Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Mov Disord ; 39(1): 141-151, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37964426

ABSTRACT

BACKGROUND: The ITPR1 gene encodes the inositol 1,4,5-trisphosphate (IP3 ) receptor type 1 (IP3 R1), a critical player in cerebellar intracellular calcium signaling. Pathogenic missense variants in ITPR1 cause congenital spinocerebellar ataxia type 29 (SCA29), Gillespie syndrome (GLSP), and severe pontine/cerebellar hypoplasia. The pathophysiological basis of the different phenotypes is poorly understood. OBJECTIVES: We aimed to identify novel SCA29 and GLSP cases to define core phenotypes, describe the spectrum of missense variation across ITPR1, standardize the ITPR1 variant nomenclature, and investigate disease progression in relation to cerebellar atrophy. METHODS: Cases were identified using next-generation sequencing through the Deciphering Developmental Disorders study, the 100,000 Genomes project, and clinical collaborations. ITPR1 alternative splicing in the human cerebellum was investigated by quantitative polymerase chain reaction. RESULTS: We report the largest, multinational case series of 46 patients with 28 unique ITPR1 missense variants. Variants clustered in functional domains of the protein, especially in the N-terminal IP3 -binding domain, the carbonic anhydrase 8 (CA8)-binding region, and the C-terminal transmembrane channel domain. Variants outside these domains were of questionable clinical significance. Standardized transcript annotation, based on our ITPR1 transcript expression data, greatly facilitated analysis. Genotype-phenotype associations were highly variable. Importantly, while cerebellar atrophy was common, cerebellar volume loss did not correlate with symptom progression. CONCLUSIONS: This dataset represents the largest cohort of patients with ITPR1 missense variants, expanding the clinical spectrum of SCA29 and GLSP. Standardized transcript annotation is essential for future reporting. Our findings will aid in diagnostic interpretation in the clinic and guide selection of variants for preclinical studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Aniridia , Carbonic Anhydrases , Cerebellar Ataxia , Intellectual Disability , Movement Disorders , Spinocerebellar Degenerations , Humans , Cerebellar Ataxia/genetics , Mutation, Missense/genetics , Movement Disorders/complications , Atrophy , Inositol 1,4,5-Trisphosphate Receptors/chemistry , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , Intracellular Signaling Peptides and Proteins/genetics
2.
PLoS Genet ; 16(4): e1008630, 2020 04.
Article in English | MEDLINE | ID: mdl-32298260

ABSTRACT

The cerebellum is a pivotal centre for the integration and processing of motor and sensory information. Its extended development into the postnatal period makes this structure vulnerable to a variety of pathologies, including neoplasia. These properties have prompted intensive investigations that reveal not only developmental mechanisms in common with other regions of the neuraxis but also unique strategies to generate neuronal diversity. How the phenotypically distinct cell types of the cerebellum emerge rests on understanding how gene expression differences arise in a spatially and temporally coordinated manner from initially homogeneous cell populations. Increasingly sophisticated fate mapping approaches, culminating in genetic-induced fate mapping, have furthered the understanding of lineage relationships between early- versus later-born cells. Tracing the developmental histories of cells in this way coupled with analysis of gene expression patterns has provided insight into the developmental genetic programmes that instruct cellular heterogeneity. A limitation to date has been the bulk analysis of cells, which blurs lineage relationships and obscures gene expression differences between cells that underpin the cellular taxonomy of the cerebellum. This review emphasises recent discoveries, focusing mainly on single-cell sequencing in mouse and parallel human studies that elucidate neural progenitor developmental trajectories with unprecedented resolution. Complementary functional studies of neural repair after cerebellar injury are challenging assumptions about the stability of postnatal cellular identities. The result is a wealth of new information about the developmental mechanisms that generate cerebellar neural diversity, with implications for human evolution.


Subject(s)
Cerebellum/cytology , Cerebellum/embryology , Morphogenesis , Single-Cell Analysis , Animals , Cell Differentiation , Cell Lineage , Cerebellum/growth & development , Humans , Neurons/classification , Neurons/cytology
3.
J Biol Chem ; 295(36): 12716-12726, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32675284

ABSTRACT

Contactin-associated protein-like 2 (Caspr2) is a neurexin-like protein that has been associated with numerous neurological conditions. However, the specific functional roles that Caspr2 plays in the central nervous system and their underlying mechanisms remain incompletely understood. Here, we report on a functional role for Caspr2 in the developing cerebellum. Using a combination of confocal microscopy, biochemical analyses, and behavioral testing, we show that loss of Caspr2 in the Cntnap2-/- knockout mouse results in impaired Purkinje cell dendritic development, altered intracellular signaling, and motor coordination deficits. We also find that Caspr2 is highly enriched at synaptic specializations in the cerebellum. Using a proteomics approach, we identify type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) as a specific synaptic interaction partner of the Caspr2 extracellular domain in the molecular layer of the developing cerebellum. The interaction of the Caspr2 extracellular domain with IP3R1 inhibits IP3R1-mediated changes in cellular morphology. Together, our work defines a mechanism by which Caspr2 controls the development and function of the cerebellum and advances our understanding of how Caspr2 dysfunction might lead to specific brain disorders.


Subject(s)
Inositol 1,4,5-Trisphosphate Receptors/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Purkinje Cells/metabolism , Animals , HEK293 Cells , Humans , Inositol 1,4,5-Trisphosphate Receptors/genetics , Membrane Proteins/genetics , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Protein Domains , Purkinje Cells/cytology
4.
Am J Hum Genet ; 101(3): 451-458, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28886343

ABSTRACT

The metabotropic glutamate receptor 1 (mGluR1) is abundantly expressed in the mammalian central nervous system, where it regulates intracellular calcium homeostasis in response to excitatory signaling. Here, we describe heterozygous dominant mutations in GRM1, which encodes mGluR1, that are associated with distinct disease phenotypes: gain-of-function missense mutations, linked in two different families to adult-onset cerebellar ataxia, and a de novo truncation mutation resulting in a dominant-negative effect that is associated with juvenile-onset ataxia and intellectual disability. Crucially, the gain-of-function mutations could be pharmacologically modulated in vitro using an existing FDA-approved drug, Nitazoxanide, suggesting a possible avenue for treatment, which is currently unavailable for ataxias.


Subject(s)
Gene Expression Regulation/drug effects , Mutation, Missense/genetics , Receptors, Metabotropic Glutamate/genetics , Spinocerebellar Ataxias/genetics , Thiazoles/pharmacology , Antiparasitic Agents/pharmacology , Female , HEK293 Cells , Humans , Male , Nitro Compounds , Pedigree , Signal Transduction/drug effects , Spinocerebellar Ataxias/pathology
5.
Mov Disord ; 33(7): 1119-1129, 2018 07.
Article in English | MEDLINE | ID: mdl-29603387

ABSTRACT

BACKGROUND: Spinocerebellar ataxia type 14 is a rare form of autosomal dominant cerebellar ataxia caused by mutations in protein kinase Cγ gene. Clinically, it presents with a slowly progressive, mainly pure cerebellar ataxia. METHODS: Using next generation sequencing, we screened 194 families with autosomal dominant cerebellar ataxia and normal polyglutamine repeats. In-depth phenotyping was performed using validated clinical rating scales neuroimaging and electrophysiological investigations. RESULTS: We identified 25 individuals from 13 families carrying pathogenic mutations in protein kinase Cγ gene. A total of 10 unique protein kinase Cγ gene mutations have been confirmed of which 5 are novel and 5 were previously described. Our data suggest that the age at onset is highly variable; disease course is slowly progressive and rarely associated with severe disability. However, one third of patients presented with a complex ataxia comprising severe focal and/or task-induced dystonia, peripheral neuropathy, parkinsonism, myoclonus, and pyramidal syndrome. The most complex phenotype is related to a missense mutation in the catalytic domain in exon 11. CONCLUSION: We present one of the largest genetically confirmed spinocerebellar ataxia type 14 cohorts contributing novel variants and clinical characterisation. We show that although protein kinase Cγ gene mutations present mainly as slowly progressive pure ataxia, more than a third of cases had a complex phenotype. Overall, our case series extends the phenotype and suggests that protein kinase Cγ gene mutations should be considered in patients with slowly progressive autosomal dominant cerebellar ataxia, particularly when myoclonus, dystonia, or mild cognitive impairment are present in the absence of polyglutamine expansion. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Dystonia/etiology , Mutation, Missense/genetics , Peptides/genetics , Protein Kinase C/genetics , Spinocerebellar Ataxias/complications , Spinocerebellar Ataxias/genetics , Adult , Age of Onset , Aged , Child, Preschool , Cohort Studies , Cysteine/genetics , Disease Progression , Family Health , Female , Genetic Association Studies , Genetic Testing , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Phenotype , Spinocerebellar Ataxias/diagnostic imaging , Young Adult
6.
Cerebellum ; 17(4): 419-427, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29397531

