Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 292
Filter
Add more filters

Publication year range
1.
Anal Chem ; 96(3): 957-965, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38164878

ABSTRACT

Infrared (IR) spectroscopy of serum/plasma represents an alluring molecular diagnostic tool, especially for cancer, as it can provide a molecular fingerprint of clinical samples based on vibrational modes of chemical bonds. However, despite the superior performance, the routine adoption of this technique for clinical settings has remained elusive. This is due to the potential confounding factors that are often overlooked and pose a significant barrier to clinical translation. In this Perspective, we summarize the concerns associated with various confounding factors, such as fluid sampling, optical effects, hemolysis, abnormal cardiovascular and/or hepatic functions, infections, alcoholism, diet style, age, and gender of a patient or normal control cohort, and improper selection of numerical methods that ultimately would lead to improper spectral diagnosis. We also propose some precautionary measures to overcome the challenges associated with these confounding factors.


Subject(s)
Neoplasms , Triage , Humans , Spectrophotometry, Infrared/methods , Neoplasms/diagnosis , Vibration , Spectroscopy, Fourier Transform Infrared/methods
2.
Genomics ; 113(6): 4254-4266, 2021 11.
Article in English | MEDLINE | ID: mdl-34757126

ABSTRACT

Foot-and-mouth disease virus (FMDV) causes a severe infection in ruminant animals. Here we present an in-depth transcriptional analysis of soft-palate tissue from cattle experimentally infected with FMDV. The differentially expressed genes from two Indian cattle (Bos indicus) breeds (Malnad Gidda and Hallikar) and Holstein Friesian (HF) crossbred calves, highlighted the activation of metabolic processes, mitochondrial functions and significant enrichment of innate antiviral immune response pathways in the indigenous calves. The results of RT-qPCR based validation of 12 genes was in alignment with the transcriptome data. The indigenous calves showing lesser virus load, elicited early neutralizing antibodies and IFN-γ immune responses. This study revealed that induction of potent innate antiviral response and cell mediated immunity in indigenous cattle, especially Malnad Gidda, significantly restricted FMDV replication during acute infection. These data highlighting the molecular processes associated with host-pathogen interactions, could aid in the conception of novel strategies to prevent and control FMDV infection in cattle.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Antiviral Agents/metabolism , Cattle , Cattle Diseases/genetics , Foot-and-Mouth Disease/genetics , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/metabolism , Immunity, Cellular , Immunity, Innate/genetics , Viral Load
3.
Amino Acids ; 53(8): 1211-1227, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34196789

ABSTRACT

Interleukin-3 (IL-3) is a cytokine belonging to the family of common ß (ßc) and is involved in various biological systems. Its activity is mediated by the interaction with its receptor (IL-3R), a heterodimer composed of two distinct subunits: IL-3Rα and ßc. IL-3 and its receptor, especially IL-3Rα, play a crucial role in pathologies like inflammatory diseases and therefore are interesting therapeutic targets. Here, we have performed an analysis of these proteins and their interaction based on structural and evolutionary information. We highlighted that IL-3 and IL-3Rα structural architectures are conserved across evolution and shared with other proteins belonging to the same ßc family interleukin-5 (IL-5) and granulocyte-macrophage colony-stimulating factor (GM-CSF). The IL-3Rα/IL-3 interaction is mediated by a large interface in which most residues are surprisingly not conserved during evolution and across family members. In spite of this high variability, we suggested small regions constituted by few residues conserved during the evolution in both proteins that could be important for the binding affinity.


