Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Article in English | MEDLINE | ID: mdl-39178030

ABSTRACT

BACKGROUND: Cardiogenic shock (CS) is characterized by impaired cardiac function, very high mortality, and limited treatment options. The pro-inflammatory signalling during different phases of CS is incompletely understood. METHODS: We collected serum and plasma (N=44) as well as freshly isolated peripheral blood mononuclear cells (PBMC, N=7) of patients with CS complicating acute myocardial infarction on admission and after revascularization (24h, 48h, 72h) and of healthy controls (serum and plasma N=75; PBMC N=12). RESULTS: PBMC of CS patients had increased gene expression of NLRP3, CASP1, PYCARD, IL1B, and IL18 and showed increased rates of pyroptosis (control: 4.7±0.3% vs. 9.9±1.7% in CS patients, p=0.02). Serum interleukin (IL)-1ß levels were increased after revascularization. IL-18 and IL-6 were higher in patients with CS than in healthy controls but comparable before and after revascularization. Pro-inflammatory apoptosis-associated speck-like proteins containing CARD (ASC) specks were elevated in the serum of CS patients on admission and increased after revascularization (admission: 11.1±4.4 specks/µl, after 24h: 19.0±3.9, p=0.02). ASC specks showed a significant association with 30-day mortality in patients with CS (p<0.05). The estimated regression coefficients and odds ratios indicated a positive relationship between ASC specks and mortality (Odds ratio 1.029, 95% CI, 1.000 to 1.072; p=0.02). CONCLUSIONS: Pyroptosis and circulating ASC specks are increased in patients with CS and are particularly induced after reperfusion This underscores their potential role as a biomarker for poor outcomes in CS patients. ASC specks represent promising new therapeutic targets for CS patients with high inflammatory burden.

2.
Environ Sci Technol ; 58(1): 99-109, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38117130

ABSTRACT

Identifying endocrine disrupting chemicals in order to limit their usage is a priority and required according to the European Regulation. There are no Organization for Economic Co-operation and Development (OECD) test guidelines based on fish available for the detection of Thyroid axis Active Chemicals (TACs). This study aimed to fill this gap by developing an assay at eleuthero-embryonic life stages in a novel medaka (Oryzias latipes) transgenic line. This transgenic line expresses green fluorescent protein (GFP) in thyrocytes, under the control of the medaka thyroglobulin gene promoter. The fluorescence expressed in the thyrocytes is inversely proportional to the thyroid axis activity. When exposed for 72 h to activators (triiodothyronine (T3) and thyroxine (T4)) or inhibitors (6-N-propylthiouracil (PTU), Tetrabromobisphenol A (TBBPA)) of the thyroid axis, the thyrocytes can change their size and express lower or higher levels of fluorescence, respectively. This reflects the regulation of thyroglobulin by the negative feedback loop of the Hypothalamic-Pituitary-Thyroid axis. T3, T4, PTU, and TBBPA induced fluorescence changes with the lowest observable effect concentrations (LOECs) of 5 µg/L, 1 µg/L, 8 mg/L, and 5 mg/L, respectively. This promising tool could be used as a rapid screening assay and also to help decipher the mechanisms by which TACs can disrupt the thyroid axis in medaka.


Subject(s)
Oryzias , Thyroid Gland , Animals , Thyroid Gland/physiology , Oryzias/physiology , Thyroglobulin/metabolism , Thyroglobulin/pharmacology , Triiodothyronine/metabolism , Triiodothyronine/pharmacology
3.
ALTEX ; 41(3): 395-401, 2024.
Article in English | MEDLINE | ID: mdl-38501278

ABSTRACT

The 4th Annual Forum on Endocrine Disrupters organized by the European Commission brought together the authors of this article around the topic: "From bench to validated test guidelines: (pre)val­idation of test methods". Validation activities are meant to demonstrate the relevance and reliability of methods and approaches used in regulatory safety testing. These activities are essential to facil­itate regulatory use, still they are largely underfunded and unattractive to the scientific community. In the last decade, large amounts of funding have been invested in European research towards the development of approaches that can be used in regulatory decision-making, including for the identification of endocrine disrupters. There is a vast pool of candidate test methods for potential reg­ulatory applications, but most of them will not be used due to the absence of consideration of their relevance and reliability outside the method developer's laboratory. This article explains the reasons why such a gap exists between the outputs of research projects and the uptake in a regulatory context. In parallel, there are also increasing expectations from the regulatory science community that validation becomes more efficient with respect to time and resources. This article shares some of the lessons learned and proposes paths forward for validation of new methods that are not intended as one-to-one replacements of animal studies. This includes submitting only mature methods for validation that were developed following good practices and good documentation, proposing a greater emphasis on well-documented transferability studies, and adopting a cost-sharing model among those who benefit from validated methods.


Validation activities for methods intended to be used to assess chemical safety have a cost but also bring substantial benefits when the validated methods are established as OECD Test Guidelines, which results in mutual acceptance of data generated by the methods across OECD member and adhering countries. The article discusses some of the challenges faced when method validation is underfunded and unattractive for researchers. Proposals are made to improve the current situation, gain efficiency, and make validation a shared responsibility.


Subject(s)
Animal Testing Alternatives , Toxicity Tests , Animal Testing Alternatives/methods , Animal Testing Alternatives/economics , Toxicity Tests/methods , Toxicity Tests/economics , Animals , Reproducibility of Results , Endocrine Disruptors/toxicity , Humans , Validation Studies as Topic
4.
Aquat Toxicol ; 272: 106969, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824743

ABSTRACT

Thyroid hormones (THs) act early in ontogenesis, even prior to the differentiation of thyrocytes. Maternal transfer of THs is therefore known to play an essential role in early development. Current OECD test guidelines for the assessment of TH system disruption (THSD) do not address inter- or transgenerational effects. The integrated fish endocrine disruptor test (iFEDT), a test combining parental and developmental exposure of filial fish, may fill this gap. We tested the ability of the iFEDT to detect intergenerational effects in zebrafish (Danio rerio): Parental fish were exposed to propylthiouracil (PTU), an inhibitor of TH synthesis, or not exposed. The offspring was submitted to a crossed experimental design to obtain four exposure scenarios: (1) no exposure at all, (2) parental exposure only, (3) embryonic exposure only, and (4) combined parental and embryonic exposure. Swim bladder inflation, visual motor response (VMR) and gene expression of the progeny were analysed. Parental, but not embryonic PTU exposure reduced the size of the swim bladder of 5 d old embryos, indicating the existence of intergenerational effects. The VMR test produced opposite responses in 4.5 d old embryos exposed to PTU vs. embryos derived from exposed parents. Embryonic exposure, but not parental exposure increased gene expression of thyroperoxidase, the target of PTU, most likely due to a compensatory mechanism. The gene expression of pde-6h (phosphodiesterase) was reduced by embryonic, but not parental exposure, suggesting downregulation of phototransduction pathways. Hence, adverse effects on swim bladder inflation appear more sensitive to parental than embryonic exposure and the iFEDT represents an improvement in the testing strategy for THSD.


Subject(s)
Endocrine Disruptors , Propylthiouracil , Thyroid Hormones , Water Pollutants, Chemical , Zebrafish , Animals , Endocrine Disruptors/toxicity , Thyroid Hormones/metabolism , Water Pollutants, Chemical/toxicity , Propylthiouracil/toxicity , Female , Embryo, Nonmammalian/drug effects , Male , Toxicity Tests
5.
Environ Toxicol Chem ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804632

ABSTRACT

There is increasing concern regarding pollutants disrupting the vertebrate thyroid hormone (TH) system, which is crucial for development. Thus, identification of TH system-disrupting chemicals (THSDCs) is an important requirement in the Organisation for Economic Co-operation and Development (OECD) testing framework. The current OECD approach uses different model organisms for different endocrine modalities, leading to a high number of animal tests. Alternative models compatible with the 3Rs (replacement, reduction, refinement) principle are required. Zebrafish embryos, not protected by current European Union animal welfare legislation, represent a promising model. Studies show that zebrafish swim bladder inflation and eye development are affected by THSDCs, and the respective adverse outcome pathways (AOPs) have been established. The present study compared effects of four THSDCs with distinct molecular modes of action: Propylthiouracil (PTU), potassium perchlorate, iopanoic acid, and the TH triiodothyronine (T3) were tested with a protocol based on the OECD fish embryo toxicity test (FET). Effects were analyzed according to the AOP concept from molecular over morphological to behavioral levels: Analysis of thyroid- and eye-related gene expression revealed significant effects after PTU and T3 exposure. All substances caused changes in thyroid follicle morphology of a transgenic zebrafish line expressing fluorescence in thyrocytes. Impaired eye development and swimming activity were observed in all treatments, supporting the hypothesis that THSDCs cause adverse population-relevant changes. Findings thus confirm that the FET can be amended by TH system-related endpoints into an integrated protocol comprising molecular, morphological, and behavioral endpoints for environmental risk assessment of potential endocrine disruptors, which is compatible with the 3Rs principle. Environ Toxicol Chem 2024;00:1-18. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

6.
Open Res Eur ; 4: 68, 2024.
Article in English | MEDLINE | ID: mdl-38883262

ABSTRACT

The prevalence of hormone-related health issues caused by exposure to endocrine disrupting chemicals (EDCs) is a significant, and increasing, societal challenge. Declining fertility rates together with rising incidence rates of reproductive disorders and other endocrine-related diseases underscores the urgency in taking more action. Addressing the growing threat of EDCs in our environment demands robust and reliable test methods to assess a broad variety of endpoints relevant for endocrine disruption. EDCs also require effective regulatory frameworks, especially as the current move towards greater reliance on non-animal methods in chemical testing puts to test the current paradigm for EDC identification, which requires that an adverse effect is observed in an intact organism. Although great advances have been made in the field of predictive toxicology, disruption to the endocrine system and subsequent adverse health effects may prove particularly difficult to predict without traditional animal models. The MERLON project seeks to expedite progress by integrating multispecies molecular research, new approach methodologies (NAMs), human clinical epidemiology, and systems biology to furnish mechanistic insights and explore ways forward for NAM-based identification of EDCs. The focus is on sexual development and function, from foetal sex differentiation of the reproductive system through mini-puberty and puberty to sexual maturity. The project aims are geared towards closing existing knowledge gaps in understanding the effects of EDCs on human health to ultimately support effective regulation of EDCs in the European Union and beyond.

SELECTION OF CITATIONS
SEARCH DETAIL