ABSTRACT

The establishment of a reliable model for the study of Purkinje cells in vitro is of particular importance, given their central role in cerebellar function and pathology. Recent advances in induced pluripotent stem cell (iPSC) technology offer the opportunity to generate multiple neuronal subtypes for study in vitro. However, to date, only a handful of studies have generated Purkinje cells from human pluripotent stem cells, with most of these protocols proving challenging to reproduce. Here, we describe a simplified method for the reproducible generation of Purkinje cells from human iPSCs. After 21 days of treatment with factors selected to mimic the self-inductive properties of the isthmic organiser-insulin, fibroblast growth factor 2 (FGF2), and the transforming growth factor ß (TGFß)-receptor blocker SB431542-hiPSCs could be induced to form En1-positive cerebellar progenitors at efficiencies of up to 90%. By day 35 of differentiation, subpopulations of cells representative of the two cerebellar germinal zones, the rhombic lip (Atoh1-positive) and ventricular zone (Ptf1a-positive), could be identified, with the latter giving rise to cells positive for Purkinje cell progenitor-specific markers, including Lhx5, Kirrel2, Olig2 and Skor2. Further maturation was observed following dissociation and co-culture of these cerebellar progenitors with mouse cerebellar cells, with 10% of human cells staining positive for the Purkinje cell marker calbindin by day 70 of differentiation. This protocol, which incorporates modifications designed to enhance cell survival and maturation and improve the ease of handling, should serve to make existing models more accessible, in order to enable future advances in the field.


Subject(s)
Cell Culture Techniques/methods , Induced Pluripotent Stem Cells/physiology , Neurogenesis , Purkinje Cells/physiology , Aged , Animals , Coculture Techniques , Female , Humans , Induced Pluripotent Stem Cells/cytology , Male , Mice, Inbred C57BL , Middle Aged , Neurogenesis/physiology , Purkinje Cells/cytology , Tissue Scaffolds
7.
Proc Natl Acad Sci U S A ; 112(34): 10738-43, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26261299

ABSTRACT

G protein-coupled receptors (GPCRs) are cell surface receptors that detect a wide range of extracellular messengers and convey this information to the inside of cells. Extracellular calcium-sensing receptor (CaSR) and ovarian cancer gene receptor 1 (OGR1) are two GPCRs that sense extracellular Ca(2+) and H(+), respectively. These two ions are key components of the interstitial fluid, and their concentrations change in an activity-dependent manner. Importantly, the interstitial fluid forms part of the microenvironment that influences cell function in health and disease; however, the exact mechanisms through which changes in the microenvironment influence cell function remain largely unknown. We show that CaSR and OGR1 reciprocally inhibit signaling through each other in central neurons, and that this is lost in their transformed counterparts. Furthermore, strong intracellular acidification impairs CaSR function, but potentiates OGR1 function. Thus, CaSR and OGR1 activities can be regulated in a seesaw manner, whereby conditions promoting signaling through one receptor simultaneously inhibit signaling through the other receptor, potentiating the difference in their relative signaling activity. Our results provide insight into how small but consistent changes in the ionic microenvironment of cells can significantly alter the balance between two signaling pathways, which may contribute to disease progression.


Subject(s)
Calcium/metabolism , Extracellular Fluid/chemistry , Hydrogen/metabolism , Neurons/metabolism , Receptors, G-Protein-Coupled/physiology , Animals , Cerebellar Cortex/cytology , Hydrogen-Ion Concentration , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA Interference , RNA, Small Interfering/pharmacology , Receptors, Calcium-Sensing , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2Y1/metabolism
8.
J Physiol ; 595(16): 5525-5544, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28627017

ABSTRACT

KEY POINTS: The proton sensing ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) promotes expression of the canonical transient receptor potential channel subunit TRPC4 in normal and transformed cerebellar granule precursor (DAOY) cells. OGR1 and TRPC4 are prominently expressed in healthy cerebellar tissue throughout postnatal development and in primary cerebellar medulloblastoma tissues. Activation of TRPC4-containing channels in DAOY cells, but not non-transformed granule precursor cells, results in prominent increases in [Ca2+ ]i and promotes cell motility in wound healing and transwell migration assays. Medulloblastoma cells not arising from granule precursor cells show neither prominent rises in [Ca2+ ]i nor enhanced motility in response to TRPC4 activation unless they overexpressTRPC4. Our results suggest that OGR1 enhances expression of TRPC4-containing channels that contribute to enhanced invasion and metastasis of granule precursor-derived human medulloblastoma. ABSTRACT: Aberrant intracellular Ca2+ signalling contributes to the formation and progression of a range of distinct pathologies including cancers. Rises in intracellular Ca2+ concentration occur in response to Ca2+ influx through plasma membrane channels and Ca2+ release from intracellular Ca2+ stores, which can be mobilized in response to activation of cell surface receptors. Ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) is a proton-sensing Gq -coupled receptor that is most highly expressed in cerebellum. Medulloblastoma (MB) is the most common paediatric brain tumour that arises from cerebellar precursor cells. We found that nine distinct human MB samples all expressed OGR1. In both normal granule cells and the transformed human cerebellar granule cell line DAOY, OGR1 promoted expression of the proton-potentiated member of the canonical transient receptor potential (TRPC) channel family, TRPC4. Consistent with a role for TRPC4 in MB, we found that all MB samples also expressed TRPC4. In DAOY cells, activation of TRPC4-containing channels resulted in large Ca2+ influx and enhanced migration, while in normal cerebellar granule (precursor) cells and MB cells not derived from granule precursors, only small levels of Ca2+ influx and no enhanced migration were observed. Our results suggest that OGR1-dependent increases in TRPC4 expression may favour formation of highly Ca2+ -permeable TRPC4-containing channels that promote transformed granule cell migration. Increased motility of cancer cells is a prerequisite for cancer invasion and metastasis, and our findings may point towards a key role for TRPC4 in progression of certain types of MB.


Subject(s)
Calcium/metabolism , Medulloblastoma/metabolism , Receptors, G-Protein-Coupled/metabolism , TRPC Cation Channels/metabolism , Animals , Calcium Signaling , Cell Line, Tumor , Cell Movement , Cells, Cultured , Cerebellum/cytology , Humans , Mice, Inbred C57BL , Neurons/metabolism , Permeability , TRPC Cation Channels/genetics
9.
Hum Mol Genet ; 24(14): 4114-25, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25908616

ABSTRACT

The Moonwalker (Mwk) mouse is a model of dominantly inherited cerebellar ataxia caused by a gain-of-function mutation in the transient receptor potential (TRP) channel TRPC3. Here, we report impairments in dendritic growth and synapse formation early on during Purkinje cell development in the Mwk cerebellum that are accompanied by alterations in calcium signaling. To elucidate the molecular effector pathways that regulate Purkinje cell dendritic arborization downstream of mutant TRPC3, we employed transcriptomic analysis of developing Purkinje cells isolated by laser-capture microdissection. We identified significant gene and protein expression changes in molecules involved in lipid metabolism. Consistently, lipid homeostasis in the Mwk cerebellum was found to be disturbed, and treatment of organotypic cerebellar slices with ceramide significantly improved dendritic outgrowth of Mwk Purkinje cells. These findings provide the first mechanistic insights into the TRPC3-dependent mechanisms, by which activated calcium signaling is coupled to lipid metabolism and the regulation of Purkinje cell development in the Mwk cerebellum.


Subject(s)
Calcium Signaling , Cerebellar Ataxia/genetics , Cerebellum/physiology , Lipid Metabolism , TRPC Cation Channels/metabolism , Animals , Cerebellar Ataxia/pathology , Cerebellum/metabolism , Dendrites/metabolism , Gene Expression Regulation , Mice , Purkinje Cells/metabolism , TRPC Cation Channels/genetics , Transcriptome
10.
Cerebellum ; 16(5-6): 877-879, 2017 12.
Article in English | MEDLINE | ID: mdl-25772041

ABSTRACT

The dominantly inherited cerebellar ataxias are a clinically and genetically heterogeneous group of neurodegenerative disorders. Studies using mouse models as well as recent genetic and transcriptomic human findings point to an important role for TRPC3 signaling in cerebellar ataxia.


Subject(s)
Cerebellar Ataxia/metabolism , TRPC Cation Channels/metabolism , Animals , Cerebellar Ataxia/genetics , Humans , TRPC Cation Channels/genetics
11.
Cerebellum ; 15(6): 789-828, 2016 12.
Article in English | MEDLINE | ID: mdl-26439486

ABSTRACT

The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.


Subject(s)
Cerebellum/embryology , Cerebellum/growth & development , Animals , Cerebellum/cytology , Cerebellum/physiopathology , Consensus , Humans , Neurogenesis/physiology , Neurons/cytology , Neurons/physiology
12.
Biochemistry ; 54(26): 4033-41, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26112884

ABSTRACT

A gain-of-function mutation (T635A) in the transient receptor potential (TRP) channel TRPC3 results in abnormal channel gating and causes cerebellar ataxia in the dominant Moonwalker (Mwk) mouse mutant. However, the underlying molecular and structural mechanisms are unclear. Here, we used a combined approach of computational modeling and functional characterization of proposed TRPC3 mutants. Our findings support a mechanism by which the hydrogen bonding capability of threonine 635 plays a significant role in maintaining a stable, closed state channel. This capability is lost in the Mwk mutant, suggesting a structural basis for the disease-causing phenotype in the Mwk mouse.


Subject(s)
Cerebellar Ataxia/genetics , Point Mutation , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Amino Acid Sequence , Animals , Calcium/metabolism , Cell Line , Cerebellar Ataxia/metabolism , Cerebellar Ataxia/pathology , Hydrogen Bonding , Mice , Models, Molecular , Molecular Sequence Data , Neurons/metabolism , Neurons/pathology , Phenotype , Phosphorylation , Sequence Alignment , TRPC Cation Channels/analysis
15.
J Neurosci ; 33(50): 19689-94, 2013 Dec 11.
Article in English | MEDLINE | ID: mdl-24336732

ABSTRACT

Transient receptor potential "canonical" cation channels (TRPC) are involved in many cellular activities, including neuronal synaptic transmission. These channels couple lipid metabolism, calcium homeostasis, and electrophysiological properties as they are calcium permeable and activated through the phospholipase C pathway and by diacylglycerol. The TRPC3 subunit is abundantly expressed in Purkinje cells (PCs), where it mediates slow metabotropic glutamate receptor-mediated synaptic responses. Recently, it has been shown that heterozygous moonwalker mice, which are a model of cerebellar ataxia, carry a dominant gain-of-function mutation (T635A) in the TRPC3 gene. This mutation leads to PC loss and dysmorphism, which have been suggested to cause the ataxia. However, the ataxic phenotype is present from a very early stage (before weaning), whereas PC loss does not appear until several months of age. Here we show that another class of cerebellar neurons, the type II unipolar brush cells (UBCs), express functional TRPC3 channels; intriguingly, these cells are ablated in moonwalker mice by 1 month of age. Additionally, we show that in moonwalker mice, intrinsic excitability of PCs is altered as early as 3 weeks after birth. We suggest that this altered excitability and the TRPC3-mediated loss of type II UBCs may both contribute to the ataxic phenotype of these mice and that different calcium handling in PCs and type II UBCs may account for the dramatic differences in sensitivity to the moonwalker mutation between these cell types.


Subject(s)
Action Potentials/physiology , Cerebellar Ataxia/physiopathology , Purkinje Cells/physiology , Animals , Cerebellar Ataxia/genetics , Cerebellar Ataxia/metabolism , Cerebellum/metabolism , Mice , Neurons/metabolism , Patch-Clamp Techniques , Purkinje Cells/metabolism , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism
16.
Cerebellum ; 13(5): 628-36, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24797279

ABSTRACT

The Moonwalker (Mwk) mouse is a recent model of dominantly inherited cerebellar ataxia. The motor phenotype of the Mwk mouse is due to a gain-of-function mutation in the gene encoding the cation-permeable transient receptor potential channel (TRPC3). This mutation converts a threonine into an alanine in the highly conserved cytoplasmic S4-S5 linker of the channel, affecting channel gating. TRPC3 is highly expressed in cerebellar Purkinje cells and type II unipolar brush cells that both degenerate in the Mwk mouse. Studies of the Mwk mouse have provided new insights into the role of TRPC3 in cerebellar development and disease, which could not have been predicted from the Trpc3 knockout phenotype. Here, the genetic, behavioral, histological, and functional characterization of the Mwk mouse is reviewed. Moreover, the relationship of the Mwk mutant to other cerebellar mouse models and its relevance as a model for cerebellar ataxia are discussed.


Subject(s)
Cerebellar Ataxia/physiopathology , Cerebellum/growth & development , Cerebellum/physiopathology , TRPC Cation Channels/metabolism , Animals , Disease Models, Animal , Humans , Mice, Transgenic , Phenotype , Point Mutation , TRPC Cation Channels/genetics
17.
Brain ; 136(Pt 10): 3106-18, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24030952

ABSTRACT

Many neurological conditions are caused by immensely heterogeneous gene mutations. The diagnostic process is often long and complex with most patients undergoing multiple invasive and costly investigations without ever reaching a conclusive molecular diagnosis. The advent of massively parallel, next-generation sequencing promises to revolutionize genetic testing and shorten the 'diagnostic odyssey' for many of these patients. We performed a pilot study using heterogeneous ataxias as a model neurogenetic disorder to assess the introduction of next-generation sequencing into clinical practice. We captured 58 known human ataxia genes followed by Illumina Next-Generation Sequencing in 50 highly heterogeneous patients with ataxia who had been extensively investigated and were refractory to diagnosis. All cases had been tested for spinocerebellar ataxia 1-3, 6, 7 and Friedrich's ataxia and had multiple other biochemical, genetic and invasive tests. In those cases where we identified the genetic mutation, we determined the time to diagnosis. Pathogenicity was assessed using a bioinformatics pipeline and novel variants were validated using functional experiments. The overall detection rate in our heterogeneous cohort was 18% and varied from 8.3% in those with an adult onset progressive disorder to 40% in those with a childhood or adolescent onset progressive disorder. The highest detection rate was in those with an adolescent onset and a family history (75%). The majority of cases with detectable mutations had a childhood onset but most are now adults, reflecting the long delay in diagnosis. The delays were primarily related to lack of easily available clinical testing, but other factors included the presence of atypical phenotypes and the use of indirect testing. In the cases where we made an eventual diagnosis, the delay was 3-35 years (mean 18.1 years). Alignment and coverage metrics indicated that the capture and sequencing was highly efficient and the consumable cost was ∼£400 (€460 or US$620). Our pathogenicity interpretation pathway predicted 13 different mutations in eight different genes: PRKCG, TTBK2, SETX, SPTBN2, SACS, MRE11, KCNC3 and DARS2 of which nine were novel including one causing a newly described recessive ataxia syndrome. Genetic testing using targeted capture followed by next-generation sequencing was efficient, cost-effective, and enabled a molecular diagnosis in many refractory cases. A specific challenge of next-generation sequencing data is pathogenicity interpretation, but functional analysis confirmed the pathogenicity of novel variants showing that the pipeline was robust. Our results have broad implications for clinical neurology practice and the approach to diagnostic testing.


Subject(s)
Ataxia/genetics , Genetic Testing , High-Throughput Nucleotide Sequencing , Mutation/genetics , Age of Onset , Ataxia/diagnosis , Genes, Recessive/genetics , Genetic Predisposition to Disease , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Molecular Diagnostic Techniques
18.
PLoS Genet ; 7(10): e1002338, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22028674

ABSTRACT

Oxidative stress is a common etiological feature of neurological disorders, although the pathways that govern defence against reactive oxygen species (ROS) in neurodegeneration remain unclear. We have identified the role of oxidation resistance 1 (Oxr1) as a vital protein that controls the sensitivity of neuronal cells to oxidative stress; mice lacking Oxr1 display cerebellar neurodegeneration, and neurons are less susceptible to exogenous stress when the gene is over-expressed. A conserved short isoform of Oxr1 is also sufficient to confer this neuroprotective property both in vitro and in vivo. In addition, biochemical assays indicate that Oxr1 itself is susceptible to cysteine-mediated oxidation. Finally we show up-regulation of Oxr1 in both human and pre-symptomatic mouse models of amyotrophic lateral sclerosis, indicating that Oxr1 is potentially a novel neuroprotective factor in neurodegenerative disease.


Subject(s)
Cerebellum/pathology , Neurodegenerative Diseases/genetics , Neurons/metabolism , Oxidative Stress , Receptors, Neuropeptide/metabolism , Animals , Cerebellum/metabolism , Cysteine/pharmacology , Disease Models, Animal , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Mutant Strains , Neurons/pathology , Orexin Receptors , Receptors, Neuropeptide/genetics , Sequence Deletion/genetics
19.
J Extracell Biol ; 3(1): e132, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38938673

ABSTRACT

Extracellular vesicles (EVs) contribute to a wide range of pathological processes including cancer progression, yet the molecular mechanisms underlying their biogenesis remain incompletely characterized. The development of tetraspanin-based pHluorin reporters has enabled the real-time analysis of EV release at the plasma membrane. Here, we employed CD81-pHluorin to investigate mechanisms of EV release in ovarian cancer (OC) cells and report a novel role for the Ca2+-permeable transient receptor potential (TRP) channel TRPC3 in EV-mediated communication. We found that specific activation of TRPC3 increased Ca2+ signalling in SKOV3 cells and stimulated an immediate increase in EV release. Ca2+-stimulants histamine and ionomycin likewise induced EV release, and imaging analysis revealed distinct stimulation-dependent temporal and spatial release dynamics. Interestingly, inhibition of TRPC3 attenuated histamine-stimulated Ca2+-entry and EV release, indicating that TRPC3 is likely to act downstream of histamine signalling in EV biogenesis. Furthermore, we found that direct activation of TRPC3 as well as the application of EVs derived from TRPC3-activated cells increased SKOV3 proliferation. Our data provides insights into the molecular mechanisms and dynamics underlying EV release in OC cells, proposing a key role for TRPC3 in EV biogenesis.

20.
Dis Model Mech ; 17(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38411252

ABSTRACT

Patched 1 (PTCH1) is the primary receptor for the sonic hedgehog (SHH) ligand and negatively regulates SHH signalling, an essential pathway in human embryogenesis. Loss-of-function mutations in PTCH1 are associated with altered neuronal development and the malignant brain tumour medulloblastoma. As a result of differences between murine and human development, molecular and cellular perturbations that arise from human PTCH1 mutations remain poorly understood. Here, we used cerebellar organoids differentiated from human induced pluripotent stem cells combined with CRISPR/Cas9 gene editing to investigate the earliest molecular and cellular consequences of PTCH1 mutations on human cerebellar development. Our findings demonstrate that developmental mechanisms in cerebellar organoids reflect in vivo processes of regionalisation and SHH signalling, and offer new insights into early pathophysiological events of medulloblastoma tumorigenesis without the use of animal models.


Subject(s)
Cerebellar Neoplasms , Induced Pluripotent Stem Cells , Medulloblastoma , Humans , Mice , Animals , Medulloblastoma/genetics , Medulloblastoma/metabolism , Medulloblastoma/pathology , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Patched-1 Receptor/genetics , Patched-1 Receptor/metabolism , Hedgehog Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Cell Transformation, Neoplastic , Carcinogenesis/genetics , Organoids/metabolism , Patched Receptors
SELECTION OF CITATIONS
SEARCH DETAIL