Subject(s)
Evolution, Molecular , Interleukin-3/chemistry , Receptors, Interleukin-3/chemistry , Amino Acid Sequence , Animals , Humans , Interleukin-3/genetics , Protein Conformation , Receptors, Interleukin-3/genetics , Sequence Homology, Amino Acid
4.
J Assoc Physicians India ; 69(4): 11-12, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34470188

ABSTRACT

INTRODUCTION: Systemic Lupus Erythematosus (SLE) is a chronic multi-system autoimmune disease with varied clinical presentations. Complement components are the major players in disease pathogenesis. This retrospective cross-sectional study was aimed at assessing the role of autoantibodies to these complement components and their association disease activity in newly diagnosed SLE patients from India. METHOD: Clinically diagnosed SLE patients (n=57) classified as per 2015 ACR/SLICC revised criteria were enrolled between November 2016 to April 2017. Patients' sera were tested for C3 and C4 by nephelometry, while serum levels of factor H, factor P (properdin) as well as autoantibodies to C3, C4, factor H and factor P were detected by ELISA. GraphPad Prism Version 6.01 was used for statistical analysis. Mean, SD, SEM were calculated. Mann Whittney U-test, ANOVA, Chi-square test, Odd's Ratio were calculated. Pearson's correlation was used to study relativeness of the study parameters. RESULTS: Among the 57 SLE patients, low C3 were seen in 51% patients, low C4 in 49%, low factor H in 19% and low factor P in 49% patients. Positivity for autoantibodies against complement components, anti-C3 were seen in 42% patients, anti-C4 in 7%, anti-factor H in 19% and anti-factor P in 28% patients. Serum levels of C3 (p=0.0009), C4 (p=0.0031) and anti-C3 autoantibodies (p=0.0029) were significantly associated with ACR/SLICC 2015 scores. CONCLUSION: Hypocomplementemia was found to be associated with higher disease damage score in newly diagnosed SLE patients. This study adds novel arguments for the importance of the anti-C3 autoantibodies as a marker of SLE.


Subject(s)
Autoantibodies , Lupus Erythematosus, Systemic , Complement C4 , Cross-Sectional Studies , Humans , Lupus Erythematosus, Systemic/diagnosis , Retrospective Studies
5.
Infect Immun ; 88(9)2020 08 19.
Article in English | MEDLINE | ID: mdl-32571987

ABSTRACT

Even though both cellular and humoral immunities contribute to host defense, the role played by humoral immunity against the airborne opportunistic fungal pathogen Aspergillus fumigatus has been underexplored. In this study, we aimed at deciphering the role of the complement system, the major humoral immune component, against A. fumigatus Mass spectrometry analysis of the proteins extracted from A. fumigatus conidial (asexual spores and infective propagules) surfaces opsonized with human serum indicated that C3 is the major complement protein involved. Flow cytometry and immunolabeling assays further confirmed C3b (activated C3) deposition on the conidial surfaces. Assays using cell wall components of conidia indicated that the hydrophobin RodAp, ß-(1,3)-glucan (BG) and galactomannan (GM) could efficiently activate C3. Using complement component-depleted sera, we showed that while RodAp activates C3 by the alternative pathway, BG and GM partially follow the classical and lectin pathways, respectively. Opsonization facilitated conidial aggregation and phagocytosis, and complement receptor (CR3 and CR4) blockage on phagocytes significantly inhibited phagocytosis, indicating that the complement system exerts a protective role against conidia by opsonizing them and facilitating their phagocytosis mainly through complement receptors. Conidial opsonization with human bronchoalveolar lavage fluid (BALF) confirmed C3 to be the major complement protein interacting with conidia. Nevertheless, complement C2 and mannose-binding lectin (MBL), the classical and lectin pathway components, respectively, were not identified, indicating that BALF activates the alternative pathway on the conidial surface. Moreover, the cytokine profiles were different upon stimulation of phagocytes with serum- and BALF-opsonized conidia, highlighting the importance of studying interaction of conidia with complement proteins in their biological niche.


Subject(s)
Aspergillus fumigatus/immunology , Bronchoalveolar Lavage Fluid/immunology , Complement C3/immunology , Fungal Polysaccharides/pharmacology , Macrophages/drug effects , Serum/immunology , Spores, Fungal/immunology , Aspergillosis/genetics , Aspergillosis/immunology , Aspergillosis/microbiology , Aspergillus fumigatus/chemistry , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/microbiology , Cell Wall/chemistry , Cell Wall/immunology , Complement Activation/drug effects , Complement C3/genetics , Cytokines/biosynthesis , Cytokines/immunology , Fungal Polysaccharides/immunology , Fungal Polysaccharides/isolation & purification , Galactose/analogs & derivatives , Host Microbial Interactions/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Integrin alphaXbeta2/genetics , Integrin alphaXbeta2/immunology , Macrophage-1 Antigen/genetics , Macrophage-1 Antigen/immunology , Macrophages/immunology , Macrophages/microbiology , Mannans/immunology , Mannans/isolation & purification , Mannans/pharmacology , Opsonin Proteins/pharmacology , Phagocytosis/drug effects , Primary Cell Culture , Protein Binding , Reactive Oxygen Species , Serum/chemistry , Serum/microbiology , Spores, Fungal/chemistry , beta-Glucans/immunology , beta-Glucans/isolation & purification , beta-Glucans/pharmacology
6.
Eur J Immunol ; 49(1): 195-198, 2019 01.
Article in English | MEDLINE | ID: mdl-30267564

ABSTRACT

Intravenous immunoglobuin (IVIG) exerts protective effects in experimental allergic bronchopulmonary aspergillosis (ABPA) via a sialylation-dependent mechanism. The protection was associated with reduced recruitment of eosinophils, diminished goblet cell hyperplasia, suppressed Th2 and Th17 responses and reciprocally enhanced regulatory T cells and IL-10, and decreased IgE levels in the circulation.


Subject(s)
Aspergillosis, Allergic Bronchopulmonary/therapy , Eosinophils/immunology , Goblet Cells/immunology , Immunoglobulins, Intravenous/therapeutic use , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Animals , Cells, Cultured , Humans , Immunoglobulin E/blood , Interleukin-10/metabolism , Mice , Mice, Inbred C57BL , N-Acetylneuraminic Acid/metabolism
7.
Cell Immunol ; 355: 104151, 2020 09.
Article in English | MEDLINE | ID: mdl-32615414

ABSTRACT

B cells with regulatory properties (Bregs) were identified in human and in mice among different B-cell subsets. Their regulatory properties rely mainly on the production of anti-inflammatory cytokines, in particular IL10, IL-35 and TGFß, and were extensively studied in mouse models of autoimmune and inflammatory diseases. However, the exact nature of the stimulatory signals conferring regulatory properties to B cells is still not clear. We serendipitously observed that fluorescein isothiocyanate (FITC) binds to a significant proportion of naïve mouse B cells. Binding of FITC to the B-cell surface implicated at least in part the B-cell receptor. It triggered IL-10 production and allowed the endocytosis of FITC-coupled antigens followed by their presentation to CD4+ T cells. In particular, B cells incubated with FITC-OVA polarized OTII T cells towards a Tr1/Th2 phenotype in vitro. Further, the adoptive transfer of B cells incubated with FITC-labeled myelin oligodendrocyte glycoprotein peptide protected mice from experimental autoimmune encephalomyelitis, a T-cell-dependent autoimmune model. Together, the data show that FITC-stimulated B cells polarize immune responses towards Tr1/Th2 and acquire immuno-modulatory properties.


Subject(s)
B-Lymphocytes, Regulatory/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Animals , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , B-Lymphocytes, Regulatory/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Fluorescein/metabolism , Fluorescein/pharmacology , Fluorescein-5-isothiocyanate/chemistry , Fluorescein-5-isothiocyanate/metabolism , Fluorescein-5-isothiocyanate/pharmacology , Interleukin-10/immunology , Interleukin-10/metabolism , Interleukins/immunology , Interleukins/metabolism , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein/immunology , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta/metabolism
8.
Trends Immunol ; 38(11): 789-792, 2017 11.
Article in English | MEDLINE | ID: mdl-28916232

ABSTRACT

Intravenous immunoglobulin (IVIG), a pooled normal IgG formulation prepared from thousands of healthy donors' plasma, is extensively used for the immunotherapy of autoimmune and inflammatory disorders. Recent reports demonstrate that IVIG exerts anti-inflammatory actions by stimulating the activation and expansion of regulatory T (Treg) cells by multiple mechanisms via antigen-presenting cells (APCs).


Subject(s)
Dendritic Cells/metabolism , Immunoglobulin G/immunology , Immunoglobulins, Intravenous/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Blood Circulation , Humans , Immunization , Immunoglobulins, Intravenous/therapeutic use , Lymphocyte Activation , Mice
9.
J Immunol ; 200(6): 1957-1963, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29507120

ABSTRACT

The immunoregulatory and anti-infective properties of normal circulating polyclonal Abs have been exploited for the therapeutic purposes in the form of IVIG as well as several hyperimmune globulins. Current knowledge on the therapeutic use of normal Igs is based on the discoveries made by several pioneers of the field. In this paper, we review the evolution of IVIG over the years. More importantly, the process started as an s.c. replacement in γ globulin-deficient patients, underwent metamorphosis into i.m. Ig, was followed by IVIG, and is now back to s.c. forms. Following successful use of IVIG in immune thrombocytopenic purpura, there has been an explosion in the therapeutic applications of IVIG in diverse autoimmune and inflammatory conditions. In addition to clinically approved pathological conditions, IVIG has been used as an off-label drug in more than 100 different indications. The current worldwide consumption of IVIG is over 100 tons per year.


Subject(s)
Antibodies/immunology , Immunoglobulins, Intravenous/immunology , Immunomodulation/immunology , Animals , Diabetes Mellitus, Type 1/immunology , Humans , Immunization, Passive/methods , Inflammation/immunology
10.
J Allergy Clin Immunol ; 144(2): 524-535.e8, 2019 08.
Article in English | MEDLINE | ID: mdl-30529242

ABSTRACT

BACKGROUND: Therapeutic normal IgG or intravenous immunoglobulin (IVIG) exerts anti-inflammatory effects through several mutually nonexclusive mechanisms. Recent data in mouse models of autoimmune disease suggest that IVIG induces IL-4 in basophils by enhancing IL-33 in SIGN-related 1-positive innate cells. However, translational insight on these data is lacking. OBJECTIVE: We sought to investigate the effect of IVIG on human basophil functions. METHODS: Isolated circulating basophils from healthy donors were cultured in the presence of IL-3, IL-33, GM-CSF, thymic stromal lymphopoietin, or IL-25. The effect of IVIG and F(ab')2 and Fc IVIG fragments was examined based on expression of various surface molecules, phosphorylation of spleen tyrosine kinase, induction of cytokines, and histamine release. Basophil phenotypes were also analyzed from IVIG-treated patients with myopathy. Approaches, such as depletion of anti-IgE reactivity from IVIG, blocking antibodies, or inhibitors, were used to investigate the mechanisms. RESULTS: We report that IVIG directly induces activation of IL-3-primed human basophils, but IL-33 and other cytokines were dispensable for this effect. Activation of basophils by IVIG led to enhanced expression of CD69 and secretion of IL-4, IL-6, and IL-8. IVIG-treated patients with myopathy displayed enhanced expression of CD69 on basophils. The spleen tyrosine kinase pathway is implicated in these functions of IVIG and were mediated by F(ab')2 fragments. Mechanistically, IVIG induced IL-4 in human basophils by interacting with basophil surface-bound IgE but independent of FcγRII, type II Fc receptors, C-type lectin receptors, and sialic acid-binding immunoglobulin-like lectins. CONCLUSION: These results uncovered a pathway of promoting the TH2 response by IVIG through direct interaction of IgG with human basophils.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Basophils/immunology , Immunoglobulin Fc Fragments/pharmacology , Immunoglobulins, Intravenous/pharmacology , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Basophils/drug effects , Cells, Cultured , Disease Models, Animal , Histamine Release , Humans , Immunoglobulin E/metabolism , Interleukin-3/metabolism , Lectins, C-Type/metabolism , Mice , Syk Kinase/metabolism , Up-Regulation
11.
Int J Mol Sci ; 21(2)2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31941161

ABSTRACT

Basophils are rare granulocytes and dysregulated functions of these cells are associated with several atopic and non-atopic allergic diseases of skin, respiratory system and gastrointestinal tract. Both cytokines and immunoglobulin E (IgE) are implicated in mediating the basophil activation and pathogenesis of these disorders. Several reports have shown that healthy individuals, and patients with allergic disorders display IgG autoantibodies to IgE and hence functional characterization of these anti-IgE IgG autoantibodies is critical. In general, anti-IgE IgG autoantibodies modulate basophil activation irrespective of allergen specificity by interacting with constant domains of IgE. Therefore, an ideal solution to prove the functions of such anti-IgE IgG autoantibodies would be to completely eliminate type I high affinity immunoglobulin E receptor (FcɛRI)-bound IgE from the surface of basophils and to demonstrate in an unequivocal manner the role of anti-IgE IgG autoantibodies. In line with previous reports, our data show that FcɛRI on peripheral blood basophils are almost saturated with IgE. Further, acetic acid buffer (pH 4) efficiently removes these FcɛRI-bound IgE. Although immediately following acetic acid-elution of IgE had no repercussion on the viability of basophils, following 24 hours culture with interleukin-3 (IL-3), the viability and yield of basophils were drastically reduced in acid-treated cells and had repercussion on the induction of activation markers. Lactic acid treatment on the other hand though had no adverse effects on the viability of basophils and IL-3-induced activation, it removed only a small fraction of the cell surface bound IgE. Thus, our results show that acid buffers could be used for the elution of FcɛRI-bound IgE on the basophil surface for the biochemical characterization of IgE antibodies or for the immediate use of basophils to determine their sensitivity to undergo degranulation by specific allergens. However, these methods are not utile for the functional assays of basophils that require longer duration of culture and entire removal of surface IgE to validate the role of anti-IgE IgG autoantibodies that interact with FcɛRI-bound IgE irrespective of allergen specificity.


Subject(s)
Acetic Acid , Basophils , Biological Assay , Immunoglobulin E , Receptors, IgE/immunology , Acetic Acid/chemistry , Acetic Acid/pharmacology , Basophils/chemistry , Basophils/immunology , Cell Culture Techniques , Humans , Immunoglobulin E/chemistry , Immunoglobulin E/immunology
12.
J Biol Chem ; 293(13): 4901-4912, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29414772

ABSTRACT

Surfactant protein D (SP-D), a C-type lectin and pattern-recognition soluble factor, plays an important role in immune surveillance to detect and eliminate human pulmonary pathogens. SP-D has been shown to protect against infections with the most ubiquitous airborne fungal pathogen, Aspergillus fumigatus, but the fungal surface component(s) interacting with SP-D is unknown. Here, we show that SP-D binds to melanin pigment on the surface of A. fumigatus dormant spores (conidia). SP-D also exhibited an affinity to two cell-wall polysaccharides of A. fumigatus, galactomannan (GM) and galactosaminogalactan (GAG). The immunolabeling pattern of SP-D was punctate on the conidial surface and was uniform on germinating conidia, in accordance with the localization of melanin, GM, and GAG. We also found that the collagen-like domain of SP-D is involved in its interaction with melanin, whereas its carbohydrate-recognition domain recognized GM and GAG. Unlike un-opsonized conidia, SP-D-opsonized conidia were phagocytosed more efficiently and stimulated the secretion of proinflammatory cytokines by human monocyte-derived macrophages. Furthermore, SP-D-/- mice challenged intranasally with wildtype conidia or melanin ghosts (i.e. hollow melanin spheres) displayed significantly reduced proinflammatory cytokines in the lung compared with wildtype mice. In summary, SP-D binds to melanin present on the dormant A. fumigatus conidial surface, facilitates conidial phagocytosis, and stimulates the host immune response.


Subject(s)
Aspergillus fumigatus/immunology , Fungal Polysaccharides/immunology , Melanins/immunology , Phagocytosis , Pulmonary Aspergillosis/immunology , Pulmonary Surfactant-Associated Protein D/immunology , Spores, Fungal/immunology , Animals , Aspergillus fumigatus/genetics , Fungal Polysaccharides/genetics , Melanins/genetics , Mice , Mice, Knockout , Pulmonary Aspergillosis/genetics , Pulmonary Aspergillosis/pathology , Pulmonary Surfactant-Associated Protein D/genetics , Spores, Fungal/genetics
14.
Int J Mol Sci ; 20(6)2019 Mar 23.
Article in English | MEDLINE | ID: mdl-30909599

ABSTRACT

Intravenous immunoglobulin (IVIg) therapy has diverse anti-inflammatory and immunomodulatory effects and has been employed successfully in autoimmune and inflammatory diseases. The role of IVIg therapy in the modulation of intestinal inflammation and fungal elimination has not been yet investigated. We studied IVIg therapy in a murine model of dextran sulfate sodium (DSS)-induced colitis. Mice received a single oral inoculum of Candida albicans and were exposed to DSS treatment for 2 weeks to induce colitis. All mice received daily IVIg therapy starting on day 1 for 7 days. IVIg therapy not only prevented a loss of body weight caused by the development of colitis but also reduced the severity of intestinal inflammation, as determined by clinical and histological scores. IVIg treatment significantly reduced the Escherichia coli, Enterococcus faecalis, and C. albicans populations in mice. The beneficial effects of IVIg were associated with the suppression of inflammatory cytokine interleukin (IL)-6 and enhancement of IL-10 in the gut. IVIg therapy also led to an increased expression of peroxisome proliferator-activated receptor gamma (PPARγ), while toll-like receptor 4 (TLR-4) expression was reduced. IVIg treatment reduces intestinal inflammation in mice and eliminates C. albicans overgrowth from the gut in association with down-regulation of pro-inflammatory mediators combined with up-regulation of anti-inflammatory cytokines.


Subject(s)
Candida albicans/immunology , Colitis/drug therapy , Colitis/etiology , Homeostasis/drug effects , Homeostasis/immunology , Immunoglobulins, Intravenous/administration & dosage , Intestines/immunology , Intestines/microbiology , Animals , Bacterial Load , Colitis/diagnosis , Colitis/mortality , Colony Count, Microbial , Cytokines/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Immunohistochemistry , Inflammation Mediators , Mice , Severity of Illness Index , Treatment Outcome
16.
Int J Cancer ; 143(11): 3008-3018, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30183073

ABSTRACT

mTOR pathway inhibitors such as rapalogs represent a promising tool to induce functional memory CD8 T cells. In our study, we investigated the combination of temsirolimus with anticancer vaccines. Using various designs of cancer vaccines (short and long peptides or the B subunit of Shiga toxin as an antigen delivery vector) and tumor models (melanoma, lung and colon cancer), we showed that the administration of temsirolimus efficiently decreased tumor growth and enhanced tumor-specific CD8 T-cell responses induced by vaccination. Furthermore, tumor-specific CD8 T cells induced by the bi-therapy (vaccine + temsirolimus) exhibit phenotypic characteristics of central memory (CD127+ CD62L+ ) CD8 T cells compared to vaccination alone. We demonstrated that regulatory CD4 T cells (Tregs ) expansion in vivo limits the efficacy of the bi-therapy by altering the antitumor CD8 T-cell responses. Finally, the use of a small molecule CCR4 antagonist to prevent Tregs induction considerably improved the efficacy of the bi-therapy by enhancing CD8 T cells-mediated antitumor immunity. Taken together, our study highlights the potential interest of combining cancer vaccines with drugs that promote memory CD8 T cells and inhibit Tregs .


Subject(s)
Cancer Vaccines/immunology , Receptors, CCR4/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Immunologic Memory/drug effects , Immunologic Memory/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Sirolimus/analogs & derivatives , Sirolimus/immunology , Sirolimus/pharmacology , Vaccination/methods
17.
Int Immunol ; 29(11): 491-498, 2017 12 30.
Article in English | MEDLINE | ID: mdl-28666326

ABSTRACT

Intravenous immunoglobulin (IVIG) is a pooled preparation of normal IgG obtained from several thousand healthy donors. It is widely used in the immunotherapy of a large number of autoimmune and inflammatory diseases. The mechanisms of action of IVIG are complex and, as discussed in this review, experimental and clinical data provide an indicator that the therapeutic benefit of IVIG therapy is due to several mutually non-exclusive mechanisms affecting soluble mediators as well as cellular components of the immune system. These mechanisms depend on Fc and/or F(ab')2 fragments. A better understanding of the effector functions of IVIG should help in identification of biomarkers of responses to IVIG in autoimmune patients.


Subject(s)
Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Immunoglobulins, Intravenous/immunology , Immunoglobulins, Intravenous/therapeutic use , Inflammation/immunology , Inflammation/therapy , Humans
18.
Cell Microbiol ; 19(6)2017 06.
Article in English | MEDLINE | ID: mdl-28382773

ABSTRACT

CD4+ CD25+ FoxP3+ regulatory T cells (Tregs) are key players for maintaining immune tolerance and for reducing the inflammation-mediated tissue damage following infection. However, Tregs also suppress protective immune responses to pathogens (including virus, bacteria, parasites, and fungi) and vaccines and enhance pathogen persistence by inhibiting the activation and functions of both innate and adaptive immune cells such as dendritic cells, macrophages, and T and B lymphocytes and by promoting immunosuppressive environment. Therefore, equilibrium in the Treg number and function is important to ensure pathogen clearance and protection from infection-associated immunopathologies. Recent advances in understanding of Treg influence on the outcome of infection opened new avenues to target them. Various small molecules, pharmacological inhibitors, monoclonal antibodies that target Tregs provided proof of concept in experimental models. The field also benefits from advances in other subjects, particularly oncology and autoimmunity, where Treg-targeted therapies are exploited in the clinic to a greater extent. The future research should aim at translating this preclinical success to human application.


Subject(s)
Bacterial Infections/immunology , Immune Tolerance/immunology , Mycoses/immunology , Parasitic Diseases/immunology , T-Lymphocytes, Regulatory/immunology , Virus Diseases/immunology , B-Lymphocytes/immunology , Dendritic Cells/immunology , Humans , Macrophages/immunology
19.
J Infect Dis ; 216(10): 1281-1294, 2017 12 05.
Article in English | MEDLINE | ID: mdl-28968869

ABSTRACT

Background: Human dendritic cell (DC) response to α-(1,3)-glucan polysaccharide of Aspergillus fumigatus and ensuing CD4+ T-cell polarization are poorly characterized. Methods: α-(1,3)-Glucan was isolated from A. fumigatus conidia and mycelia cell wall. For the analysis of polarization, DCs and autologous naive CD4+ T cells were cocultured. Phenotype of immune cells was analyzed by flow cytometry, and cytokines by enzyme-linked immunosorbent assay (ELISA). Blocking antibodies were used to dissect the role of Toll-like receptor 2 (TLR2) and programmed death-ligand 1 (PD-L1) in regulating α-(1,3)-glucan-mediated DC activation and T-cell responses. DCs from TLR2-deficient mice were additionally used to consolidate the findings. Results: α-(1,3)-Glucan induced the maturation of DCs and was dependent in part on TLR2. "α-(1,3)-Glucan-educated" DCs stimulated the activation of naive T cells and polarized a subset of these cells into CD4+CD25+FoxP3+ regulatory T cells (Tregs). Mechanistically, Treg stimulation by α-(1,3)-glucan was dependent on the PD-L1 pathway that negatively regulated interferon-gamma (IFN-γ) secretion. Short α-(1,3)-oligosaccharides lacked the capacity to induce maturation of DCs but significantly blocked α-(1,3)-glucan-induced Treg polarization. Conclusions: PD-L1 dictates the balance between Treg and IFN-γ responses induced by α-(1,3)-glucan. Our data provide a rationale for the exploitation of immunotherapeutic approaches that target PD-1-PD-L1 to enhance protective immune responses to A. fumigatus infections.


Subject(s)
Aspergillus fumigatus/immunology , B7-H1 Antigen/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Gene Expression , Glucans/immunology , Lymphocyte Activation/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Biomarkers , Cytokines/metabolism , Humans , Interferon-gamma/metabolism , Mice , Mice, Knockout , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Regulatory/metabolism
20.
J Neuroinflammation ; 14(1): 58, 2017 03 20.
Article in English | MEDLINE | ID: mdl-28320438

ABSTRACT

BACKGROUND: Intravenous immunoglobulin (IVIG) is a polyspecific pooled immunoglobulin G preparation and one of the commonly used therapeutics for autoimmune diseases including those of neurological origin. A recent report in murine model proposed that IVIG expands regulatory T (Treg) cells via induction of interleukin 33 (IL-33). However, translational insight on these observations is lacking. METHODS: Ten newly diagnosed Guillain-Barré syndrome (GBS) patients were treated with IVIG at the rate of 0.4 g/kg for three to five consecutive days. Clinical evaluation for muscular weakness was performed by Medical Research Council (MRC) and modified Rankin scoring (MRS) system. Heparinized blood samples were collected before and 1, 2, and 4-5 weeks post-IVIG therapy. Peripheral blood mononuclear cells were stained for surface CD4 and intracellular Foxp3, IFN-γ, and tumor necrosis factor alpha (TNF-α) and were analyzed by flow cytometry. IL-33 and prostaglandin E2 in the plasma were measured by ELISA. RESULTS: The fold changes in plasma IL-33 at week 1 showed no correlation with the MRC and MRS scores at weeks 1, 2, and ≥4 post-IVIG therapy. Clinical recovery following IVIG therapy appears to be associated with Treg cell response. Contrary to murine study, there was no association between the fold changes in IL-33 at week 1 and Treg cell frequency at weeks 1, 2, and ≥4 post-IVIG therapy. Treg cell-mediated clinical response to IVIG therapy in GBS patients was associated with reciprocal regulation of effector T cells-expressing TNF-α. CONCLUSION: Treg cell expansion by IVIG in patients with autoimmune diseases lack correlation with IL-33. Treg cell frequency, but not plasma IL-33 levels, represents potential immunological biomarker to predict clinical response to IVIG therapy.


Subject(s)
Guillain-Barre Syndrome , Immunoglobulins, Intravenous/therapeutic use , Immunologic Factors/therapeutic use , Interleukin-33/blood , T-Lymphocytes, Regulatory/pathology , Aged , Aged, 80 and over , Dinoprostone/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Follow-Up Studies , Guillain-Barre Syndrome/blood , Guillain-Barre Syndrome/drug therapy , Guillain-Barre Syndrome/pathology , Humans , Male , Middle Aged , Outcome Assessment, Health Care , Predictive Value of Tests , Severity of Illness Index , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL