Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Allergy ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39036854

ABSTRACT

Derived from the myeloid lineage, granulocytes, including basophils, eosinophils, and neutrophils, along with mast cells, play important, often disparate, roles across the allergic disease spectrum. While these cells and their mediators are commonly associated with allergic inflammation, they also exhibit several functions either promoting or restricting tumor growth. In this Position Paper we discuss common granulocyte and mast cell features relating to immunomodulatory functions in allergy and in cancer. We highlight key mechanisms which may inform cancer treatment and propose pertinent areas for future research. We suggest areas where understanding the communication between granulocytes, mast cells, and the tumor microenvironment, will be crucial for identifying immune mechanisms that may be harnessed to counteract tumor development. For example, a comprehensive understanding of allergic and immune factors driving distinct neutrophil states and those mechanisms that link mast cells with immunotherapy resistance, might enable targeted manipulation of specific subpopulations, leading to precision immunotherapy in cancer. We recommend specific areas of investigation in AllergoOncology and knowledge exchange across disease contexts to uncover pertinent reciprocal functions in allergy and cancer and allow therapeutic manipulation of these powerful cell populations. These will help address the unmet needs in stratifying and managing patients with allergic diseases and cancer.

2.
Allergy ; 79(6): 1419-1439, 2024 06.
Article in English | MEDLINE | ID: mdl-38263898

ABSTRACT

Epidemiological studies have explored the relationship between allergic diseases and cancer risk or prognosis in AllergoOncology. Some studies suggest an inverse association, but uncertainties remain, including in IgE-mediated diseases and glioma. Allergic disease stems from a Th2-biased immune response to allergens in predisposed atopic individuals. Allergic disorders vary in phenotype, genotype and endotype, affecting their pathophysiology. Beyond clinical manifestation and commonly used clinical markers, there is ongoing research to identify novel biomarkers for allergy diagnosis, monitoring, severity assessment and treatment. Gliomas, the most common and diverse brain tumours, have in parallel undergone changes in classification over time, with specific molecular biomarkers defining glioma subtypes. Gliomas exhibit a complex tumour-immune interphase and distinct immune microenvironment features. Immunotherapy and targeted therapy hold promise for primary brain tumour treatment, but require more specific and effective approaches. Animal studies indicate allergic airway inflammation may delay glioma progression. This collaborative European Academy of Allergy and Clinical Immunology (EAACI) and European Association of Neuro-Oncology (EANO) Position Paper summarizes recent advances and emerging biomarkers for refined allergy and adult-type diffuse glioma classification to inform future epidemiological and clinical studies. Future research is needed to enhance our understanding of immune-glioma interactions to ultimately improve patient prognosis and survival.


Subject(s)
Biomarkers , Glioma , Hypersensitivity , Humans , Glioma/immunology , Glioma/etiology , Glioma/diagnosis , Hypersensitivity/diagnosis , Hypersensitivity/immunology , Hypersensitivity/etiology , Brain Neoplasms/immunology , Brain Neoplasms/diagnosis , Brain Neoplasms/etiology , Disease Susceptibility , Animals
3.
Br J Cancer ; 128(2): 342-353, 2023 01.
Article in English | MEDLINE | ID: mdl-36402875

ABSTRACT

BACKGROUND: Survival rates for ovarian cancer remain poor, and monitoring and prediction of therapeutic response may benefit from additional markers. Ovarian cancers frequently overexpress Folate Receptor alpha (FRα) and the soluble receptor (sFRα) is measurable in blood. Here we investigated sFRα as a potential biomarker. METHODS: We evaluated sFRα longitudinally, before and during neo-adjuvant, adjuvant and palliative therapies, and tumour FRα expression status by immunohistrochemistry. The impact of free FRα on the efficacy of anti-FRα treatments was evaluated by an antibody-dependent cellular cytotoxicity assay. RESULTS: Membrane and/or cytoplasmic FRα staining were observed in 52.7% tumours from 316 ovarian cancer patients with diverse histotypes. Circulating sFRα levels were significantly higher in patients, compared to healthy volunteers, specifically in patients sampled prior to neoadjuvant and palliative treatments. sFRα was associated with FRα cell membrane expression in the tumour. sFRα levels decreased alongside concurrent tumour burden in patients receiving standard therapies. High concentrations of sFRα partly reduced anti-FRα antibody tumour cell killing, an effect overcome by increased antibody doses. CONCLUSIONS: sFRα may present a non-invasive marker for tumour FRα expression, with the potential for monitoring patient response to treatment. Larger, prospective studies should evaluate FRα for assessing disease burden and response to systemic treatments.


Subject(s)
Ovarian Neoplasms , Female , Humans , Folate Receptor 1/metabolism , Folate Receptor 1/therapeutic use , Ovarian Neoplasms/pathology , Prospective Studies , Treatment Outcome
4.
Eur J Immunol ; 51(3): 544-556, 2021 03.
Article in English | MEDLINE | ID: mdl-33450785

ABSTRACT

Cytotoxic T-lymphocyte associated protein-4 (CTLA-4) and the Programmed Death Receptor 1 (PD-1) are immune checkpoint molecules that are well-established targets of antibody immunotherapies for the management of malignant melanoma. The monoclonal antibodies, Ipilimumab, Pembrolizumab, and Nivolumab, designed to interfere with T cell inhibitory signals to activate immune responses against tumors, were originally approved as monotherapy. Treatment with a combination of immune checkpoint inhibitors may improve outcomes compared to monotherapy in certain patient groups and these clinical benefits may be derived from unique immune mechanisms of action. However, treatment with checkpoint inhibitor combinations also present significant clinical challenges and increased rates of immune-related adverse events. In this review, we discuss the potential mechanisms attributed to single and combined checkpoint inhibitor immunotherapies and clinical experience with their use.


Subject(s)
Antibodies, Monoclonal/immunology , CTLA-4 Antigen/immunology , Immune Checkpoint Inhibitors/immunology , Melanoma/immunology , Melanoma/therapy , Programmed Cell Death 1 Receptor/immunology , Skin Neoplasms/immunology , Skin Neoplasms/therapy , Animals , Humans , Immunotherapy/methods , Melanoma/metabolism , Skin Neoplasms/metabolism , Melanoma, Cutaneous Malignant
5.
Allergy ; 77(9): 2594-2617, 2022 09.
Article in English | MEDLINE | ID: mdl-35152450

ABSTRACT

The immune system interacts with many nominal 'danger' signals, endogenous danger-associated (DAMP), exogenous pathogen (PAMP) and allergen (AAMP)-associated molecular patterns. The immune context under which these are received can promote or prevent immune activating or inflammatory mechanisms and may orchestrate diverse immune responses in allergy and cancer. Each can act either by favouring a respective pathology or by supporting the immune response to confer protective effects, depending on acuity or chronicity. In this Position Paper under the collective term danger signals or DAMPs, PAMPs and AAMPs, we consider their diverse roles in allergy and cancer and the connection between these in AllergoOncology. We focus on their interactions with different immune cells of the innate and adaptive immune system and how these promote immune responses with juxtaposing clinical outcomes in allergy and cancer. While danger signals present potential targets to overcome inflammatory responses in allergy, these may be reconsidered in relation to a history of allergy, chronic inflammation and autoimmunity linked to the risk of developing cancer, and with regard to clinical responses to anti-cancer immune and targeted therapies. Cross-disciplinary insights in AllergoOncology derived from dissecting clinical phenotypes of common danger signal pathways may improve allergy and cancer clinical outcomes.


Subject(s)
Hypersensitivity , Neoplasms , Humans , Hypersensitivity/diagnosis , Hypersensitivity/etiology , Hypersensitivity/therapy , Immunity , Inflammation , Neoplasms/etiology , Neoplasms/therapy , Signal Transduction
6.
Proc Natl Acad Sci U S A ; 115(37): E8707-E8716, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30150373

ABSTRACT

Antibodies classically bind antigens via their complementarity-determining regions, but an alternative mode of interaction involving V-domain framework regions has been observed for some B cell "superantigens." We report the crystal structure of an antibody employing both modes of interaction simultaneously and binding two antigen molecules. This human antibody from an allergic individual binds to the grass pollen allergen Phl p 7. Not only are two allergen molecules bound to each antibody fragment (Fab) but also each allergen molecule is bound by two Fabs: One epitope is recognized classically, the other in a superantigen-like manner. A single allergen molecule thus cross-links two identical Fabs, contrary to the one-antibody-one-epitope dogma, which dictates that a dimeric allergen at least is required for this to occur. Allergens trigger immediate hypersensitivity reactions by cross-linking receptor-bound IgE molecules on effector cells. We found that monomeric Phl p 7 induced degranulation of basophils sensitized solely with this monoclonal antibody expressed as an IgE, demonstrating that the dual specificity has functional consequences. The monomeric state of Phl p 7 and two structurally related allergens was confirmed by size-exclusion chromatography and multiangle laser light scattering, and the results were supported by degranulation studies with the related allergens, a second patient-derived allergen-specific antibody lacking the nonclassical binding site, and mutagenesis of the nonclassically recognized allergen epitope. The antibody dual reactivity and cross-linking mechanism not only have implications for understanding allergenicity and allergen potency but, importantly, also have broader relevance to antigen recognition by membrane Ig and cross-linking of the B cell receptor.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens, Plant/immunology , Calcium-Binding Proteins/immunology , Epitopes/immunology , Superantigens/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibody Specificity/immunology , Antigens, Plant/chemistry , Antigens, Plant/metabolism , Basophils/immunology , Basophils/physiology , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Cell Degranulation/immunology , Cross Reactions/immunology , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/metabolism , Humans , Immunoglobulin E/chemistry , Immunoglobulin E/immunology , Immunoglobulin E/metabolism , Models, Molecular , Protein Binding , Protein Conformation , Superantigens/chemistry , Superantigens/metabolism
7.
Int J Mol Sci ; 21(16)2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32784509

ABSTRACT

Birch pollen allergy is among the most prevalent pollen allergies in Northern and Central Europe. This IgE-mediated disease can be treated with allergen immunotherapy (AIT), which typically gives rise to IgG antibodies inducing tolerance. Although the main mechanisms of allergen immunotherapy (AIT) are known, questions regarding possible Fc-mediated effects of IgG antibodies remain unanswered. This can mainly be attributed to the unavailability of appropriate tools, i.e., well-characterised recombinant antibodies (rAbs). We hereby aimed at providing human rAbs of several classes for mechanistic studies and as possible candidates for passive immunotherapy. We engineered IgE, IgG1, and IgG4 sharing the same variable region against the major birch pollen allergen Bet v 1 using Polymerase Incomplete Primer Extension (PIPE) cloning. We tested IgE functionality and IgG blocking capabilities using appropriate model cell lines. In vitro studies showed IgE engagement with FcεRI and CD23 and Bet v 1-dependent degranulation. Overall, we hereby present fully functional, human IgE, IgG1, and IgG4 sharing the same variable region against Bet v 1 and showcase possible applications in first mechanistic studies. Furthermore, our IgG antibodies might be useful candidates for passive immunotherapy of birch pollen allergy.


Subject(s)
Allergens/immunology , Betula/chemistry , Hypersensitivity/immunology , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Pollen/chemistry , Rhinitis, Allergic, Seasonal/immunology , Antibody Specificity/immunology , Basophils/physiology , Cell Degranulation/physiology , Endocytosis , Humans , Immunoglobulin E/blood , Monocytes/metabolism , Recombinant Proteins/metabolism , U937 Cells , Up-Regulation
9.
Allergy ; 74(6): 1037-1051, 2019 06.
Article in English | MEDLINE | ID: mdl-30636005

ABSTRACT

The microbiota can play important roles in the development of human immunity and the establishment of immune homeostasis. Lifestyle factors including diet, hygiene, and exposure to viruses or bacteria, and medical interventions with antibiotics or anti-ulcer medications, regulate phylogenetic variability and the quality of cross talk between innate and adaptive immune cells via mucosal and skin epithelia. More recently, microbiota and their composition have been linked to protective effects for health. Imbalance, however, has been linked to immune-related diseases such as allergy and cancer, characterized by impaired, or exaggerated immune tolerance, respectively. In this AllergoOncology position paper, we focus on the increasing evidence defining the microbiota composition as a key determinant of immunity and immune tolerance, linked to the risk for the development of allergic and malignant diseases. We discuss novel insights into the role of microbiota in disease and patient responses to treatments in cancer and in allergy. These may highlight opportunities to improve patient outcomes with medical interventions supported through a restored microbiome.


Subject(s)
Asthma/immunology , Asthma/microbiology , Bacteria/metabolism , Gastrointestinal Microbiome/immunology , Host Microbial Interactions/immunology , Neoplasms/immunology , Neoplasms/microbiology , Animals , Asthma/metabolism , Bacteria/genetics , Child , Child, Preschool , Diet , Epithelium/immunology , Epithelium/microbiology , Female , Humans , Hygiene Hypothesis , Immunity, Cellular , Infant , Male , Micronutrients , Mucous Membrane/immunology , Mucous Membrane/microbiology , Neoplasms/metabolism , Phylogeny
11.
Lancet ; 385 Suppl 1: S53, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-26312875

ABSTRACT

BACKGROUND: Nearly all anti-tumour antibodies are of a single class-namely, IgG. Efficacy might be improved by development of tumour-specific IgE antibodies, which have higher affinities for effector cell receptors and perform potent immune functions. MOv18IgE, which targets folate receptor α (FRα), is a novel system to model this hypothesis. Human chimeric MOv18 IgE has shown superior efficacy in two murine xenograft models compared with MOv18 IgG1. Our aim was to examine the potential of this antibody class to activate monocytes. METHODS: We developed an immunocompetent rat model system of rat tumour lung metastases expressing human FRα, and engineered surrogate rat MOv18 IgE and IgG antibodies to assess their efficacy and ability to recruit monocytes in the rat model system. FINDINGS: In-vivo assessment of the efficacy of rat MOv18 IgE demonstrated superior tumour growth restriction compared with rat MOv18 IgG (tumour occupancy 6·8% [SE 1·6] vs 16·0 [1·7]; p<0·0001). We measured significant CD68-positive (CD68+) macrophage infiltration of tumours after MOv18 IgE treatment (mean ratio of CD68+ cells in tumour vs periphery 3·6 [0·5] for MOv18 IgE-treated tumours vs 2·3 [0·3] for MOv18 IgG-treated tumours; p=0·03). INTERPRETATION: Our in-vivo studies using rat MOv18 IgE show the importance of monocyte recruitment in the efficacy of this antibody, and provide further evidence that tumour-specific IgE antibodies might offer improved efficacy against cancer by recruiting key immune effector cells. FUNDING: Academy of Medical Sciences Starter Grant, Cancer Research UK New Agents Committee Grant.

12.
Cancer Immunol Immunother ; 65(11): 1289-1301, 2016 11.
Article in English | MEDLINE | ID: mdl-27473075

ABSTRACT

Beta-glucans are large polysaccharides produced by a range of prokaryotic and eukaryotic organisms. They have potential immunostimulatory properties and have been used with therapeutic intent as anti-microbial and anti-tumour agents. A range of other potentially beneficial effects have been described, and oral forms of beta-glucans are widely available over-the-counter and online. Parenteral formulations are popular in parts of Asia and are the subject of ongoing trials, worldwide. Beta-glucans are also potential contaminants of pharmaceutical products, and high levels have been described in some blood products. However, little is known about the clinical effects of such contamination, considerable uncertainty exists over the level at which immunostimulation may occur, and there are no guidelines available on acceptable levels. We encountered beta-glucan contamination of one of our products, and we suspect that others may encounter similar issues since the origin of beta-glucan contamination includes commonly used filters and solutions applied in the manufacture of biotherapeutic agents. It is likely that regulators will increasingly enquire about beta-glucan levels in pharmaceutical products, especially those with an immunomodulatory mechanism of action. Here, we review the literature on beta-glucans in pharmaceutical products and propose an acceptable level for therapeutic agents for parenteral use.


Subject(s)
Biosimilar Pharmaceuticals/metabolism , Neoplasms/therapy , Pharmaceutical Preparations/metabolism , Risk Assessment , beta-Glucans/metabolism , Animals , Clinical Trials as Topic , Humans , Immunomodulation , Technology, Pharmaceutical
15.
J Biol Chem ; 287(37): 31457-61, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22815482

ABSTRACT

IgE, the antibody that mediates allergic responses, acts as part of a self-regulating protein network. Its unique effector functions are controlled through interactions of its Fc region with two cellular receptors, FcεRI on mast cells and basophils and CD23 on B cells. IgE cross-linked by allergen triggers mast cell activation via FcεRI, whereas IgE-CD23 interactions control IgE expression levels. We have determined the CD23 binding site on IgE, using a combination of NMR chemical shift mapping and site-directed mutagenesis. We show that the CD23 and FcεRI interaction sites are at opposite ends of the Cε3 domain of IgE, but that receptor binding is mutually inhibitory, mediated by an allosteric mechanism. This prevents CD23-mediated cross-linking of IgE bound to FcεRI on mast cells and resulting antigen-independent anaphylaxis. The mutually inhibitory nature of receptor binding provides a degree of autonomy for the individual activities mediated by IgE-FcεRI and IgE-CD23 interactions.


Subject(s)
Basophils/metabolism , Immunoglobulin E/metabolism , Mast Cells/metabolism , Receptors, IgE/metabolism , Allosteric Regulation/immunology , Basophils/cytology , Basophils/immunology , Cell Line , Humans , Immunoglobulin E/genetics , Immunoglobulin E/immunology , Mast Cells/cytology , Mast Cells/immunology , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Peptide Mapping/methods , Protein Binding , Protein Structure, Tertiary , Receptors, IgE/genetics , Receptors, IgE/immunology
16.
Nat Commun ; 14(1): 4180, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37491373

ABSTRACT

All antibodies approved for cancer therapy are monoclonal IgGs but the biology of IgE, supported by comparative preclinical data, offers the potential for enhanced effector cell potency. Here we report a Phase I dose escalation trial (NCT02546921) with the primary objective of exploring the safety and tolerability of MOv18 IgE, a chimeric first-in-class IgE antibody, in patients with tumours expressing the relevant antigen, folate receptor-alpha. The trial incorporated skin prick and basophil activation tests (BAT) to select patients at lowest risk of allergic toxicity. Secondary objectives were exploration of anti-tumour activity, recommended Phase II dose, and pharmacokinetics. Dose escalation ranged from 70 µg-12 mg. The most common toxicity of MOv18 IgE is transient urticaria. A single patient experienced anaphylaxis, likely explained by detection of circulating basophils at baseline that could be activated by MOv18 IgE. The BAT assay was used to avoid enrolling further patients with reactive basophils. The safety profile is tolerable and maximum tolerated dose has not been reached, with evidence of anti-tumour activity observed in a patient with ovarian cancer. These results demonstrate the potential of IgE therapy for cancer.


Subject(s)
Immunoglobulin E , Ovarian Neoplasms , Female , Humans , Antibodies, Monoclonal/adverse effects , Basophils , Folic Acid
17.
Nat Commun ; 14(1): 2192, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37185332

ABSTRACT

Outcomes for half of patients with melanoma remain poor despite standard-of-care checkpoint inhibitor therapies. The prevalence of the melanoma-associated antigen chondroitin sulfate proteoglycan 4 (CSPG4) expression is ~70%, therefore effective immunotherapies directed at CSPG4 could benefit many patients. Since IgE exerts potent immune-activating functions in tissues, we engineer a monoclonal IgE antibody with human constant domains recognizing CSPG4 to target melanoma. CSPG4 IgE binds to human melanomas including metastases, mediates tumoricidal antibody-dependent cellular cytotoxicity and stimulates human IgE Fc-receptor-expressing monocytes towards pro-inflammatory phenotypes. IgE demonstrates anti-tumor activity in human melanoma xenograft models engrafted with human effector cells and is associated with enhanced macrophage infiltration, enriched monocyte and macrophage gene signatures and pro-inflammatory signaling pathways in the tumor microenvironment. IgE prolongs the survival of patient-derived xenograft-bearing mice reconstituted with autologous immune cells. No ex vivo activation of basophils in patient blood is measured in the presence of CSPG4 IgE. Our findings support a promising IgE-based immunotherapy for melanoma.


Subject(s)
Melanoma , Proteoglycans , Humans , Mice , Animals , Proteoglycans/metabolism , Antigens , Chondroitin Sulfate Proteoglycans , Melanoma/metabolism , Antibodies, Monoclonal/pharmacology , Immunoglobulin E , Tumor Microenvironment
18.
Nat Commun ; 14(1): 3378, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291228

ABSTRACT

B cells are known to contribute to the anti-tumor immune response, especially in immunogenic tumors such as melanoma, yet humoral immunity has not been characterized in these cancers to detail. Here we show comprehensive phenotyping in samples of circulating and tumor-resident B cells as well as serum antibodies in melanoma patients. Memory B cells are enriched in tumors compared to blood in paired samples and feature distinct antibody repertoires, linked to specific isotypes. Tumor-associated B cells undergo clonal expansion, class switch recombination, somatic hypermutation and receptor revision. Compared with blood, tumor-associated B cells produce antibodies with proportionally higher levels of unproductive sequences and distinct complementarity determining region 3 properties. The observed features are signs of affinity maturation and polyreactivity and suggest an active and aberrant autoimmune-like reaction in the tumor microenvironment. Consistent with this, tumor-derived antibodies are polyreactive and characterized by autoantigen recognition. Serum antibodies show reactivity to antigens attributed to autoimmune diseases and cancer, and their levels are higher in patients with active disease compared to post-resection state. Our findings thus reveal B cell lineage dysregulation with distinct antibody repertoire and specificity, alongside clonally-expanded tumor-infiltrating B cells with autoimmune-like features, shaping the humoral immune response in melanoma.


Subject(s)
B-Lymphocytes , Melanoma , Humans , Melanoma/genetics , Antibodies , Immunity, Humoral , Autoantigens/genetics , Tumor Microenvironment
19.
Cells ; 11(3)2022 01 27.
Article in English | MEDLINE | ID: mdl-35159247

ABSTRACT

Despite comprising a very small proportion of circulating blood leukocytes, basophils are potent immune effector cells. The high-affinity receptor for IgE (FcɛRI) is expressed on the basophil cell surface and powerful inflammatory mediators such as histamine, granzyme B, and cytokines are stored in dense cytoplasmic granules, ready to be secreted in response to a range of immune stimuli. Basophils play key roles in eliciting potent effector functions in allergic diseases and type 1 hypersensitivity. Beyond allergies, basophils can be recruited to tissues in chronic and autoimmune inflammation, and in response to parasitic, bacterial, and viral infections. While their activation states and functions can be influenced by Th2-biased inflammatory signals, which are also known features of several tumor types, basophils have received little attention in cancer. Here, we discuss the presence and functional significance of basophils in the circulation of cancer patients and in the tumor microenvironment (TME). Interrogating publicly available datasets, we conduct gene expression analyses to explore basophil signatures and associations with clinical outcomes in several cancers. Furthermore, we assess how basophils can be harnessed to predict hypersensitivity to cancer treatments and to monitor the desensitization of patients to oncology drugs, using assays such as the basophil activation test (BAT).


Subject(s)
Hypersensitivity , Neoplasms , Basophils , Cytokines/metabolism , Humans , Neoplasms/metabolism , Tumor Microenvironment
20.
Cancers (Basel) ; 13(17)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34503270

ABSTRACT

IgE, the predominant antibody class of the allergic response, is known for its roles in protecting against parasites; however, a growing body of evidence indicates a significant role for IgE and its associated effector cells in tumour immunosurveillance, highlighted by the field of AllergoOncology and the successes of the first-in-class IgE cancer therapeutic MOv18. Supporting this concept, substantial epidemiological data ascribe potential roles for IgE, allergy, and atopy in protecting against specific tumour types, with a corresponding increased cancer risk associated with IgE immunodeficiency. Here, we consider how epidemiological data in combination with functional data reveals a complex interplay of IgE and allergy with cancer, which cannot be explained solely by one of the existing conventional hypotheses. We furthermore discuss how, in turn, such data may be used to inform future therapeutic approaches, including the clinical management of different patient groups. With epidemiological findings highlighting several high-risk cancer types protected against by high IgE levels, it is possible that use of IgE-based therapeutics for a range of malignant indications may offer efficacy to complement that of established IgG-class antibodies.

SELECTION OF CITATIONS
SEARCH DETAIL