Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
medRxiv ; 2022 Dec 04.
Article in English | MEDLINE | ID: mdl-36482977

ABSTRACT

Waning immunity to vaccination represents a major challenge in vaccinology. Whether booster vaccination improves the durability of immune responses is unknown. Here we show, using a cohort of 55 adult vaccinees who received the BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine against SARS-CoV-2, that a booster (i.e., 3 rd immunization) dose at 6 - 10 months increased the half-life of serum neutralizing antibody (nAb) titers to 76 days from 56 - 66 days estimated after the primary two-dose vaccination series. A second booster dose (i.e., 4 th immunization) more than a year after the primary vaccination increased the half-life further to 88 days. However, despite this modestly improved durability in nAb responses against the Wuhan strain, there was a loss in neutralization capacity against Omicron subvariants, especially the recently emerged variants, BA.2.75.2 and BQ.1.1 (35 and 50-fold drop in titers respectively, relative to the ancestral (WA.1) strain. While only 55 â€" 65% of participants demonstrated a detectable nAb titer against the newer variants after the booster (3 rd dose), the response declined to below the detection limit in almost all individuals by 6 months. Notably, even against BA.1 and BA.5, the titers declined rapidly in a third of the vaccinees and were below the detection limit at 6 months. In contrast, booster vaccination induced antigen-specific memory B and T cells that persisted for at least 6 months. Collectively, our data show that the durability of immune responses improves following subsequent booster immunizations; however, the emergence of immune evasive variants reduces the effectiveness of booster doses in preventing infection.

2.
bioRxiv ; 2021 May 10.
Article in English | MEDLINE | ID: mdl-34013272

ABSTRACT

SARS-CoV-2 has caused a devastating global pandemic. The recent emergence of SARS-CoV-2 variants that are less sensitive to neutralization by convalescent sera or vaccine-induced neutralizing antibody responses has raised concerns. A second wave of SARS-CoV-2 infections in India is leading to the expansion of SARS-CoV-2 variants. The B.1.617.1 variant has rapidly spread throughout India and to several countries throughout the world. In this study, using a live virus assay, we describe the neutralizing antibody response to the B.1.617.1 variant in serum from infected and vaccinated individuals. We found that the B.1.617.1 variant is 6.8-fold more resistant to neutralization by sera from COVID-19 convalescent and Moderna and Pfizer vaccinated individuals. Despite this, a majority of the sera from convalescent individuals and all sera from vaccinated individuals were still able to neutralize the B.1.617.1 variant. This suggests that protective immunity by the mRNA vaccines tested here are likely retained against the B.1.617.1 variant. As the B.1.617.1 variant continues to evolve, it will be important to monitor how additional mutations within the spike impact antibody resistance, viral transmission and vaccine efficacy.

SELECTION OF CITATIONS
SEARCH DETAIL