of CD8 T cells during expansion. Importantly, contraction proceeds unimpaired in the absence of extrinsic death pathways owing to intact Bim-dependent (intrinsic) apoptosis. CD8 T cell memory develops in Casp8-/-Ripk3-/- mice, but memory inflation characteristic of MCMV infection is not sustained in the absence of CASP8 function. Despite this, Casp8-/-Ripk3-/- mice are immune to secondary challenge. Interferon (IFN)γ is recognized as a key cytokine for adaptive immune control of MCMV. Ifngr-/-Casp8-/-Ripk3-/- mice exhibit increased lifelong persistence in salivary glands as well as lungs compared to Ifngr-/- and Casp8-/-Ripk3-/- mice. Thus, mice deficient in CASP8 and RIPK3 are more dependent on IFNγ mechanisms for sustained T cell immune control of MCMV. Overall, appropriate NK- and T cell immunity to MCMV is dependent on host CASP8 function independent of RIPK3-regulated pathways.


Subject(s)
Caspase 8/metabolism , Cytomegalovirus Infections/immunology , Killer Cells, Natural/immunology , Muromegalovirus/growth & development , Muromegalovirus/immunology , T-Lymphocytes/immunology , Animals , Disease Models, Animal , Mice , Mice, Knockout
16.
Med Microbiol Immunol ; 208(3-4): 543-554, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31115653

ABSTRACT

Natural killer (NK) cells provide important host defense against herpesvirus infections and influence subsequent T cell control of replication and maintenance of latency. NK cells exhibit phases of expansion, contraction and memory formation in response to the natural mouse pathogen murine cytomegalovirus (MCMV). Innate and adaptive immune responses are tightly regulated in mammals to avoid excess tissue damage while preventing acute and chronic viral disease and assuring resistance to reinfection. Caspase (CASP)8 is an autoactivating aspartate-specific cysteine protease that initiates extrinsic apoptosis and prevents receptor interacting protein (RIP) kinase (RIPK)1-RIPK3-driven necroptosis. CASP8 also promotes death-independent signal transduction. All of these activities make contributions to inflammation. Here, we demonstrate that CASP8 restricts NK cell expansion during MCMV infection but does not influence NK memory. Casp8-/-Ripk3-/- mice mount higher NK response levels than Casp8+/-Ripk3-/- littermate controls or WT C57BL/6 J mice, indicating that RIPK3 deficiency alone does not contribute to NK response patterns. MCMV m157-responsive Ly49H+ NK cells support increased expansion of both Ly49H- NK cells and CD8 T cells in Casp8-/-Ripk3-/- mice. Surprisingly, hyperaccumulation of NK cells depends on the pronecrotic kinase RIPK1. Ripk1-/-Casp8-/-Ripk3-/- mice fail to show the enhanced expansion of lymphocytes observed in Casp8-/-Ripk3-/- mice even though development and homeostasis are preserved in uninfected Ripk1-/-Casp8-/-Ripk3-/- mice. Thus, CASP8 naturally regulates the magnitude of NK cell responses in response to infection where strong activation signals depend on another key regulator of death signaling, RIPK1. In addition, the strong NK cell response promotes survival of effector CD8 T cells during their expansion. Thus, hyperaccumulation of NK cells and crosstalk with T cells becomes amplified in the absence of extrinsic cell death machinery.


Subject(s)
Caspase 8/metabolism , Cytomegalovirus Infections/immunology , Killer Cells, Natural/immunology , Muromegalovirus/growth & development , Muromegalovirus/immunology , Animals , Disease Models, Animal , Mice , Mice, Inbred C57BL
17.
Mol Microbiol ; 102(2): 290-305, 2016 10.
Article in English | MEDLINE | ID: mdl-27387604

ABSTRACT

The phenolic compound salicylic acid (SA) is a key signalling molecule regulating local and systemic plant defense responses, mainly against biotrophs. Many microbial organisms, including pathogens, share the ability to degrade SA. However, the mechanism by which they perceive SA is unknown. Here we show that Ustilago maydis, the causal agent of corn smut disease, employs a so far uncharacterized SA sensing mechanism. We identified and characterized the novel SA sensing regulator, Rss1, a binuclear zinc cluster protein with dual functions as putative SA receptor and transcriptional activator regulating genes important for SA and tryptophan degradation. Rss1 represents a major component in the identified SA sensing pathway during the fungus' saprophytic stage. However, Rss1 does not have a detectable impact on virulence. The data presented in this work indicate that alternative or redundant sensing cascades exist that regulate the expression of SA-responsive genes in U. maydis during its pathogenic development.


Subject(s)
Plant Growth Regulators/metabolism , RNA Helicases/metabolism , Transcription Factors/metabolism , Ustilago/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Plant Diseases/microbiology , RNA Helicases/genetics , Salicylic Acid/metabolism , Transcription Factors/genetics , Ustilago/genetics , Zea mays/microbiology
18.
Nature ; 471(7338): 368-72, 2011 Mar 17.
Article in English | MEDLINE | ID: mdl-21368762

ABSTRACT

Apoptosis and necroptosis are complementary pathways controlled by common signalling adaptors, kinases and proteases; among these, caspase-8 (Casp8) is critical for death receptor-induced apoptosis. This caspase has also been implicated in non-apoptotic pathways that regulate Fas-associated via death domain (FADD)-dependent signalling and other less defined biological processes as diverse as innate immune signalling and myeloid or lymphoid differentiation patterns. Casp8 suppresses RIP3-RIP1 (also known as RIPK3-RIPK1) kinase complex-dependent necroptosis that follows death receptor activation as well as a RIP3-dependent, RIP1-independent necrotic pathway that has emerged as a host defence mechanism against murine cytomegalovirus. Disruption of Casp8 expression leads to embryonic lethality in mice between embryonic days 10.5 and 11.5 (ref. 7). Thus, Casp8 may naturally hold alternative RIP3-dependent death pathways in check in addition to promoting apoptosis. We find that RIP3 is responsible for the mid-gestational death of Casp8-deficient embryos. Remarkably, Casp8(-/-)Rip3(-/-) double mutant mice are viable and mature into fertile adults with a full immune complement of myeloid and lymphoid cell types. These mice seem immunocompetent but develop lymphadenopathy by four months of age marked by accumulation of abnormal T cells in the periphery, a phenotype reminiscent of mice with Fas-deficiency (lpr/lpr; also known as Fas). Thus, Casp8 contributes to homeostatic control in the adult immune system; however, RIP3 and Casp8 are together completely dispensable for mammalian development.


Subject(s)
Apoptosis , Caspase 8/genetics , Caspase 8/metabolism , Embryo Loss/genetics , Embryo Loss/metabolism , Gene Deletion , Necrosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Caspase Inhibitors , Cell Line , Embryo Loss/enzymology , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Female , GTPase-Activating Proteins/metabolism , Immunocompetence/genetics , Immunocompetence/immunology , Lymphatic Diseases/genetics , Lymphatic Diseases/immunology , Lymphatic Diseases/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
19.
Proc Natl Acad Sci U S A ; 111(21): 7753-8, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24821786

ABSTRACT

The pronecrotic kinase, receptor interacting protein (RIP1, also called RIPK1) mediates programmed necrosis and, together with its partner, RIP3 (RIPK3), drives midgestational death of caspase 8 (Casp8)-deficient embryos. RIP1 controls a second vital step in mammalian development immediately after birth, the mechanism of which remains unresolved. Rip1(-/-) mice display perinatal lethality, accompanied by gross immune system abnormalities. Here we show that RIP1 K45A (kinase dead) knockin mice develop normally into adulthood, indicating that development does not require RIP1 kinase activity. In the face of complete RIP1 deficiency, cells develop sensitivity to RIP3-mixed lineage kinase domain-like-mediated necroptosis as well as to Casp8-mediated apoptosis activated by diverse innate immune stimuli (e.g., TNF, IFN, double-stranded RNA). When either RIP3 or Casp8 is disrupted in combination with RIP1, the resulting double knockout mice exhibit slightly prolonged survival over RIP1-deficient animals. Surprisingly, triple knockout mice with combined RIP1, RIP3, and Casp8 deficiency develop into viable and fertile adults, with the capacity to produce normal levels of myeloid and lymphoid lineage cells. Despite the combined deficiency, these mice sustain a functional immune system that responds robustly to viral challenge. A single allele of Rip3 is tolerated in Rip1(-/-)Casp8(-/-)Rip3(+/-) mice, contrasting the need to eliminate both alleles of either Rip1 or Rip3 to rescue midgestational death of Casp8-deficient mice. These observations reveal a vital kinase-independent role for RIP1 in preventing pronecrotic as well as proapoptotic signaling events associated with life-threatening innate immune activation at the time of mammalian parturition.


Subject(s)
Apoptosis/immunology , GTPase-Activating Proteins/immunology , Immunity, Innate/immunology , Necrosis/immunology , Parturition/immunology , Signal Transduction/immunology , Animals , Caspase 8/immunology , DNA Primers/genetics , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Gene Knock-In Techniques , Immunoblotting , Mice , Mice, Knockout , Receptor-Interacting Protein Serine-Threonine Kinases/immunology
20.
Antimicrob Agents Chemother ; 60(5): 2627-38, 2016 05.
Article in English | MEDLINE | ID: mdl-26856848

ABSTRACT

Enteroviruses (EVs) represent many important pathogens of humans. Unfortunately, no antiviral compounds currently exist to treat infections with these viruses. We screened the Prestwick Chemical Library, a library of approved drugs, for inhibitors of coxsackievirus B3, identified pirlindole as a potent novel inhibitor, and confirmed the inhibitory action of dibucaine, zuclopenthixol, fluoxetine, and formoterol. Upon testing of viruses of several EV species, we found that dibucaine and pirlindole inhibited EV-B and EV-D and that dibucaine also inhibited EV-A, but none of them inhibited EV-C or rhinoviruses (RVs). In contrast, formoterol inhibited all enteroviruses and rhinoviruses tested. All compounds acted through the inhibition of genome replication. Mutations in the coding sequence of the coxsackievirus B3 (CV-B3) 2C protein conferred resistance to dibucaine, pirlindole, and zuclopenthixol but not formoterol, suggesting that 2C is the target for this set of compounds. Importantly, dibucaine bound to CV-B3 protein 2C in vitro, whereas binding to a 2C protein carrying the resistance mutations was reduced, providing an explanation for how resistance is acquired.


Subject(s)
Antiviral Agents/pharmacology , Enterovirus/drug effects , Virus Replication/drug effects , Carbazoles/pharmacology , Carrier Proteins/genetics , Clopenthixol/pharmacology , Dibucaine/pharmacology , Enterovirus/genetics , Fluoxetine/pharmacology , Formoterol Fumarate/pharmacology , HeLa Cells , Humans , Rhinovirus/drug effects , Rhinovirus/genetics , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL