Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Publication year range
1.
N Engl J Med ; 384(5): 428-439, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33471991

ABSTRACT

BACKGROUND: Genetic testing for breast cancer susceptibility is widely used, but for many genes, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are lacking. METHODS: We used a panel of 34 putative susceptibility genes to perform sequencing on samples from 60,466 women with breast cancer and 53,461 controls. In separate analyses for protein-truncating variants and rare missense variants in these genes, we estimated odds ratios for breast cancer overall and tumor subtypes. We evaluated missense-variant associations according to domain and classification of pathogenicity. RESULTS: Protein-truncating variants in 5 genes (ATM, BRCA1, BRCA2, CHEK2, and PALB2) were associated with a risk of breast cancer overall with a P value of less than 0.0001. Protein-truncating variants in 4 other genes (BARD1, RAD51C, RAD51D, and TP53) were associated with a risk of breast cancer overall with a P value of less than 0.05 and a Bayesian false-discovery probability of less than 0.05. For protein-truncating variants in 19 of the remaining 25 genes, the upper limit of the 95% confidence interval of the odds ratio for breast cancer overall was less than 2.0. For protein-truncating variants in ATM and CHEK2, odds ratios were higher for estrogen receptor (ER)-positive disease than for ER-negative disease; for protein-truncating variants in BARD1, BRCA1, BRCA2, PALB2, RAD51C, and RAD51D, odds ratios were higher for ER-negative disease than for ER-positive disease. Rare missense variants (in aggregate) in ATM, CHEK2, and TP53 were associated with a risk of breast cancer overall with a P value of less than 0.001. For BRCA1, BRCA2, and TP53, missense variants (in aggregate) that would be classified as pathogenic according to standard criteria were associated with a risk of breast cancer overall, with the risk being similar to that of protein-truncating variants. CONCLUSIONS: The results of this study define the genes that are most clinically useful for inclusion on panels for the prediction of breast cancer risk, as well as provide estimates of the risks associated with protein-truncating variants, to guide genetic counseling. (Funded by European Union Horizon 2020 programs and others.).


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation , Mutation, Missense , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Female , Humans , Logistic Models , Middle Aged , Odds Ratio , Risk , Sequence Analysis, DNA , Young Adult
2.
Nature ; 551(7678): 92-94, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29059683

ABSTRACT

Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P < 5 × 10-8. The majority of credible risk single-nucleotide polymorphisms in these loci fall in distal regulatory elements, and by integrating in silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all single-nucleotide polymorphisms in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the use of genetic risk scores for individualized screening and prevention.


Subject(s)
Breast Neoplasms/genetics , Genetic Loci , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Asia/ethnology , Asian People/genetics , Binding Sites/genetics , Breast Neoplasms/diagnosis , Computer Simulation , Europe/ethnology , Female , Humans , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Regulatory Sequences, Nucleic Acid , Risk Assessment , Transcription Factors/metabolism , White People/genetics
3.
J Med Genet ; 59(5): 481-491, 2022 05.
Article in English | MEDLINE | ID: mdl-33811135

ABSTRACT

BACKGROUND: Rare protein-truncating variants (PTVs) in partner and localiser of BRCA2 (PALB2) confer increased risk to breast cancer, but relatively few studies have reported the prevalence in South-East Asian populations. Here, we describe the prevalence of rare variants in PALB2 in a population-based study of 7840 breast cancer cases and 7928 healthy Chinese, Malay and Indian women from Malaysia and Singapore, and describe the functional impact of germline missense variants identified in this population. METHODS: Mutation testing was performed on germline DNA (n=15 768) using targeted sequencing panels. The functional impact of missense variants was tested in mouse embryonic stem cell based functional assays. RESULTS: PTVs in PALB2 were found in 0.73% of breast cancer patients and 0.14% of healthy individuals (OR=5.44; 95% CI 2.85 to 10.39, p<0.0001). In contrast, rare missense variants in PALB2 were not associated with increased risk of breast cancer. Whereas PTVs were associated with later stage of presentation and higher-grade tumours, no significant association was observed with missense variants in PALB2. However, two novel rare missense variants (p.L1027R and p.G1043V) produced unstable proteins and resulted in a decrease in homologous recombination-mediated repair of DNA double-strand breaks. CONCLUSION: Despite genetic and lifestyle differences between Asian and other populations, the population prevalence of PALB2 PTVs and associated relative risk of breast cancer, are similar to those reported in European populations.


Subject(s)
Breast Neoplasms , Genetic Predisposition to Disease , Animals , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Fanconi Anemia Complementation Group N Protein/genetics , Female , Germ-Line Mutation , Humans , Malaysia/epidemiology , Male , Mice , Singapore/epidemiology
4.
Br J Cancer ; 124(4): 842-854, 2021 02.
Article in English | MEDLINE | ID: mdl-33495599

ABSTRACT

BACKGROUND: Epidemiological studies provide strong evidence for a role of endogenous sex hormones in the aetiology of breast cancer. The aim of this analysis was to identify genetic variants that are associated with urinary sex-hormone levels and breast cancer risk. METHODS: We carried out a genome-wide association study of urinary oestrone-3-glucuronide and pregnanediol-3-glucuronide levels in 560 premenopausal women, with additional analysis of progesterone levels in 298 premenopausal women. To test for the association with breast cancer risk, we carried out follow-up genotyping in 90,916 cases and 89,893 controls from the Breast Cancer Association Consortium. All women were of European ancestry. RESULTS: For pregnanediol-3-glucuronide, there were no genome-wide significant associations; for oestrone-3-glucuronide, we identified a single peak mapping to the CYP3A locus, annotated by rs45446698. The minor rs45446698-C allele was associated with lower oestrone-3-glucuronide (-49.2%, 95% CI -56.1% to -41.1%, P = 3.1 × 10-18); in follow-up analyses, rs45446698-C was also associated with lower progesterone (-26.7%, 95% CI -39.4% to -11.6%, P = 0.001) and reduced risk of oestrogen and progesterone receptor-positive breast cancer (OR = 0.86, 95% CI 0.82-0.91, P = 6.9 × 10-8). CONCLUSIONS: The CYP3A7*1C allele is associated with reduced risk of hormone receptor-positive breast cancer possibly mediated via an effect on the metabolism of endogenous sex hormones in premenopausal women.


Subject(s)
Breast Neoplasms/genetics , Cytochrome P-450 CYP3A/genetics , Estrone/analogs & derivatives , Pregnanediol/analogs & derivatives , Progesterone/urine , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Alleles , Breast Neoplasms/enzymology , Breast Neoplasms/urine , Case-Control Studies , Cytochrome P-450 CYP3A/metabolism , Estrone/genetics , Estrone/urine , Female , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , Pregnanediol/genetics , Pregnanediol/urine , Premenopause
5.
J Med Genet ; 55(2): 97-103, 2018 02.
Article in English | MEDLINE | ID: mdl-28993434

ABSTRACT

BACKGROUND: Genetic testing for BRCA1 and BRCA2 is offered typically to selected women based on age of onset and family history of cancer. However, current internationally accepted genetic testing referral guidelines are built mostly on data from cancer genetics clinics in women of European descent. To evaluate the appropriateness of such guidelines in Asians, we have determined the prevalence of germ line variants in an unselected cohort of Asian patients with breast cancer and healthy controls. METHODS: Germ line DNA from a hospital-based study of 2575 unselected patients with breast cancer and 2809 healthy controls were subjected to amplicon-based targeted sequencing of exonic and proximal splice site junction regions of BRCA1 and BRCA2 using the Fluidigm Access Array system, with sequencing conducted on a Illumina HiSeq2500 platform. Variant calling was performed with GATK UnifiedGenotyper and were validated by Sanger sequencing. RESULTS: Fifty-five (2.1%) BRCA1 and 66 (2.6%) BRCA2 deleterious mutations were identified among patients with breast cancer and five (0.18%) BRCA1 and six (0.21%) BRCA2 mutations among controls. One thousand one hundred and eighty-six (46%) patients and 97 (80%) carriers fulfilled the National Comprehensive Cancer Network guidelines for genetic testing. CONCLUSION: Five per cent of unselected Asian patients with breast cancer carry deleterious variants in BRCA1 or BRCA2. While current referral guidelines identified the majority of carriers, one in two patients would be referred for genetic services. Given that such services are largely unavailable in majority of low-resource settings in Asia, our study highlights the need for more efficient guidelines to identify at-risk individuals in Asia.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Mutation , Adult , Breast Neoplasms/ethnology , Breast Neoplasms/etiology , Case-Control Studies , Female , Germ-Line Mutation , Humans , Malaysia , Middle Aged , Practice Guidelines as Topic
6.
Breast J ; 25(1): 16-19, 2019 01.
Article in English | MEDLINE | ID: mdl-30414230

ABSTRACT

BACKGROUND: Invasive lobular carcinoma (ILC) of the breast has epidemiological, molecular and clinical specificities, and should likely be considered a unique entity. As for genetic susceptibility, CDH1 germline mutations predispose exclusively to ILC. Data are however scarce regarding ILC in women with BRCA1/2 (Hereditary Breast and Ovarian Cancer) and TP53 (Li-Fraumeni syndrome) germline mutations. METHODS: We included all breast cancers from female patients tested at our institute between 1992 and 2016 (n = 3469) for which pathology data were available. ILC proportion comparison according to mutational status was performed by a chi-squared test. The impact of susceptibility genes on ILC proportion was investigated by univariate logistic regression with wild-type patients as reference. RESULTS AND DISCUSSION: There were 265 (7.64%) ILC: 2/342 (0.58%) in BRCA1 patients, 24/238 (10%) in BRCA2 patients, 1/57 (1.75%) in TP53 patients and 238/2832 (8.4%) in non-carriers. The majority of breast cancers in all groups were invasive ductal and ductal in situ carcinomas. The difference in ILC proportion was highly significant (P < 0.001). Compared to wild-type patients, BRCA1 was associated with a lower ILC proportion (OR 0.064 [95% CI 0.016;0.259], P < 0.0001). BRCA2 OR was 1.222 [95%CI 0.785;1.902] (P = 0.374), TP53 OR was 0.195 [95%CI 0.027;1.412] (P = 0.105). ILC are therefore underrepresented in BRCA1 and TP53 mutation carriers. Formal significance (P = 0.05) was not reached for TP53, but statistical power was only 38%. Based on ILC incidence in the general population, we make the hypothesis that BRCA1 and TP53 do not predispose to ILC, as the few occurrences of ILC in mutation carriers could be attributed to chance and not to germline mutations. Our observations will be useful to clinical cancer geneticists managing patients with ILC, as a BRCA1 or TP53 mutation in these patients would be unlikely. Genetic counseling should be adapted accordingly.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Carcinoma, Lobular/genetics , Germ-Line Mutation , Tumor Suppressor Protein p53/genetics , BRCA2 Protein/genetics , Carcinoma, Intraductal, Noninfiltrating/genetics , Female , Genetic Predisposition to Disease , Heterozygote , Humans
7.
J Med Genet ; 54(11): 732-741, 2017 11.
Article in English | MEDLINE | ID: mdl-28779002

ABSTRACT

BACKGROUND: Breast cancer (BC) is the most common malignancy in women and has a major heritable component. The risks associated with most rare susceptibility variants are not well estimated. To better characterise the contribution of variants in ATM, CHEK2, PALB2 and XRCC2, we sequenced their coding regions in 13 087 BC cases and 5488 controls from East Anglia, UK. METHODS: Gene coding regions were enriched via PCR, sequenced, variant called and filtered for quality. ORs for BC risk were estimated separately for carriers of truncating variants and of rare missense variants, which were further subdivided by functional domain and pathogenicity as predicted by four in silico algorithms. RESULTS: Truncating variants in PALB2 (OR=4.69, 95% CI 2.27 to 9.68), ATM (OR=3.26; 95% CI 1.82 to 6.46) and CHEK2 (OR=3.11; 95% CI 2.15 to 4.69), but not XRCC2 (OR=0.94; 95% CI 0.26 to 4.19) were associated with increased BC risk. Truncating variants in ATM and CHEK2 were more strongly associated with risk of oestrogen receptor (ER)-positive than ER-negative disease, while those in PALB2 were associated with similar risks for both subtypes. There was also some evidence that missense variants in ATM, CHEK2 and PALB2 may contribute to BC risk, but larger studies are necessary to quantify the magnitude of this effect. CONCLUSIONS: Truncating variants in PALB2 are associated with a higher risk of BC than those in ATM or CHEK2. A substantial risk of BC due to truncating XRCC2 variants can be excluded.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Breast Neoplasms/genetics , Checkpoint Kinase 2/genetics , DNA-Binding Proteins/genetics , Fanconi Anemia Complementation Group N Protein/genetics , Ataxia Telangiectasia Mutated Proteins/chemistry , Checkpoint Kinase 2/chemistry , DNA-Binding Proteins/chemistry , Fanconi Anemia Complementation Group N Protein/chemistry , Female , Genetic Predisposition to Disease , Genetic Variation , Humans , Sequence Analysis, Protein
8.
J Med Genet ; 53(5): 298-309, 2016 05.
Article in English | MEDLINE | ID: mdl-26921362

ABSTRACT

BACKGROUND: BRCA1 interacting protein C-terminal helicase 1 (BRIP1) is one of the Fanconi Anaemia Complementation (FANC) group family of DNA repair proteins. Biallelic mutations in BRIP1 are responsible for FANC group J, and previous studies have also suggested that rare protein truncating variants in BRIP1 are associated with an increased risk of breast cancer. These studies have led to inclusion of BRIP1 on targeted sequencing panels for breast cancer risk prediction. METHODS: We evaluated a truncating variant, p.Arg798Ter (rs137852986), and 10 missense variants of BRIP1, in 48 144 cases and 43 607 controls of European origin, drawn from 41 studies participating in the Breast Cancer Association Consortium (BCAC). Additionally, we sequenced the coding regions of BRIP1 in 13 213 cases and 5242 controls from the UK, 1313 cases and 1123 controls from three population-based studies as part of the Breast Cancer Family Registry, and 1853 familial cases and 2001 controls from Australia. RESULTS: The rare truncating allele of rs137852986 was observed in 23 cases and 18 controls in Europeans in BCAC (OR 1.09, 95% CI 0.58 to 2.03, p=0.79). Truncating variants were found in the sequencing studies in 34 cases (0.21%) and 19 controls (0.23%) (combined OR 0.90, 95% CI 0.48 to 1.70, p=0.75). CONCLUSIONS: These results suggest that truncating variants in BRIP1, and in particular p.Arg798Ter, are not associated with a substantial increase in breast cancer risk. Such observations have important implications for the reporting of results from breast cancer screening panels.


Subject(s)
Breast Neoplasms/metabolism , DNA-Binding Proteins/genetics , Genetic Predisposition to Disease , Mutation , RNA Helicases/genetics , Adult , Aged , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Cohort Studies , Fanconi Anemia Complementation Group Proteins , Female , Genetic Association Studies , Humans , Middle Aged , Risk , White People/genetics
9.
Breast Cancer Res ; 18(1): 64, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27459855

ABSTRACT

BACKGROUND: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. METHOD: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast Cancer Association Consortium (BCAC; http://bcac.ccge.medschl.cam.ac.uk/ ), and in 15,252 BRCA1 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Stepwise regression analyses were performed to identify independent association signals. Data from the Encyclopedia of DNA Elements project (ENCODE) and the Cancer Genome Atlas (TCGA) were used for functional annotation. RESULTS: Analysis of data from European descendants found evidence for four independent association signals at 12p11, represented by rs7297051 (odds ratio (OR) = 1.09, 95 % confidence interval (CI) = 1.06-1.12; P = 3 × 10(-9)), rs805510 (OR = 1.08, 95 % CI = 1.04-1.12, P = 2 × 10(-5)), and rs1871152 (OR = 1.04, 95 % CI = 1.02-1.06; P = 2 × 10(-4)) identified in the general populations, and rs113824616 (P = 7 × 10(-5)) identified in the meta-analysis of BCAC ER-negative cases and BRCA1 mutation carriers. SNPs rs7297051, rs805510 and rs113824616 were also associated with breast cancer risk at P < 0.05 in East Asians, but none of the associations were statistically significant in African descendants. Multiple candidate functional variants are located in putative enhancer sequences. Chromatin interaction data suggested that PTHLH was the likely target gene of these enhancers. Of the six variants with the strongest evidence of potential functionality, rs11049453 was statistically significantly associated with the expression of PTHLH and its nearby gene CCDC91 at P < 0.05. CONCLUSION: This study identified four independent association signals at 12p11 and revealed potentially functional variants, providing additional insights into the underlying biological mechanism(s) for the association observed between variants at 12p11 and breast cancer risk.


Subject(s)
Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Chromosome Mapping , Chromosomes, Human, Pair 12 , Genetic Predisposition to Disease , Genome-Wide Association Study , Alleles , BRCA1 Protein/genetics , Case-Control Studies , Computational Biology/methods , Databases, Genetic , Enhancer Elements, Genetic , Epigenesis, Genetic , Female , Genotype , Haplotypes , Heterozygote , Humans , Mutation , Odds Ratio , Polymorphism, Single Nucleotide , Population Surveillance , Promoter Regions, Genetic , Quantitative Trait Loci , Risk , White People/genetics
10.
Am J Hum Genet ; 92(4): 489-503, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23540573

ABSTRACT

Analysis of 4,405 variants in 89,050 European subjects from 41 case-control studies identified three independent association signals for estrogen-receptor-positive tumors at 11q13. The strongest signal maps to a transcriptional enhancer element in which the G allele of the best candidate causative variant rs554219 increases risk of breast cancer, reduces both binding of ELK4 transcription factor and luciferase activity in reporter assays, and may be associated with low cyclin D1 protein levels in tumors. Another candidate variant, rs78540526, lies in the same enhancer element. Risk association signal 2, rs75915166, creates a GATA3 binding site within a silencer element. Chromatin conformation studies demonstrate that these enhancer and silencer elements interact with each other and with their likely target gene, CCND1.


Subject(s)
Breast Neoplasms/genetics , Chromosomes, Human, Pair 11/genetics , Cyclin D1/genetics , Enhancer Elements, Genetic/genetics , Polymorphism, Single Nucleotide/genetics , Binding Sites , Case-Control Studies , Cell Line, Tumor , Chromatin/chemistry , Chromatin/genetics , Chromatin Immunoprecipitation , Cyclin D1/metabolism , Electrophoretic Mobility Shift Assay , Female , GATA3 Transcription Factor/antagonists & inhibitors , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , Humans , Luciferases/metabolism , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Silencer Elements, Transcriptional/genetics , ets-Domain Protein Elk-4/antagonists & inhibitors , ets-Domain Protein Elk-4/genetics , ets-Domain Protein Elk-4/metabolism
11.
J Med Genet ; 52(7): 465-75, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26025000

ABSTRACT

BACKGROUND: Although BRCA1 and BRCA2 mutations account for only ∼27% of the familial aggregation of ovarian cancer (OvC), no OvC risk prediction model currently exists that considers the effects of BRCA1, BRCA2 and other familial factors. Therefore, a currently unresolved problem in clinical genetics is how to counsel women with family history of OvC but no identifiable BRCA1/2 mutations. METHODS: We used data from 1548 patients with OvC and their relatives from a population-based study, with known BRCA1/2 mutation status, to investigate OvC genetic susceptibility models, using segregation analysis methods. RESULTS: The most parsimonious model included the effects of BRCA1/2 mutations, and the residual familial aggregation was accounted for by a polygenic component (SD 1.43, 95% CI 1.10 to 1.86), reflecting the multiplicative effects of a large number of genes with small contributions to the familial risk. We estimated that 1 in 630 individuals carries a BRCA1 mutation and 1 in 195 carries a BRCA2 mutation. We extended this model to incorporate the explicit effects of 17 common alleles that are associated with OvC risk. Based on our models, assuming all of the susceptibility genes could be identified we estimate that the half of the female population at highest genetic risk will account for 92% of all OvCs. CONCLUSIONS: The resulting model can be used to obtain the risk of developing OvC on the basis of BRCA1/2, explicit family history and common alleles. This is the first model that accounts for all OvC familial aggregation and would be useful in the OvC genetic counselling process.


Subject(s)
Genes, BRCA1 , Genes, BRCA2 , Genetic Predisposition to Disease , Models, Genetic , Multifactorial Inheritance/genetics , Ovarian Neoplasms/diagnosis , Risk Assessment/methods , Alleles , Female , Genetic Counseling/methods , Humans
12.
Nat Genet ; 39(3): 352-8, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17293864

ABSTRACT

The Breast Cancer Association Consortium (BCAC) has been established to conduct combined case-control analyses with augmented statistical power to try to confirm putative genetic associations with breast cancer. We genotyped nine SNPs for which there was some prior evidence of an association with breast cancer: CASP8 D302H (rs1045485), IGFBP3 -202 C --> A (rs2854744), SOD2 V16A (rs1799725), TGFB1 L10P (rs1982073), ATM S49C (rs1800054), ADH1B 3' UTR A --> G (rs1042026), CDKN1A S31R (rs1801270), ICAM5 V301I (rs1056538) and NUMA1 A794G (rs3750913). We included data from 9-15 studies, comprising 11,391-18,290 cases and 14,753-22,670 controls. We found evidence of an association with breast cancer for CASP8 D302H (with odds ratios (OR) of 0.89 (95% confidence interval (c.i.): 0.85-0.94) and 0.74 (95% c.i.: 0.62-0.87) for heterozygotes and rare homozygotes, respectively, compared with common homozygotes; P(trend) = 1.1 x 10(-7)) and weaker evidence for TGFB1 L10P (OR = 1.07 (95% c.i.: 1.02-1.13) and 1.16 (95% c.i.: 1.08-1.25), respectively; P(trend) = 2.8 x 10(-5)). These results demonstrate that common breast cancer susceptibility alleles with small effects on risk can be identified, given sufficiently powerful studies.


Subject(s)
Breast Neoplasms/genetics , Caspase 8/genetics , Genetic Predisposition to Disease , Adult , Aged , Case-Control Studies , Cohort Studies , Female , Genetic Variation , Genotype , Humans , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors
13.
Hum Mol Genet ; 22(24): 5056-64, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-23900074

ABSTRACT

Mean telomere length (TL) in blood cells is heritable and has been reported to be associated with risks of several diseases, including cancer. We conducted a meta-analysis of three GWAS for TL (total n=2240) and selected 1629 variants for replication via the "iCOGS" custom genotyping array. All ∼200 000 iCOGS variants were analysed with TL, and those displaying associations in healthy controls (n = 15 065) were further tested in breast cancer cases (n = 11 024). We found a novel TL association (Ptrend < 4 × 10(-10)) at 3p14.4 close to PXK and evidence (Ptrend < 7 × 10(-7)) for TL loci at 6p22.1 (ZNF311) and 20q11.2 (BCL2L1). We additionally confirmed (Ptrend < 5 × 10(-14)) the previously reported loci at 3q26.2 (TERC), 5p15.3 (TERT) and 10q24.3 (OBFC1) and found supportive evidence (Ptrend < 5 × 10(-4)) for the published loci at 2p16.2 (ACYP2), 4q32.2 (NAF1) and 20q13.3 (RTEL1). SNPs tagging these loci explain TL differences of up to 731 bp (corresponding to 18% of total TL in healthy individuals), however, they display little direct evidence for association with breast, ovarian or prostate cancer risks.


Subject(s)
Genetic Loci , Genome-Wide Association Study , Neoplasms/genetics , Telomere Homeostasis/genetics , Telomere/genetics , Case-Control Studies , Chromosome Mapping , Female , Genetic Predisposition to Disease , Humans , Male , Neoplasms/metabolism , Polymorphism, Single Nucleotide , Risk , Telomere/metabolism
14.
Lancet Oncol ; 13(1): 65-77, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22169268

ABSTRACT

BACKGROUND: Several studies have reported associations between radiation toxicity and single nucleotide polymorphisms (SNPs) in candidate genes. Few associations have been tested in independent validation studies. This prospective study aimed to validate reported associations between genotype and radiation toxicity in a large independent dataset. METHODS: 92 (of 98 attempted) SNPs in 46 genes were successfully genotyped in 1613 patients: 976 received adjuvant breast radiotherapy in the Cambridge breast IMRT trial (ISRCTN21474421, n=942) or in a prospective study of breast toxicity at the Christie Hospital, Manchester, UK (n=34). A further 637 received radical prostate radiotherapy in the MRC RT01 multicentre trial (ISRCTN47772397, n=224) or in the Conventional or Hypofractionated High Dose Intensity Modulated Radiotherapy for Prostate Cancer (CHHiP) trial (ISRCTN97182923, n=413). Late toxicity was assessed 2 years after radiotherapy with a validated photographic technique (patients with breast cancer only), clinical assessment, and patient questionnaires. Association tests of genotype with overall radiation toxicity score and individual endpoints were undertaken in univariate and multivariable analyses. At a type I error rate adjusted for multiple testing, this study had 99% power to detect a SNP, with minor allele frequency of 0·35, associated with a per allele odds ratio of 2·2. FINDINGS: None of the previously reported associations were confirmed by this study, after adjustment for multiple comparisons. The p value distribution of the SNPs tested against overall toxicity score was not different from that expected by chance. INTERPRETATION: We did not replicate previously reported late toxicity associations, suggesting that we can essentially exclude the hypothesis that published SNPs individually exert a clinically relevant effect. Continued recruitment of patients into studies within the Radiogenomics Consortium is essential so that sufficiently powered studies can be done and methodological challenges addressed. FUNDING: Cancer Research UK, The Royal College of Radiologists, Addenbrooke's Charitable Trust, Breast Cancer Campaign, Cambridge National Institute of Health Research (NIHR) Biomedical Research Centre, Experimental Cancer Medicine Centre, East Midlands Innovation, the National Cancer Institute, Joseph Mitchell Trust, Royal Marsden NHS Foundation Trust, Institute of Cancer Research NIHR Biomedical Research Centre for Cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/radiotherapy , Dose Fractionation, Radiation , Polymorphism, Single Nucleotide , Prostatic Neoplasms/genetics , Prostatic Neoplasms/radiotherapy , Radiation Injuries/genetics , Radiotherapy, Intensity-Modulated/adverse effects , Dose-Response Relationship, Radiation , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , Linear Models , Male , Odds Ratio , Prospective Studies , Radiation Injuries/pathology , Radiotherapy, Adjuvant/adverse effects , Risk Assessment , Risk Factors , Time Factors , United Kingdom
15.
Nat Genet ; 55(9): 1435-1439, 2023 09.
Article in English | MEDLINE | ID: mdl-37592023

ABSTRACT

Linkage and candidate gene studies have identified several breast cancer susceptibility genes, but the overall contribution of coding variation to breast cancer is unclear. To evaluate the role of rare coding variants more comprehensively, we performed a meta-analysis across three large whole-exome sequencing datasets, containing 26,368 female cases and 217,673 female controls. Burden tests were performed for protein-truncating and rare missense variants in 15,616 and 18,601 genes, respectively. Associations between protein-truncating variants and breast cancer were identified for the following six genes at exome-wide significance (P < 2.5 × 10-6): the five known susceptibility genes ATM, BRCA1, BRCA2, CHEK2 and PALB2, together with MAP3K1. Associations were also observed for LZTR1, ATR and BARD1 with P < 1 × 10-4. Associations between predicted deleterious rare missense or protein-truncating variants and breast cancer were additionally identified for CDKN2A at exome-wide significance. The overall contribution of coding variants in genes beyond the previously known genes is estimated to be small.


Subject(s)
Exome , Neoplasms , Female , Humans , Exome Sequencing , Exome/genetics , Mutation, Missense/genetics
16.
Cancer Epidemiol Biomarkers Prev ; 31(8): 1593-1601, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35654374

ABSTRACT

BACKGROUND: Risk estimates for women carrying germline mutations in breast cancer susceptibility genes are mainly based on studies of European ancestry women. METHODS: We investigated associations between pathogenic variants (PV) in 34 genes with breast cancer risk in 871 cases [307 estrogen receptor (ER)-positive, 321 ER-negative, and 243 ER-unknown] and 1,563 controls in the Ghana Breast Health Study (GBHS), and estimated lifetime risk for carriers. We compared results with those for European, Asian, and African American ancestry women. RESULTS: The frequency of PV in GBHS for nine breast cancer genes was 8.38% in cases and 1.22% in controls. Relative risk estimates for overall breast cancer were: (OR, 13.70; 95% confidence interval (CI), 4.03-46.51) for BRCA1, (OR, 7.02; 95% CI, 3.17-15.54) for BRCA2, (OR, 17.25; 95% CI, 2.15-138.13) for PALB2, 5 cases and no controls carried TP53 PVs, and 2.10, (0.72-6.14) for moderate-risk genes combined (ATM, BARD1, CHEK2, RAD51C, RAD52D). These estimates were similar to those previously reported in other populations and were modified by ER status. No other genes evaluated had mutations associated at P < 0.05 with overall risk. The estimated lifetime risks for mutation carriers in BRCA1, BRCA2, and PALB2 and moderate-risk genes were 18.4%, 9.8%, 22.4%, and 3.1%, respectively, markedly lower than in Western populations with higher baseline risks. CONCLUSIONS: We confirmed associations between PV and breast cancer risk in Ghanaian women and provide absolute risk estimates that could inform counseling in Ghana and other West African countries. IMPACT: These findings have direct relevance for breast cancer genetic counseling for women in West Africa.


Subject(s)
Breast Neoplasms , Germ-Line Mutation , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Female , Genetic Predisposition to Disease , Ghana/epidemiology , Humans , Risk
17.
Hum Mol Genet ; 18(6): 1131-9, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19126777

ABSTRACT

We have conducted a three-stage, comprehensive single nucleotide polymorphism (SNP)-tagging association study of ESR1 gene variants (SNPs) in more than 55,000 breast cancer cases and controls from studies within the Breast Cancer Association Consortium (BCAC). No large risks or highly significant associations were revealed. SNP rs3020314, tagging a region of ESR1 intron 4, is associated with an increase in breast cancer susceptibility with a dominant mode of action in European populations. Carriers of the c-allele have an odds ratio (OR) of 1.05 [95% Confidence Intervals (CI) 1.02-1.09] relative to t-allele homozygotes, P = 0.004. There is significant heterogeneity between studies, P = 0.002. The increased risk appears largely confined to oestrogen receptor-positive tumour risk. The region tagged by SNP rs3020314 contains sequence that is more highly conserved across mammalian species than the rest of intron 4, and it may subtly alter the ratio of two mRNA splice forms.


Subject(s)
Breast Neoplasms/genetics , Estrogen Receptor alpha/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide/genetics , Breast Neoplasms/pathology , Female , Haplotypes , Humans , Neoplasm Staging , RNA, Neoplasm/genetics
18.
Nat Commun ; 12(1): 1078, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33597508

ABSTRACT

Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10-8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Adult , Alleles , Female , Genotype , Humans , Linkage Disequilibrium , Middle Aged , Mutation , Quantitative Trait Loci/genetics , Risk Factors
20.
Breast Cancer Res ; 12(4): R64, 2010.
Article in English | MEDLINE | ID: mdl-20731819

ABSTRACT

INTRODUCTION: Tamoxifen is one of the most effective adjuvant breast cancer therapies available. Its metabolism involves the phase I enzyme, cytochrome P4502D6 (CYP2D6), encoded by the highly polymorphic CYP2D6 gene. CYP2D6 variants resulting in poor metabolism of tamoxifen are hypothesised to reduce its efficacy. An FDA-approved pre-treatment CYP2D6 gene testing assay is available. However, evidence from published studies evaluating CYP2D6 variants as predictive factors of tamoxifen efficacy and clinical outcome are conflicting, querying the clinical utility of CYP2D6 testing. We investigated the association of CYP2D6 variants with breast cancer specific survival (BCSS) in breast cancer patients receiving tamoxifen. METHODS: This was a population based case-cohort study. We genotyped known functional variants (n = 7; minor allele frequency (MAF) > 0.01) and single nucleotide polymorphisms (SNPs) (n = 5; MAF > 0.05) tagging all known common variants (tagSNPs), in CYP2D6 in 6640 DNA samples from patients with invasive breast cancer from SEARCH (Studies of Epidemiology and Risk factors in Cancer Heredity); 3155 cases had received tamoxifen therapy. There were 312 deaths from breast cancer, in the tamoxifen treated patients, with over 18000 years of cumulative follow-up. The association between genotype and BCSS was evaluated using Cox proportional hazards regression analysis. RESULTS: In tamoxifen treated patients, there was weak evidence that the poor-metaboliser variant, CYP2D6*6 (MAF = 0.01), was associated with decreased BCSS (P = 0.02; HR = 1.95; 95% CI = 1.12-3.40). No other variants, including CYP2D6*4 (MAF = 0.20), previously reported to be associated with poorer clinical outcomes, were associated with differences in BCSS, in either the tamoxifen or non-tamoxifen groups. CONCLUSIONS: CYP2D6*6 may affect BCSS in tamoxifen-treated patients. However, the absence of an association with survival in more frequent variants, including CYP2D6*4, questions the validity of the reported association between CYP2D6 genotype and treatment response in breast cancer. Until larger, prospective studies confirming any associations are available, routine CYP2D6 genetic testing should not be used in the clinical setting.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cytochrome P-450 CYP2D6/genetics , Polymorphism, Single Nucleotide , Tamoxifen/therapeutic use , Adult , Aged , Antineoplastic Agents, Hormonal/metabolism , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/pathology , Chemotherapy, Adjuvant/statistics & numerical data , Cohort Studies , Cytochrome P-450 CYP2D6/metabolism , Female , Gene Frequency , Genotype , Humans , Middle Aged , Proportional Hazards Models , Survival Analysis , Tamoxifen/metabolism , Treatment Outcome , United Kingdom , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL