Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Theor Biol ; 467: 150-163, 2019 04 21.
Article in English | MEDLINE | ID: mdl-30707974

ABSTRACT

Microbial communities that implement mutual cross-feeding are commonly observed in nature and with synthetic constructs in laboratory experiments. A mathematical model of competition in a chemostat is developed to investigate the role that resource allocation and transport of metabolites play in cooperation. The model contains four cell types that differ by whether they produce two, one, or none of two essential metabolites. Producing cell types may export these resources into the environment, and those that do not produce both metabolites must import the missing resource. The contribution to the emergence of a collaborative consortium of single resource producers from the transport rate of these metabolites and the type of transport used by the cell (active vs. passive) is studied. Multiple instances of bi-stability and tri-stability are observed, and the effect of the initial concentration of a non-cooperative cheater cell type on the final outcome of the competition is examined. When the cost of producing metabolites is introduced into the model, significant changes to the outcome of the competition are observed, including coexistence of multiple cell types.


Subject(s)
Microbial Interactions/physiology , Microbiota , Resource Allocation , Biological Transport , Competitive Behavior , Models, Theoretical
2.
Biochem Soc Trans ; 46(2): 269-284, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29472366

ABSTRACT

Resource scarcity is a common stress in nature and has a major impact on microbial physiology. This review highlights microbial acclimations to resource scarcity, focusing on resource investment strategies for chemoheterotrophs from the molecular level to the pathway level. Competitive resource allocation strategies often lead to a phenotype known as overflow metabolism; the resulting overflow byproducts can stabilize cooperative interactions in microbial communities and can lead to cross-feeding consortia. These consortia can exhibit emergent properties such as enhanced resource usage and biomass productivity. The literature distilled here draws parallels between in silico and laboratory studies and ties them together with ecological theories to better understand microbial stress responses and mutualistic consortia functioning.


Subject(s)
Metabolic Networks and Pathways , Microbial Consortia/physiology , Adaptation, Physiological , Biofilms , Biomass , Bioreactors , Computer Simulation , Models, Biological
3.
Heliyon ; 10(3): e24646, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38314264

ABSTRACT

The demand for protein is increasing with an expanding world population and is influencing the rapid growth of fish and animal agriculture. These sectors are becoming a significant source of water pollution and need to develop environmentally sustainable techniques that are cost-effective, ideally with potential for downstream value-added production. This study investigated the potential of one of the fastest-growing cyanobacterial species, Synechococcus elongatus UTEX 2973, for bioremediation of mixed wastewater (combination of sturgeon and swine wastewater). Three different mixing ratios (25:75, 50:50, and 75:25 sturgeon:swine) were compared to find a suitable combination for the growth of S. elongatus as well as carbohydrate accumulation in biomass. The final biomass production was found to be 0.65 ± 0.03 g Dry cell Weight (DW)/L for 75%-25 %, 0.90 ± 0.004 g DW/L for 50%-50 %, and 0.71 ± 0.04 g DW/L for 25%-75 % sturgeon-swine wastewater combination. Cyanobacteria cultivated in 50%-50 % sturgeon-swine wastewater also accumulated 70 % total carbohydrate of DW, whereas 75%-25 % sturgeon-swine and 25%-75 % sturgeon-swine accumulated 53 % and 45 %, respectively. Subsequently, the S. elongatus cells were grown in a separate batch of 50%-50 % sturgeon-swine wastewater and compared with cells grown in BG11 synthetic growth media. Cultivation in BG11 resulted in higher biomass production but lower carbohydrate accumulation than 50%-50 % mixed wastewater. Final biomass production was 0.85 ± 0.08 g DW/L for BG11 and 0.65 ± 0.04 g DW/L for 50%-50 % sturgeon-swine wastewater. Total carbohydrate accumulated was 75 % and 64 % of DW for 50%-50 % sturgeon-swine mixed wastewater and BG11 growth media, respectively, where glycogen was the main carbohydrate component (90 %). The nutrient removal efficiencies of S. elongatus were 67.15 % for orthophosphate, 93.39 % for nitrate-nitrite, and 97.98 % for ammonia. This study suggested that S. elongatus is a promising candidate for enabling simultaneous bioremediation of mixed wastewater and the production of value-added biochemicals.

4.
bioRxiv ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39229203

ABSTRACT

A metabolic theory is presented for predicting maximum growth rate, overflow metabolism, respiration efficiency, and maintenance energy flux based on the intersection of cell geometry, membrane protein crowding, and metabolism. The importance of cytosolic macromolecular crowding on phenotype has been established in the literature but the importance of surface area has been largely overlooked due to incomplete knowledge of membrane properties. We demonstrate that the capacity of the membrane to host proteins increases with growth rate offsetting decreases in surface area-to-volume ratios (SA:V). This increase in membrane protein is hypothesized to be essential to competitive Escherichia coli phenotypes. The presented membrane-centric theory uses biophysical properties and metabolic systems analysis to successfully predict the phenotypes of E. coli K-12 strains, MG1655 and NCM3722, which are genetically similar but have SA:V ratios that differ up to 30%, maximum growth rates on glucose media that differ by 40%, and overflow phenotypes that start at growth rates that differ by 80%. These analyses did not consider cytosolic macromolecular crowding, highlighting the distinct properties of the presented theory. Cell geometry and membrane protein crowding are significant biophysical constraints on phenotype and provide a theoretical framework for improved understanding and control of cell biology.

5.
Front Plant Sci ; 13: 910377, 2022.
Article in English | MEDLINE | ID: mdl-35795346

ABSTRACT

With a growing world population and increasing frequency of climate disturbance events, we are in dire need of methods to improve plant productivity, resilience, and resistance to both abiotic and biotic stressors, both for agriculture and conservation efforts. Microorganisms play an essential role in supporting plant growth, environmental response, and susceptibility to disease. However, understanding the specific mechanisms by which microbes interact with each other and with plants to influence plant phenotypes is a major challenge due to the complexity of natural communities, simultaneous competition and cooperation effects, signalling interactions, and environmental impacts. Synthetic communities are a major asset in reducing the complexity of these systems by simplifying to dominant components and isolating specific variables for controlled experiments, yet there still remains a large gap in our understanding of plant microbiome interactions. This perspectives article presents a brief review discussing ways in which metabolic modelling can be used in combination with synthetic communities to continue progress toward understanding the complexity of plant-microbe-environment interactions. We highlight the utility of metabolic models as applied to a community setting, identify different applications for both flux balance and elementary flux mode simulation approaches, emphasize the importance of ecological theory in guiding data interpretation, and provide ideas for how the integration of metabolic modelling techniques with big data may bridge the gap between simplified synthetic communities and the complexity of natural plant-microbe systems.

6.
mSystems ; 7(4): e0005122, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35762764

ABSTRACT

Fitness benefits from division of labor are well documented in microbial consortia, but the dependency of the benefits on environmental context is poorly understood. Two synthetic Escherichia coli consortia were built to test the relationships between exchanged organic acid, local environment, and opportunity costs of different metabolic strategies. Opportunity costs quantify benefits not realized due to selecting one phenotype over another. The consortia catabolized glucose and exchanged either acetic or lactic acid to create producer-consumer food webs. The organic acids had different inhibitory properties and different opportunity costs associated with their positions in central metabolism. The exchanged metabolites modulated different consortial dynamics. The acetic acid-exchanging (AAE) consortium had a "push" interaction motif where acetic acid was secreted faster by the producer than the consumer imported it, while the lactic acid-exchanging (LAE) consortium had a "pull" interaction motif where the consumer imported lactic acid at a comparable rate to its production. The LAE consortium outperformed wild-type (WT) batch cultures under the environmental context of weakly buffered conditions, achieving a 55% increase in biomass titer, a 51% increase in biomass per proton yield, an 86% increase in substrate conversion, and the complete elimination of by-product accumulation all relative to the WT. However, the LAE consortium had the trade-off of a 42% lower specific growth rate. The AAE consortium did not outperform the WT in any considered performance metric. Performance advantages of the LAE consortium were sensitive to environment; increasing the medium buffering capacity negated the performance advantages compared to WT. IMPORTANCE Most naturally occurring microorganisms persist in consortia where metabolic interactions are common and often essential to ecosystem function. This study uses synthetic ecology to test how different cellular interaction motifs influence performance properties of consortia. Environmental context ultimately controlled the division of labor performance as shifts from weakly buffered to highly buffered conditions negated the benefits of the strategy. Understanding the limits of division of labor advances our understanding of natural community functioning, which is central to nutrient cycling and provides design rules for assembling consortia used in applied bioprocessing.


Subject(s)
Ecosystem , Microbial Consortia , Biomass , Lactic Acid/metabolism , Acetates
7.
Heliyon ; 7(9): e08065, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34622069

ABSTRACT

There is a significant interest in novel waste management solutions to treat wastewater from swine operations. Anaerobic digestion is a rising and prominent solution, but this technology still generates highly concentrated effluent that requires further remediation. Therefore, the aim of this study was to explore the feasibility of cultivating the cyanobacterium Spirulina platensis in swine effluent for future applications in biological waste treatment and value-added fermentation. To accomplish this goal, growth of S. platensis was characterized in varying proportions of ideal, synthetic Zarrouk medium and anaerobically digested pig effluent (ADPE) to obtain growth rate models. Results yielded a positive correlation between S. platensis growth rate and Zarrouk medium proportion, with the highest growth rate in 100% Zarrouk media but comparable growth in the 50/50% Zarrouk/ADPE mixture. This study demonstrates the potential for S. platensis to further improve the treatment efficacy of anaerobic digestion systems, and the exploratory analysis also highlights that further testing is required to investigate possible carbon availability, chemical inhibition, and overall nutrient reduction in ADPE. This research contributes important data toward the feasibility of producing value-added cyanobacterial biomass while simultaneously consuming excess nutrients to aid in agricultural wastewater management efforts and generate cost-effective products in a more sustainable manner.

8.
Child Obes ; 12(6): 418-425, 2016 12.
Article in English | MEDLINE | ID: mdl-27662419

ABSTRACT

BACKGROUND: Maternal depressive symptoms and perceptions of child difficulty are associated with negative effects on general development and cognitive functioning in children. The study examined associations between maternal depressive symptoms, perceptions of child difficulty, and maternal feeding behaviors in a population at elevated risk for childhood obesity. METHODS: Participants were 138 low-income black and Hispanic mothers and their children (ages 3-5) participating in an observational study of mealtimes among Head Start families. Three dinnertime observations were conducted over 2 weeks on each family and audio/videotaped for coding. Coding included eating influence attempts and other food- and nonfood-related interactions exhibited by the mother during dinner. Mothers completed questionnaires on depressive symptoms and perceptions of child difficulty. Linear regressions were conducted, examining associations between maternal depressive symptoms, perceptions of child difficulty, and coded parent feeding behaviors. RESULTS: Mothers reporting higher levels of depressive symptoms used more verbal pressure to get their child to eat during meals, were more likely to discourage child independence, and less likely to enforce table manners. Mothers reporting higher perceptions of child difficulty were less likely to have nonfood-related discussions during meals and to try to get the child to eat a different food. CONCLUSIONS: This study is one of the first to investigate associations between maternal depression, perceptions of child difficulty, and mother's feeding behaviors during meals using observational methodology. These results may help researchers identify specific parental characteristics and feeding practices on which to intervene when developing tailored intervention programs for reducing childhood obesity.


Subject(s)
Black or African American , Depression/psychology , Feeding Behavior/psychology , Hispanic or Latino , Mothers/psychology , Poverty/psychology , Adult , Child, Preschool , Cross-Sectional Studies , Depression/epidemiology , Female , Humans , Male , Maternal Behavior , Mother-Child Relations , Pediatric Obesity/economics , Pediatric Obesity/epidemiology , Pediatric Obesity/prevention & control , Pediatric Obesity/psychology , Perception , Poverty/statistics & numerical data , United States/epidemiology , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL