Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Appl Environ Microbiol ; 89(2): e0168222, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36719222

ABSTRACT

Amplification of the IS900 multicopy element is a hallmark nucleic acid-based diagnostic test for Mycobacterium avium subsp. paratuberculosis, which causes Johne's disease in ruminants. This assay is frequently used to determine the presence of the bacterium in feces of infected cattle and sheep. Two IS900 primer sets developed in the 1990s were widely used for decades, and their use has continued in current studies. However, these primers were developed prior to the availability of complete genome sequences. Recent sequence analysis of the binding locations for one primer pair (P90/P91) identified errors and binding inefficiencies that can be easily corrected to further increase detection sensitivity. The P90 primer is missing two nucleotides that should be present near the 3' end, and it does not bind all copies of IS900 due to 5' deletions at some IS900 loci. These IS900 primer pairs, along with newly developed primers, were tested by real-time PCR on purified genomic DNA to determine which primer set performed the best and how primer design errors affect amplification efficiencies. The newly designed PCR primer set (JB5) showed increased sensitivity by two to three quantification cycles using purified genomic DNA and was similar in efficiency to 150C/921. These tests were extended using DNA from feces and tissues of infected cows, which showed similar results. Finally, a 167-bp partial duplication of IS900 was found in type I strains. Although P90 and P91 primers successfully amplify M. avium subsp. paratuberculosis DNA, their use should be discontinued in favor of more efficient primer pairs in future studies. IMPORTANCE This study is an example of how applied genomic analysis can aid diagnostic test improvements. Detection of Mycobacterium avium subsp. paratuberculosis infection of livestock prior to the appearance of clinical disease signs is very difficult but essential for identifying animals shedding the bacterium to prevent transmission of Johne's disease. Total M. avium subsp. paratuberculosis quantity in the feces as determined by real-time PCR (qPCR) using the IS900 target indicates bacterial shedding status and potential for transmission of the pathogen. However, legacy primers designed prior to the availability of complete genome sequences that are used in these tests to detect M. avium subsp. paratuberculosis were based on data from only a single copy of IS900 and not considering all copies collectively as a group. This approach resulted in primer design errors which can be easily corrected to improve test sensitivities. We tested original primers that contain these errors and their corrected versions by qPCR and showed improved sensitivity on purified genomic DNA as well as fecal and tissue samples. These findings may help detect the organism from environmental samples on farms where sensitivity is currently lacking.


Subject(s)
Cattle Diseases , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Female , Cattle , Sheep , Animals , Mycobacterium avium subsp. paratuberculosis/genetics , Paratuberculosis/diagnosis , Paratuberculosis/genetics , Paratuberculosis/microbiology , Real-Time Polymerase Chain Reaction , DNA Transposable Elements , DNA, Bacterial/genetics , DNA, Bacterial/analysis , Feces/microbiology , Cattle Diseases/diagnosis , Cattle Diseases/microbiology
2.
Appl Environ Microbiol ; 89(10): e0120423, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37819079

ABSTRACT

Rodents are important reservoir hosts of pathogenic leptospires in the US Virgin Islands. Our previous work determined that trapped rodents were colonized with Leptospira borgpetersenii serogroup Ballum (n = 48) and/or Leptospira kirschneri serogroup Icterohaemorrhagiae (n = 3). In addition, nine rodents appeared to be colonized with a mixed population comprising more than one species/serogroup. The aim of this study was to validate this finding by characterizing clonal isolates derived from cultures of mixed species. Cultures of presumptive mixed species (designated LR1, LR5, LR37, LR57, LR60, LR61, LR68, LR70, and LR72) were propagated in different media including Hornsby-Alt-Nally (HAN) media, incubated at both 29℃ and 37℃, and T80/40/LH incubated at 29℃. Polyclonal reference antisera specific for serogroup Ballum and Icterohaemorrhagiae were used to enrich for different serogroups followed by subculture on agar plates. Individual colonies were then selected for genotyping and serotyping. Of the nine cultures of mixed species/serogroups, a single clonal isolate was separated in five of them: L. borgpetersenii serogroup Ballum in LR1, LR5, and LR37, and L. kirschneri serogroup Icterohaemorrhagiae in LR60 and LR72. In four of the cultures with mixed species (LR57, LR61, LR68, and LR70), clonal isolates of both L. borgpetersenii serogroup Ballum and L. kirschneri serogroup Icterohaemorrhagiae were recovered. Our results definitively establish that rodents can be colonized with more than one species/serogroup of Leptospira concurrently. The identification and characterization of multiple species/serogroups of Leptospira from individual reservoir hosts of infection are essential to understand the epidemiology and transmission of disease to both human and domestic animal populations.IMPORTANCEPathogenic Leptospira, the causative agent of human and animal leptospirosis, comprise a diverse genus of species/serogroups which are inherently difficult to isolate from mammalian hosts due to fastidious growth requirements. Molecular evidence has indicated that reservoir hosts of Leptospira may shed multiple species concurrently. However, evidence of this phenomena by culture has been lacking. Culture is definitive and is essential for comprehensive characterization of recovered isolates by high-resolution genome sequencing and serotyping. In this work, a protocol using recently developed novel media formulations, in conjunction with reference antisera, was developed and validated to demonstrate the recovery of multiple species/serogroups of pathogenic Leptospira from the same host. The identification and characterization of multiple species/serogroups of Leptospira from individual reservoir hosts of infection are essential to understand the epidemiology and transmission of disease to both human and domestic animal populations.


Subject(s)
Leptospira , Leptospirosis , Animals , Humans , Serogroup , Rodentia , Leptospira/genetics , Leptospirosis/veterinary , Animals, Domestic , Kidney , Immune Sera/genetics
3.
BMC Genomics ; 23(1): 107, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35135480

ABSTRACT

BACKGROUND: Chemical signaling between a mammalian host and intestinal microbes is health and maintenance of 'healthy' intestinal microbiota. Escherichia coli O157:H7 can hijack host- and microbiota-produced chemical signals for survival in a harsh and nutritionally competitive gastrointestinal environment and for intestinal colonization. Norepinephrine (NE) produced by sympathetic neurons of the enteric nervous system has been shown in vitro to induce expression of genes controlling E. coli O157:H7 swimming motility, acid resistance, and adherence to epithelial cells. A previous study used a microarray approach to identify differentially expressed genes in E. coli O157:H7 strain EDL933 in response to NE. To elucidate a comprehensive transcriptional response to NE, we performed RNA-Seq on rRNA-depleted RNA of E. coli O157:H7 strain NADC 6564, an isolate of a foodborne E. coli O157:H7 strain 86-24. The reads generated by RNA-Seq were mapped to NADC 6564 genome using HiSat2. The mapped reads were quantified by htseq-count against the genome of strain NADC 6564. The differentially expressed genes were identified by analyzing quantified reads by DESeq2. RESULTS: Of the 585 differentially expressed genes (≥ 2.0-fold; p < 0.05), many encoded pathways promoting ability of E. coli O157:H7 strain NADC 6564 to colonize intestines of carrier animals and to produce disease in an incidental human host through increased adherence to epithelial cells and production of Shiga toxins. In addition, NE exposure also induced the expression of genes encoding pathways conferring prolonged survival at extreme acidity, controlling influx/efflux of specific nutrients/metabolites, and modulating tolerance to various stressors. A correlation was also observed between the EvgS/EvgA signal transduction system and the ability of bacterial cells to survive exposure to high acidity for several hours. Many genes involved in nitrogen, sulfur, and amino acid uptake were upregulated while genes linked to iron (Fe3+) acquisition and transport were downregulated. CONCLUSION: The availability of physiological levels of NE in gastrointestinal tract could serve as an important cue for E. coli O157:H7 to engineer its virulence, stress, and metabolic pathways for colonization in reservoir animals, such as cattle, causing illness in humans, and surviving outside of a host.


Subject(s)
Escherichia coli Infections , Escherichia coli O157 , Escherichia coli Proteins , Animals , Cattle , Escherichia coli O157/genetics , Norepinephrine/pharmacology , Virulence
4.
J Clin Microbiol ; 58(6)2020 05 26.
Article in English | MEDLINE | ID: mdl-32295891

ABSTRACT

Mycoplasma bovis causes pneumonia, pharyngitis, otitis, arthritis, mastitis, and reproductive disorders in cattle and bison. Two multilocus sequence typing (MLST) schemes have been developed for M. bovis, with one serving as the PubMLST reference method, but no comparison of the schemes has been undertaken. Although the PubMLST scheme has proven to be highly discriminatory and informative, the recent discovery of isolates missing one of the typing loci, adh-1, raises concern about its suitability for continued use. The goal of our study was to compare the performance of the two MLST schemes and identify a new reference scheme capable of fully typing all isolates. We evaluated 448 isolates from diverse geographic and anatomic sites that collectively represent cattle, bison, deer, and a goat. The discrimination indexes (DIs) for the PubMLST and the alternative scheme are 0.909 (91 sequence types [STs]) and 0.842 (77 STs), respectively. Although the PubMLST scheme outperformed the alternative scheme, the adh-1 locus must be retired from the PubMLST scheme if it is to be retained as a reference method. The DI obtained using the six remaining PubMLST loci (0.897, 79 STs) fails to reach the benchmark recommended for a reference method (0.900), mandating the addition of a seventh locus. Comparative analysis of genome sequences from the isolates used here identified the dnaA locus from the alternative scheme as the optimal replacement for adh-1 This revised scheme, which will be implemented as the new PubMLST reference method, has a DI of 0.914 and distinguishes 88 STs from the 448 isolates evaluated.


Subject(s)
Cattle Diseases , Deer , Mycoplasma bovis , Animals , Cattle , Cattle Diseases/diagnosis , Female , Genotype , Goats , Multilocus Sequence Typing , Mycoplasma bovis/genetics , Phylogeny
5.
BMC Genomics ; 20(1): 196, 2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30849935

ABSTRACT

BACKGROUND: Escherichia coli O157:H7 (O157) has been linked to numerous foodborne disease outbreaks. The ability to rapidly sequence and analyze genomes is important for understanding epidemiology, virulence, survival, and evolution of outbreak strains. In the current study, we performed comparative genomics to determine structural and functional features of the genome of a foodborne O157 isolate NADC 6564 and infer its evolutionary relationship to other O157 strains. RESULTS: The chromosome of NADC 6564 contained 5466 kb compared to reference strains Sakai (5498 kb) and EDL933 (5547 kb) and shared 41 of its 43 Linear Conserved Blocks (LCB) with the reference strains. However, 18 of 41 LCB had inverse orientation in NADC 6564 compared to the reference strains. NADC 6564 shared 18 of 19 bacteriophages with reference strains except that the chromosomal positioning of some of the phages differed among these strains. The additional phage (P19) of NADC 6564 was located on a 39-kb insertion element (IE) encoding several hypothetical proteins, an integrase, transposases, transcriptional regulators, an adhesin, and a phosphoethanolamine transferase (PEA). The complete homologs of the 39-kb IE were found in E. coli PCN061 of porcine origin. The IE-encoded PEA showed low homology (32-33%) to four other PEA in NADC 6564 and PEA linked to mobilizable colistin resistance in E. coli but was highly homologous (95%) to a PEA of uropathogenic, avian pathogenic, and enteroaggregative E. coli. NADC 6564 showed slightly higher minimum inhibitory concentration of colistin compared to the reference strains. The 39-kb IE also contained dndBCDE and dptFGH operons encoding DNA S-modification and a restriction pathway, linked to oxidative stress tolerance and self-defense against foreign DNA, respectively. Evolutionary tree analysis grouped NADC 6564 with lineage I O157 strains. CONCLUSIONS: These results indicated that differential phage counts and different chromosomal positioning of many bacteriophages and genomic islands might have resulted in recombination events causing altered chromosomal organization in NADC 6564. Evolutionary analysis grouped NADC 6564 with lineage I strains and suggested its earlier divergence from these strains. The ability to perform S-DNA modification might affect tolerance of NADC 6564 to various stressors.


Subject(s)
Escherichia coli O157/genetics , Food Microbiology , Genomics , Bacteriophages/physiology , Chromosomes, Bacterial/genetics , DNA Transposable Elements/genetics , Escherichia coli O157/enzymology , Escherichia coli O157/virology , Evolution, Molecular , Genome, Bacterial/genetics , Genomic Islands/genetics , Operon/genetics , Transferases (Other Substituted Phosphate Groups)/genetics
6.
BMC Mol Biol ; 19(1): 10, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30068312

ABSTRACT

BACKGROUND: Brucella melitensis bacteria cause persistent, intracellular infections in small ruminants as well as in humans, leading to significant morbidity and economic loss worldwide. The majority of experiments on the transcriptional responses of Brucella to conditions inside the host have been performed following invasion of cultured mammalian cells, and do not address gene expression patterns during long-term infection. RESULTS: Here, we examine the application of the previously developed coincidence cloning methodology to recover and characterize B. melitensis RNA from the supramammary lymph node of experimentally-infected goats. Using coincidence cloning, we successfully recovered Brucella RNA from supramammary lymph nodes of B. melitensis-infected goats at both short-term (4 weeks) and long-term (38 weeks) infection time points. Amplified nucleic acid levels were sufficient for analysis of Brucella gene expression patterns by RNA-sequencing, providing evidence of metabolic activity in both the short-term and the long-term samples. We developed a workflow for the use of sequence polymorphism analysis to confirm recovery of the inoculated strain in the recovered reads, and utilized clustering analysis to demonstrate a distinct transcriptional profile present in samples recovered in long-term infection. In this first look at B. melitensis gene expression patterns in vivo, the subset of Brucella genes that was highly upregulated in long-term as compared to short-term infection included genes linked to roles in murine infection, such as genes involved in proline utilization and signal transduction. Finally, we demonstrated the challenges of qPCR validation of samples with very low ratios of pathogen:host RNA, as is the case during in vivo brucellosis, and alternatively characterized intermediate products of the coincidence cloning reaction. CONCLUSIONS: Overall, this study provides the first example of recovery plus characterization of B. melitensis RNA from in vivo lymph node infection, and demonstrates that the coincidence cloning technique is a useful tool for characterizing in vivo transcriptional changes in Brucella species. Genes upregulated in long-term infection in this data set, including many genes not previously demonstrated to be virulence factors in mice or macrophage experiments, are candidates of future interest for potential roles in Brucella persistence in natural host systems.


Subject(s)
Brucella melitensis/genetics , Cloning, Molecular/methods , Gene Expression Profiling/methods , Lymph Nodes/microbiology , RNA, Bacterial/genetics , Animals , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Goats , Polymorphism, Single Nucleotide , Sequence Analysis, RNA/methods
7.
Mol Microbiol ; 105(4): 525-539, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28558126

ABSTRACT

Mycobacteria have a complex cell wall structure that includes many lipids; however, even within a single subspecies of Mycobacterium avium these lipids can differ. Total lipids from an M. avium subsp. paratuberculosis (Map) ovine strain (S-type) contained no identifiable glycopeptidolipids or lipopentapeptide (L5P), yet both lipids are present in other M. avium subspecies. We determined the genetic and phenotypic basis for this difference using sequence analysis as well as biochemical and physico-chemical approaches. This strategy showed that a nonribosomal peptide synthase, encoded by mps1, contains three amino acid specifying modules in ovine strains, compared to five modules in bovine strains (C-type). Sequence analysis predicted these modules would produce the tripeptide Phe-N-Methyl-Val-Ala with a lipid moiety, termed lipotripeptide (L3P). Comprehensive physico-chemical analysis of Map S397 extracts confirmed the structural formula of the native L3P as D-Phe-N-Methyl-L-Val-L-Ala-OMe attached in N-ter to a 20-carbon fatty acid chain. These data demonstrate that S-type strains, which are more adapted in sheep, produce a unique lipid. There is a dose-dependent effect observed for L3P on upregulation of CD25+ CD8 T cells from infected cows, while L5P effects were static. In contrast, L5P demonstrated a significantly stronger induction of CD25+ B cells from infected animals compared to L3P.


Subject(s)
Cell Wall/genetics , Membrane Lipids/genetics , Peptide Synthases/genetics , Amino Acid Sequence , Cell Wall/metabolism , Cell Wall/physiology , Membrane Lipids/chemistry , Mycobacterium avium/genetics , Mycobacterium avium/metabolism , Peptides/genetics , Sequence Analysis, DNA , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
8.
Microbiology (Reading) ; 162(4): 633-641, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26888023

ABSTRACT

Mycobacterium avium subsp. paratuberculosis (MAP), the aetiological agent of Johne's disease, is one of the most important bacterial pathogens in ruminants. A thorough understanding of MAP pathogenesis is needed to develop new vaccines and diagnostic tests. The generation of comprehensive random transposon mutant libraries is a fundamental genetic technology to determine the role of genes in physiology and pathogenesis. In this study, whole MAP genome analysis compared the insertion sites for the mycobacterial transposon Tn5367 derived from the Mycobacterium smegmatis insertion sequence IS1096 and the mariner transposon MycoMarT7 carrying the Himar1 transposase. We determined that only MycoMarT7 provides a random representation of insertions in 99 % of all MAP genes. Analysis of the MAP K-10 genome indicated that 710 of all ORFs do not possess IS1096 recognition sites, while only 37 do not have the recognition site for MycoMarT7. Thus, a significant number of MAP genes remain underrepresented in insertion libraries from IS1096-derived transposons. Analysis of MycoMarT7 and Tn5367 mutants showed that Tn5367 has a predilection to insert within intergenic regions, suggesting that MycoMarT7 is the more adequate for generating a comprehensive library. However, we uncovered the novel finding that both transposons have loci-dependent biases, with Tn5367 being the most skewed. These loci-dependent transposition biases led to an underestimation of the number of independent mutants required to generate a comprehensive mutant library, leading to an overestimation of essential genes. Herein, we also demonstrated a useful platform for gene discovery and analysis by isolating three novel mutants for each transposon.

9.
Appl Environ Microbiol ; 82(22): 6788-6798, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27613689

ABSTRACT

Studying the host-associated butyrate-producing bacterial community is important, because butyrate is essential for colonic homeostasis and gut health. Previous research has identified the butyryl coenzyme A (CoA):acetate-CoA transferase (EC 2.3.8.3) as a gene of primary importance for butyrate production in intestinal ecosystems; however, this gene family (but) remains poorly defined. We developed tools for the analysis of butyrate-producing bacteria based on 12 putative but genes identified in the genomes of nine butyrate-producing bacteria obtained from the swine intestinal tract. Functional analyses revealed that eight of these genes had strong But enzyme activity. When but paralogues were found within a genome, only one gene per genome encoded strong activity, with the exception of one strain in which no gene encoded strong But activity. Degenerate primers were designed to amplify the functional but genes and were tested by amplifying environmental but sequences from DNA and RNA extracted from swine colonic contents. The results show diverse but sequences from swine-associated butyrate-producing bacteria, most of which clustered near functionally confirmed sequences. Here, we describe tools and a framework that allow the bacterial butyrate-producing community to be profiled in the context of animal health and disease. IMPORTANCE: Butyrate is a compound produced by the microbiota in the intestinal tracts of animals. This compound is of critical importance for intestinal health, and yet studying its production by diverse intestinal bacteria is technically challenging. Here, we present an additional way to study the butyrate-producing community of bacteria using one degenerate primer set that selectively targets genes experimentally demonstrated to encode butyrate production. This work will enable researchers to more easily study this very important bacterial function that has implications for host health and resistance to disease.


Subject(s)
Acyl Coenzyme A/genetics , Bacteria/enzymology , Butyrates/metabolism , Coenzyme A-Transferases/genetics , Coenzyme A-Transferases/metabolism , Colon/microbiology , Swine/microbiology , Acetates/metabolism , Acyl Coenzyme A/classification , Acyl Coenzyme A/metabolism , Animals , Bacteria/genetics , Bacteria/isolation & purification , Coenzyme A-Transferases/classification , DNA Primers , Feces/microbiology , Genes, Bacterial , Genome, Bacterial , Microbiota/genetics , Microbiota/physiology , Phylogeny , RNA, Ribosomal, 16S
10.
Proc Natl Acad Sci U S A ; 109(5): 1691-6, 2012 Jan 31.
Article in English | MEDLINE | ID: mdl-22307632

ABSTRACT

Antibiotics have been administered to agricultural animals for disease treatment, disease prevention, and growth promotion for over 50 y. The impact of such antibiotic use on the treatment of human diseases is hotly debated. We raised pigs in a highly controlled environment, with one portion of the littermates receiving a diet containing performance-enhancing antibiotics [chlortetracycline, sulfamethazine, and penicillin (known as ASP250)] and the other portion receiving the same diet but without the antibiotics. We used phylogenetic, metagenomic, and quantitative PCR-based approaches to address the impact of antibiotics on the swine gut microbiota. Bacterial phylotypes shifted after 14 d of antibiotic treatment, with the medicated pigs showing an increase in Proteobacteria (1-11%) compared with nonmedicated pigs at the same time point. This shift was driven by an increase in Escherichia coli populations. Analysis of the metagenomes showed that microbial functional genes relating to energy production and conversion were increased in the antibiotic-fed pigs. The results also indicate that antibiotic resistance genes increased in abundance and diversity in the medicated swine microbiome despite a high background of resistance genes in nonmedicated swine. Some enriched genes, such as aminoglycoside O-phosphotransferases, confer resistance to antibiotics that were not administered in this study, demonstrating the potential for indirect selection of resistance to classes of antibiotics not fed. The collateral effects of feeding subtherapeutic doses of antibiotics to agricultural animals are apparent and must be considered in cost-benefit analyses.


Subject(s)
Animal Feed , Anti-Bacterial Agents/pharmacology , Intestines/microbiology , Metagenome , Animals , Anti-Bacterial Agents/administration & dosage , Drug Resistance, Microbial , Polymerase Chain Reaction , Swine
11.
Anim Microbiome ; 6(1): 20, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650043

ABSTRACT

BACKGROUND: Treponeme-Associated Hoof Disease (TAHD) is a polybacterial, multifactorial disease affecting free-ranging wild elk (Cervus canadensis) in the Pacific Northwest. Previous studies have indicated a bacterial etiology similar to digital dermatitis in livestock, including isolation of Treponema species from lesions. The lesions appear to progress rapidly from ulcerative areas in the interdigital space or along the coronary band to severe, ulcerative, necrotic, proliferative lesions under-running the hoof wall, perforating the sole, and contributing to hoof elongation, deformity, and overgrowth. Eventually the lesions undermine the laminal structure leading to sloughing of the hoof horn capsule. The objective of this study was to characterize the bacterial communities associated with hoof lesions, which were categorized into 5 stages or disease grade severities, with 0 being unaffected tissue and 4 being sloughed hoof capsule. We also wanted to determine if the etiology of TAHD through morphological changes was dominated by Treponema, as observed in hoof diseases in livestock. RESULTS: The bacterial 16S rRNA gene was sequenced from 66 hoof skin biopsy samples representing 5 lesion grades from samples collected by Washington Department of Fish and Wildlife as part of a voluntary hunter program. Analysis of the relative abundance of bacterial sequences showed that lesions were dominated by members of the bacterial phyla Proteobacteria, Firmicutes, Spirochaetes, Bacteroidetes and Actinobacteria. In lesion samples, members of the genus Treponema, Porphyromonas, and Mycoplasma increased with lesion severity. Association analysis indicated frequent identification of Treponema with Porphyromonas, Bacteroides and other anaerobic Gram-positive cocci. CONCLUSIONS: The bacterial 16S rRNA gene sequencing confirmed the presence of Treponema species at all stages of TAHD lesions, treponeme specie-specific PCR and histopathology, indicating that the morphological changes are a continual progression of disease severity with similar bacterial communities. Association and abundance of these other pathogenic genera within lesions may mean synergistic role with Treponema in hoof disease pathogenesis. Characterizing bacteria involved in lesion development, and their persistence during disease progression, provides evidence for science-based management decisions in TAHD infected elk populations.

12.
Front Vet Sci ; 11: 1346713, 2024.
Article in English | MEDLINE | ID: mdl-38784659

ABSTRACT

Equine leptospirosis can result in abortion, stillbirth, neonatal death, placentitis, and uveitis. Horses can also act as subclinical reservoir hosts of infection, which are characterized as asymptomatic carriers that persistently excrete leptospires and transmit disease. In this study, PCR and culture were used to assess urinary shedding of pathogenic Leptospira from 37 asymptomatic mares. Three asymptomatic mares, designated as H2, H8, and H9, were PCR-positive for lipL32, a gene specific for pathogenic species of Leptospira. One asymptomatic mare, H9, was culture-positive, and the recovered isolate was classified as L. kirschneri serogroup Australis serovar Rushan. DNA capture and enrichment of Leptospira genomic DNA from PCR-positive, culture-negative samples determined that asymptomatic mare H8 was also shedding L. kirschneri serogroup Australis, whereas asymptomatic mare H2 was shedding L. interrogans serogroup Icterohaemorrhagiae. Sera from all asymptomatic mares were tested by the microscopic agglutination test (MAT) and 35 of 37 (94.6%) were seropositive with titers ranging from 1:100 to 1:3200. In contrast to asymptomatic mares, mare H44 presented with acute spontaneous abortion and a serum MAT titer of 1:102,400 to L. interrogans serogroup Pomona serovar Pomona. Comparison of L. kirschneri serogroup Australis strain H9 with that of L. interrogans serogroup Pomona strain H44 in the hamster model of leptospirosis corroborated differences in virulence of strains. Since lipopolysaccharide (LPS) is a protective antigen in bacterin vaccines, the LPS of strain H9 (associated with subclinical carriage) was compared with strain H44 (associated with spontaneous abortion). This revealed different LPS profiles and immunoreactivity with reference antisera. It is essential to know what species and serovars of Leptospira are circulating in equine populations to design efficacious vaccines and diagnostic tests. Our results demonstrate that horses in the US can act as reservoir hosts of leptospirosis and shed diverse pathogenic Leptospira species via urine. This report also details the detection of L. kirschneri serogroup Australis serovar Rushan, a species and serotype of Leptospira, not previously reported in the US.

13.
J Virol ; 86(12): 6804-14, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22491461

ABSTRACT

Swine influenza virus (SIV) H3N2 with triple reassorted internal genes (TRIG) has been enzootic in Unites States since 1998. Transmission of the 2009 pandemic H1N1 (pH1N1) virus to pigs in the United States was followed by reassortment with endemic SIV, resulting in reassorted viruses that include novel H3N2 genotypes (rH3N2p). Between July and December 2011, 12 cases of human infections with swine-lineage H3N2 viruses containing the pandemic matrix (pM) gene [A(H3N2)v] were detected. Whole-genome analysis of H3N2 viruses isolated from pigs from 2009 to 2011 sequenced in this study and other available H3N2 sequences showed six different rH3N2p genotypes present in the U.S. swine population since 2009. The presence of the pM gene was a common feature among all rH3N2p genotypes, but no specific genotype appeared to predominate in the swine population. We compared the pathogenic, transmission, genetic, and antigenic properties of a human A(H3N2)v isolate and two swine H3N2 isolates, H3N2-TRIG and rH3N2p. Our in vivo study detected no increased virulence in A(H3N2)v or rH3N2p viruses compared to endemic H3N2-TRIG virus. Antibodies to cluster IV H3N2-TRIG and rH3N2p viruses had reduced cross-reactivity to A(H3N2)v compared to other cluster IV H3N2-TRIG and rH3N2p viruses. Genetic analysis of the hemagglutinin gene indicated that although rH3N2p and A(H3N2)v are related to cluster IV of H3N2-TRIG, some recent rH3N2p isolates appeared to be forming a separate cluster along with the human isolates of A(H3N2)v. Continued monitoring of these H3N2 viruses is necessary to evaluate the evolution and potential loss of population immunity in swine and humans.


Subject(s)
Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza, Human/virology , Orthomyxoviridae Infections/veterinary , Swine Diseases/transmission , Amino Acid Sequence , Animals , Humans , Influenza A Virus, H3N2 Subtype/classification , Influenza A Virus, H3N2 Subtype/genetics , Molecular Sequence Data , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Phylogeny , Reassortant Viruses/classification , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Reassortant Viruses/pathogenicity , Sequence Alignment , Swine , Swine Diseases/virology
14.
BMC Microbiol ; 13: 280, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24304812

ABSTRACT

BACKGROUND: Bovine papillomatous digital dermatitis (DD) is the leading cause of lameness in dairy cattle and represents a serious welfare and economic burden. Found primarily in high production dairy cattle worldwide, DD is characterized by the development of an often painful red, raw ulcerative or papillomatous lesion frequently located near the interdigital cleft and above the bulbs of the heel. While the exact etiology is unknown, several spirochete species have been isolated from lesion material. Four isolates of Treponema phagedenis-like spirochetes were isolated from dairy cows in Iowa. Given the distinct differences in host, environmental niche, and disease association, a closer analysis of phenotypic characteristics, growth characteristics, and genomic sequences of T. phagedenis, a human genitalia commensal, and the Iowa DD isolates was undertaken. RESULTS: Phenotypically, these isolates range from 8.0 to 9.7 µm in length with 6-8 flagella on each end. These isolates, like T. phagedenis, are strictly anaerobic, require serum and volatile fatty acids for growth, and are capable of fermenting fructose, mannitol, pectin, mannose, ribose, maltose, and glucose. Major glucose fermentation products produced are formate, acetate, and butyrate. Further study was conducted with a single isolate, 4A, showing an optimal growth pH of 7.0 (range of 6-8.5) and an optimal growth temperature of 40 °C (range of 29 °C-43 °C). Comparison of partial genomic contigs of isolate 4A and contigs of T. phagedenis F0421 revealed > 95% amino acid sequence identity with amino acid sequence of 4A. In silico DNA-DNA whole genome hybridization and BLAT analysis indicated a DDH estimate of >80% between isolate 4A and T. phagedenis F0421, and estimates of 52.5% or less when compared to the fully sequenced genomes of other treponeme species. CONCLUSION: Using both physiological, biochemical and genomic analysis, there is a lack of evidence for difference between T. phagedenis and isolate 4A. The description of Treponema phagedenis should be expanded from human genital skin commensal to include being an inhabitant within DD lesions in cattle.


Subject(s)
Digital Dermatitis/microbiology , Treponema/classification , Treponema/isolation & purification , Anaerobiosis , Animals , Bacterial Typing Techniques , Carbohydrate Metabolism , Cattle , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Fatty Acids/metabolism , Flagella/physiology , Hydrogen-Ion Concentration , Iowa , Molecular Sequence Data , Nucleic Acid Hybridization , Sequence Analysis, DNA , Serum/metabolism , Temperature , Treponema/genetics , Treponema/physiology
15.
Arch Virol ; 158(10): 2157-62, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23612924

ABSTRACT

Using metagenomics and molecular cloning methods, we characterized five novel small, circular viral genomes from pig feces that are distantly related to chimpanzee and porcine stool-associated circular viruses, (ChiSCV and PoSCV1). Phylogenetic analysis placed these viruses into a highly divergent clade of this rapidly growing new viral family. This new clade of viruses, provisionally named porcine stool-associated circular virus 2 and 3 (PoSCV2 and PoSCV3), encodes a stem-loop structure (presumably the origin of DNA replication) in the small intergenic region and a replication initiator protein commonly found in other biological systems that replicate their genomes via the rolling-circle mechanism. Furthermore, these viruses also exhibit three additional overlapping open reading frames in the large intergenic region between the capsid and replication initiator protein genes.


Subject(s)
DNA Viruses/genetics , DNA Viruses/isolation & purification , Feces/virology , Genetic Variation , Amino Acid Sequence , Animals , Genome, Viral , Molecular Sequence Data , Phylogeny , Swine , Swine Diseases/virology , Viral Proteins/genetics , Viral Proteins/metabolism
16.
Biologicals ; 41(6): 368-76, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23891494

ABSTRACT

The use of immunomodulators is a promising area for biotherapeutic, prophylactic, and metaphylactic use to prevent and combat infectious disease. Cytokines, including granulocyte-colony stimulating factor (G-CSF), have been investigated for potential value as biotherapeutic proteins. G-CSF enhances the production and release of neutrophils from bone marrow and is already licensed for use in humans. A limitation of cytokines as immunomodulators is their short half-life which may limit their usefulness as a one-time injectable in production-animal medicine. Here we report that administration of recombinant G-CSF induced a transient neutrophilia in pigs; however, delivery of porcine G-CSF encoded in a replication-defective adenovirus (Ad5) vector significantly increased the neutrophilia pharmacodynamics effect. Pigs given one injection of the Ad5-G-CSF had a neutrophilia that peaked between days 3-11 post-treatment and neutrophil counts remained elevated for more than 2 weeks. Neutrophils from Ad5-G-CSF treated pigs were fully functional based on their ability to release neutrophil extracellular traps and oxidative metabolism after in vitro stimulation. Since acceptable alternatives to the use of antibiotics in food-animal production need to be explored, we provide evidence for G-CSF as a possible candidate for agents in which neutrophils can provide protection.


Subject(s)
Adenoviridae/genetics , Defective Viruses/genetics , Granulocyte Colony-Stimulating Factor/physiology , Neutrophils/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Genetic Vectors/genetics , Granulocyte Colony-Stimulating Factor/genetics , Molecular Sequence Data , Mutant Proteins/genetics , Mutant Proteins/physiology , Mutation , Neutrophils/cytology , Neutrophils/drug effects , Recombinant Proteins/pharmacology , Sequence Homology, Amino Acid , Swine , Time Factors , Virus Replication
17.
BMC Genomics ; 13: 331, 2012 Jul 23.
Article in English | MEDLINE | ID: mdl-22823751

ABSTRACT

BACKGROUND: Haemophilus parasuis, the causative agent of Glässer's disease, is prevalent in swine herds and clinical signs associated with this disease are meningitis, polyserositis, polyarthritis, and bacterial pneumonia. Six to eight week old pigs in segregated early weaning herds are particularly susceptible to the disease. Insufficient colostral antibody at weaning or the mixing of pigs with heterologous virulent H. parasuis strains from other farm sources in the nursery or grower-finisher stage are considered to be factors for the outbreak of Glässer's disease. Previously, a Mu-like bacteriophage portal gene was detected in a virulent swine isolate of H. parasuis by nested polymerase chain reaction. Mu-like bacteriophages are related phyologenetically to enterobacteriophage Mu and are thought to carry virulence genes or to induce host expression of virulence genes. This study characterizes the Mu-like bacteriophage, named SuMu, isolated from a virulent H. parasuis isolate. RESULTS: Characterization was done by genomic comparison to enterobacteriophage Mu and proteomic identification of various homologs by mass spectrometry. This is the first report of isolation and characterization of this bacteriophage from the Myoviridae family, a double-stranded DNA bacteriophage with a contractile tail, from a virulent field isolate of H. parasuis. The genome size of bacteriophage SuMu was 37,151 bp. DNA sequencing revealed fifty five open reading frames, including twenty five homologs to Mu-like bacteriophage proteins: Nlp, phage transposase-C-terminal, COG2842, Gam-like protein, gp16, Mor, peptidoglycan recognition protein, gp29, gp30, gpG, gp32, gp34, gp36, gp37, gpL, phage tail tube protein, DNA circulation protein, gpP, gp45, gp46, gp47, COG3778, tail fiber protein gp37-C terminal, tail fiber assembly protein, and Com. The last open reading frame was homologous to IS1414. The G + C content of bacteriophage SuMu was 41.87% while its H. parasuis host genome's G + C content was 39.93%. Twenty protein homologs to bacteriophage proteins, including 15 structural proteins, one lysogeny-related and one lysis-related protein, and three DNA replication proteins were identified by mass spectrometry. One of the tail proteins, gp36, may be a virulence-related protein. CONCLUSIONS: Bacteriophage SuMu was characterized by genomic and proteomic methods and compared to enterobacteriophage Mu.


Subject(s)
Bacteriophages/genetics , Genomics , Haemophilus parasuis/virology , Proteomics , Animals , Bacteriophage mu/genetics , Bacteriophages/metabolism , Databases, Genetic , Genome, Viral , Mass Spectrometry , Open Reading Frames , Proteome/analysis , Sequence Analysis, DNA , Swine , Viral Proteins/metabolism , Virulence/genetics
18.
BMC Genomics ; 13: 89, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22409516

ABSTRACT

BACKGROUND: The genome of Mycobacterium avium subspecies paratuberculosis (MAP) is remarkably homogeneous among the genomes of bovine, human and wildlife isolates. However, previous work in our laboratories with the bovine K-10 strain has revealed substantial differences compared to sheep isolates. To systematically characterize all genomic differences that may be associated with the specific hosts, we sequenced the genomes of three U.S. sheep isolates and also obtained an optical map. RESULTS: Our analysis of one of the isolates, MAP S397, revealed a genome 4.8 Mb in size with 4,700 open reading frames (ORFs). Comparative analysis of the MAP S397 isolate showed it acquired approximately 10 large sequence regions that are shared with the human M. avium subsp. hominissuis strain 104 and lost 2 large regions that are present in the bovine strain. In addition, optical mapping defined the presence of 7 large inversions between the bovine and ovine genomes (~ 2.36 Mb). Whole-genome sequencing of 2 additional sheep strains of MAP (JTC1074 and JTC7565) further confirmed genomic homogeneity of the sheep isolates despite the presence of polymorphisms on the nucleotide level. CONCLUSIONS: Comparative sequence analysis employed here provided a better understanding of the host association, evolution of members of the M. avium complex and could help in deciphering the phenotypic differences observed among sheep and cattle strains of MAP. A similar approach based on whole-genome sequencing combined with optical mapping could be employed to examine closely related pathogens. We propose an evolutionary scenario for M. avium complex strains based on these genome sequences.


Subject(s)
Genome, Bacterial , Mycobacterium avium subsp. paratuberculosis/genetics , Sequence Analysis, DNA , Animals , Cattle , Chromosome Mapping , Evolution, Molecular , Gene Deletion , Gene Order , Host-Pathogen Interactions , Humans , Molecular Sequence Annotation , Mutagenesis, Insertional , Mycobacterium avium subsp. paratuberculosis/isolation & purification , Open Reading Frames , Polymorphism, Genetic , Sequence Alignment , Sheep/microbiology
19.
Plasmid ; 68(1): 25-32, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22370037

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) strains belonging to serogroup O145 are important emerging food-borne pathogens responsible for sporadic cases and outbreaks of hemorrhagic colitis and hemolytic uremic syndrome. A large plasmid carried by STEC O145:NM strain 83-75 and named pO145-NM was sequenced, and the genes were annotated. pO145-NM is 90,103bp in size and carries 89 open reading frames. Four genes/regions in pO145-NM encode for STEC virulence factors, including toxB (protein involved in adherence), espP (a serine protease), katP (catalase peroxidase), and the hly (hemolysin) gene cluster. These genes have also been identified in large virulence plasmids found in other STEC serogroups, including O26, O157, O111, and O103. pO145-NM carries the espPα subtype that is associated with STEC strains that cause more severe disease. Phylogenetic analyses of HlyB, EspP, and ToxB in various STEC strains showed a high degree of similarity of these proteins in E. coli serotypes O145:NM, O26:H11/H-, O111:NM/H-, and O157:H7 potentially placing these STEC into a related group.


Subject(s)
Plasmids/genetics , Shiga-Toxigenic Escherichia coli/genetics , Virulence Factors/genetics , Bacterial Proteins/genetics , Carrier Proteins/genetics , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli O157/genetics , Escherichia coli O157/pathogenicity , Escherichia coli Proteins/genetics , Hemolysin Factors/genetics , Hemolysin Proteins/genetics , Molecular Sequence Data , Open Reading Frames , Peroxidases/genetics , Sequence Analysis, DNA , Serine Endopeptidases/genetics , Shiga-Toxigenic Escherichia coli/pathogenicity
20.
BMC Vet Res ; 8: 208, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-23110781

ABSTRACT

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen of swine worldwide. Emergence in 2006 of a novel highly pathogenic PRRSV (HP-PRRSV) isolate in China necessitated a comparative investigation into the host transcriptome response in tracheobronchial lymph nodes (TBLN) 13 days post-infection with HP-PRRSV rJXwn06, PRRSV strain VR-2332 or sham inocula. RNA from each was prepared for next-generation sequencing. Amplified library constructs were directly sequenced and a list of sequence transcripts and counts was generated using an RNAseq analysis pipeline to determine differential gene expression. Transcripts were annotated and relative abundance was calculated based upon the number of times a given transcript was represented in the library. RESULTS: Major changes in transcript abundance occurred in response to infection with either PRRSV strain, each with over 630 differentially expressed transcripts. The largest increase in transcript level for either virus versus sham-inoculated controls were three serum amyloid A2 acute-phase isoforms. However, the degree of up or down-regulation of transcripts following infection with HP-PRRSV rJXwn06 was greater than transcript changes observed with US PRRSV VR-2332. Also, of 632 significantly altered transcripts within the HP-PRRSV rJXwn06 library 55 were up-regulated and 69 were down-regulated more than 3-fold, whilst in the US PRRSV VR-2332 library only 4 transcripts were up-regulated and 116 were down-regulated more than 3-fold. CONCLUSIONS: The magnitude of differentially expressed gene profiles detected in HP-PRRSV rJXwn06 infected pigs as compared to VR-2332 infected pigs was consistent with the increased pathogenicity of the HP-PRRSV in vivo.


Subject(s)
Gene Expression Regulation/immunology , Lymph Nodes/metabolism , Porcine respiratory and reproductive syndrome virus/genetics , Animals , China/epidemiology , Lymph Nodes/virology , Porcine Reproductive and Respiratory Syndrome/epidemiology , Porcine Reproductive and Respiratory Syndrome/virology , RNA/genetics , RNA/metabolism , Swine , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL