Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
PLoS Genet ; 17(9): e1009714, 2021 09.
Article in English | MEDLINE | ID: mdl-34473702

ABSTRACT

The spatio-temporal program of genome replication across eukaryotes is thought to be driven both by the uneven loading of pre-replication complexes (pre-RCs) across the genome at the onset of S-phase, and by differences in the timing of activation of these complexes during S phase. To determine the degree to which distribution of pre-RC loading alone could account for chromosomal replication patterns, we mapped the binding sites of the Mcm2-7 helicase complex (MCM) in budding yeast, fission yeast, mouse and humans. We observed similar individual MCM double-hexamer (DH) footprints across the species, but notable differences in their distribution: Footprints in budding yeast were more sharply focused compared to the other three organisms, consistent with the relative sequence specificity of replication origins in S. cerevisiae. Nonetheless, with some clear exceptions, most notably the inactive X-chromosome, much of the fluctuation in replication timing along the chromosomes in all four organisms reflected uneven chromosomal distribution of pre-replication complexes.


Subject(s)
Chromosomes, Fungal , Chromosomes, Human , DNA Replication/genetics , Genome, Fungal , Minichromosome Maintenance Proteins/genetics , Saccharomyces cerevisiae/genetics , Humans
2.
PLoS Genet ; 15(5): e1008138, 2019 05.
Article in English | MEDLINE | ID: mdl-31083663

ABSTRACT

Repetitive DNA sequences within eukaryotic heterochromatin are poorly transcribed and replicate late in S-phase. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA arrays (rDNA). Despite the widespread association between transcription and replication timing, it remains unclear how transcription might impinge on replication, or vice versa. Here we show that, when silencing of an RNA polymerase II (RNA Pol II)-transcribed non-coding RNA at the rDNA is disrupted by SIR2 deletion, RNA polymerase pushes and thereby relocalizes replicative Mcm2-7 helicases away from their loading sites to an adjacent region with low nucleosome occupancy, and this relocalization is associated with increased rDNA origin efficiency. Our results suggest a model in which two of the major defining features of heterochromatin, transcriptional silencing and late replication, are mechanistically linked through suppression of polymerase-mediated displacement of replication initiation complexes.


Subject(s)
Minichromosome Maintenance Proteins/metabolism , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Sirtuin 2/genetics , Sirtuin 2/metabolism , Cell Cycle Proteins/genetics , DNA Replication/genetics , DNA Replication/physiology , DNA, Ribosomal/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Fungal/genetics , Gene Silencing , Minichromosome Maintenance Proteins/genetics , RNA Polymerase I/genetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription, Genetic
3.
J Biol Chem ; 294(42): 15257-15270, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31431503

ABSTRACT

Metabolic pathways play important roles in proliferation and differentiation of malignant cells. 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAr), a precursor in purine biosynthesis and a well-established activator of AMP-activated protein kinase (AMPK), induces widespread metabolic alterations and is commonly used for dissecting the role of metabolism in cancer. We have previously reported that AICAr promotes differentiation and inhibits proliferation of myeloid leukemia cells. Here, using metabolic assays, immunoblotting, flow cytometry analyses, and siRNA-mediated gene silencing in leukemia cell lines, we show that AICAr-mediated differentiation was independent of the known metabolic effects of AMPK, including glucose consumption, but instead depends on the activation of the DNA damage-associated enzyme checkpoint kinase 1 (Chk1) induced by pyrimidine depletion. LC/MS/MS metabolomics analysis revealed that AICAr increases orotate levels and decreases uridine monophosphate (UMP) levels, consistent with inhibition of UMP synthesis at a step downstream of dihydroorotate dehydrogenase (DHODH). AICAr and the DHODH inhibitor brequinar had similar effects on differentiation markers and S-phase arrest, and genetic or pharmacological Chk1 inactivation abrogated both of these effects. Our results delineate an AMPK-independent effect of AICAr on myeloid leukemia differentiation that involves perturbation of pyrimidine biosynthesis and activation of the DNA damage response network.


Subject(s)
Cell Differentiation , Checkpoint Kinase 1/metabolism , Leukemia, Promyelocytic, Acute/metabolism , Pyrimidines/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/metabolism , Cell Line, Tumor , Checkpoint Kinase 1/genetics , Dihydroorotate Dehydrogenase , Humans , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/physiopathology , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Ribonucleosides/genetics , Ribonucleosides/metabolism , S Phase Cell Cycle Checkpoints
4.
BMC Cancer ; 20(1): 1090, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33176741

ABSTRACT

BACKGROUND: All-trans retinoic acid (ATRA)-based treatment of acute promyelocytic leukemia (APL) is the most successful pharmacological treatment of acute myeloid leukemia (AML). Recent development of inhibitors of mutated isocitrate dehydrogenase and dihydroorotate dehydrogenase (DHODH) has revived interest in differentiation therapy of non-APL AML. Our previous studies demonstrated that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAr) induced differentiation of monocytic cell lines by activating the ATR/Chk1 via pyrimidine depletion. In the present study, the effects of AICAr on the viability and differentiation of primary AML blasts isolated from bone marrow of patients with non-APL AML were tested and compared with the effects of DHODH inhibitor brequinar and ATRA. METHODS: Bone marrow samples were obtained from 35 patients and leukemia blasts were cultured ex vivo. The cell viability was assessed by MTT assay and AML cell differentiation was determined by flow cytometry and morphological analyses. RNA sequencing and partial data analysis were conducted using ClusterProfiler package. Statistical analysis was performed using GraphPad Prism 6.0. RESULTS: AICAr is capable of triggering differentiation in samples of bone marrow blasts cultured ex vivo that were resistant to ATRA. AICAr-induced differentiation correlates with proliferation and sensitivity to DHODH inhibition. RNA-seq data obtained in primary AML blasts confirmed that AICAr treatment induced downregulation of pyrimidine metabolism pathways together with an upregulation of gene set involved in hematopoietic cell lineage. CONCLUSION: AICAr induces differentiation in a subset of primary non-APL AML blasts, and these effects correlate with sensitivity to a well-known, potent DHODH inhibitor.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Biomarkers, Tumor/metabolism , Blast Crisis/drug therapy , Bone Marrow/drug effects , Cell Differentiation , Gene Expression Regulation, Neoplastic/drug effects , Leukemia, Myeloid, Acute/drug therapy , Ribonucleosides/pharmacology , Aminoimidazole Carboxamide/pharmacology , Biomarkers, Tumor/genetics , Blast Crisis/genetics , Blast Crisis/metabolism , Blast Crisis/pathology , Bone Marrow/metabolism , Bone Marrow/pathology , Case-Control Studies , Cell Proliferation , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , RNA-Seq , Tumor Cells, Cultured
5.
Proc Natl Acad Sci U S A ; 114(3): 552-557, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28049846

ABSTRACT

Replication gaps that persist into mitosis likely represent important threats to genome stability, but experimental identification of these gaps has proved challenging. We have developed a technique that allows us to explore the dynamics by which genome replication is completed before mitosis. Using this approach, we demonstrate that excessive allocation of replication resources to origins within repetitive regions, induced by SIR2 deletion, leads to persistent replication gaps and genome instability. Conversely, the weakening of replication origins in repetitive regions suppresses these gaps. Given known age- and cancer-associated changes in chromatin accessibility at repetitive sequences, we suggest that replication gaps resulting from misallocation of replication resources underlie age- and disease-associated genome instability.


Subject(s)
DNA Replication , Genomic Instability , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Sirtuin 2/metabolism , Chromosomes, Fungal/genetics , DNA, Fungal/biosynthesis , DNA, Fungal/genetics , DNA, Ribosomal/biosynthesis , DNA, Ribosomal/genetics , Gene Deletion , Genome, Fungal , Humans , Models, Biological , Repetitive Sequences, Nucleic Acid , Replication Origin , Silent Information Regulator Proteins, Saccharomyces cerevisiae/deficiency , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Sirtuin 2/deficiency , Sirtuin 2/genetics
6.
Proc Natl Acad Sci U S A ; 114(7): 1619-1624, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28143937

ABSTRACT

Rett syndrome (RS) is a debilitating neurological disorder affecting mostly girls with heterozygous mutations in the gene encoding the methyl-CpG-binding protein MeCP2 on the X chromosome. Because restoration of MeCP2 expression in a mouse model reverses neurologic deficits in adult animals, reactivation of the wild-type copy of MeCP2 on the inactive X chromosome (Xi) presents a therapeutic opportunity in RS. To identify genes involved in MeCP2 silencing, we screened a library of 60,000 shRNAs using a cell line with a MeCP2 reporter on the Xi and found 30 genes clustered in seven functional groups. More than half encoded proteins with known enzymatic activity, and six were members of the bone morphogenetic protein (BMP)/TGF-ß pathway. shRNAs directed against each of these six genes down-regulated X-inactive specific transcript (XIST), a key player in X-chromosome inactivation that encodes an RNA that coats the silent X chromosome, and modulation of regulators of this pathway both in cell culture and in mice demonstrated robust regulation of XIST. Moreover, we show that Rnf12, an X-encoded ubiquitin ligase important for initiation of X-chromosome inactivation and XIST transcription in ES cells, also plays a role in maintenance of the inactive state through regulation of BMP/TGF-ß signaling. Our results identify pharmacologically suitable targets for reactivation of MeCP2 on the Xi and a genetic circuitry that maintains XIST expression and X-chromosome inactivation in differentiated cells.


Subject(s)
Bone Morphogenetic Protein 2/genetics , Methyl-CpG-Binding Protein 2/genetics , RNA, Long Noncoding/genetics , Transforming Growth Factor beta/genetics , X Chromosome Inactivation , Animals , Cell Line , Female , Gene Expression Profiling , Gene Library , Humans , Mice , RNA, Small Interfering/genetics , Rett Syndrome/genetics , Signal Transduction/genetics , Ubiquitin-Protein Ligases/genetics
7.
Molecules ; 25(3)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973227

ABSTRACT

Genetic ablation as well as pharmacological inhibition of sirtuin 2 (SIRT2), an NAD+-dependent protein deacylase, have therapeutic effects in various cancers and neurodegenerative diseases. Previously, we described the discovery of a dual SIRT1/SIRT2 inhibitor called cambinol (IC50 56 and 59 µM, respectively), which showed cytotoxic activity against cancer cells in vitro and a marked anti-proliferative effect in a Burkitt lymphoma mouse xenograft model. A number of recent studies have shown a protective effect of SIRT1 and SIRT3 in neurodegenerative and metabolic diseases as well as in certain cancers prompting us to initiate a medicinal chemistry effort to develop cambinol-based SIRT2-specific inhibitors devoid of SIRT1 or SIRT3 modulating activity. Here we describe potent cambinol-based SIRT2 inhibitors, several of which show potency of ~600 nM with >300 to >800-fold selectivity over SIRT1 and 3, respectively. In vitro, these inhibitors are found to be toxic to lymphoma and epithelial cancer cell lines. In particular, compounds 55 (IC50 SIRT2 0.25 µM and <25% inhibition at 50 µM against SIRT1 and SIRT3) and 56 (IC50 SIRT2 0.78 µM and <25% inhibition at 50 µM against SIRT1 and SIRT3) showed apoptotic as well as strong anti-proliferative properties against B-cell lymphoma cells.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Discovery , Lymphoma, B-Cell/drug therapy , Sirtuin 2/antagonists & inhibitors , Acetylation , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Inhibitory Concentration 50 , Mice , Sirtuin 2/metabolism , Structure-Activity Relationship , Tubulin/metabolism
8.
Proc Natl Acad Sci U S A ; 113(50): 14366-14371, 2016 12 13.
Article in English | MEDLINE | ID: mdl-28182563

ABSTRACT

X-chromosome inactivation is a mechanism of dosage compensation in which one of the two X chromosomes in female mammals is transcriptionally silenced. Once established, silencing of the inactive X (Xi) is robust and difficult to reverse pharmacologically. However, the Xi is a reservoir of >1,000 functional genes that could be potentially tapped to treat X-linked disease. To identify compounds that could reactivate the Xi, here we screened ∼367,000 small molecules in an automated high-content screen using an Xi-linked GFP reporter in mouse fibroblasts. Given the robust nature of silencing, we sensitized the screen by "priming" cells with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5azadC). Compounds that elicited GFP activity include VX680, MLN8237, and 5azadC, which are known to target the Aurora kinase and DNA methylation pathways. We demonstrate that the combinations of VX680 and 5azadC, as well as MLN8237 and 5azadC, synergistically up-regulate genes on the Xi. Thus, our work identifies a synergism between the DNA methylation and Aurora kinase pathways as being one of interest for possible pharmacological reactivation of the Xi.


Subject(s)
Aurora Kinases/antagonists & inhibitors , DNA Methylation/drug effects , X Chromosome Inactivation/drug effects , Animals , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/genetics , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/genetics , Aurora Kinases/genetics , Azacitidine/administration & dosage , Azacitidine/analogs & derivatives , Azepines/administration & dosage , Cell Line , Decitabine , Drug Evaluation, Preclinical , Drug Synergism , Female , Gene Knockdown Techniques , Genes, X-Linked , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , High-Throughput Screening Assays , Mice , Mice, Transgenic , Piperazines/administration & dosage , Pyrimidines/administration & dosage , X Chromosome/drug effects , X Chromosome/genetics
9.
Nature ; 477(7365): 482-5, 2011 Sep 21.
Article in English | MEDLINE | ID: mdl-21938067

ABSTRACT

Overexpression of sirtuins (NAD(+)-dependent protein deacetylases) has been reported to increase lifespan in budding yeast (Saccharomyces cerevisiae), Caenorhabditis elegans and Drosophila melanogaster. Studies of the effects of genes on ageing are vulnerable to confounding effects of genetic background. Here we re-examined the reported effects of sirtuin overexpression on ageing and found that standardization of genetic background and the use of appropriate controls abolished the apparent effects in both C. elegans and Drosophila. In C. elegans, outcrossing of a line with high-level sir-2.1 overexpression abrogated the longevity increase, but did not abrogate sir-2.1 overexpression. Instead, longevity co-segregated with a second-site mutation affecting sensory neurons. Outcrossing of a line with low-copy-number sir-2.1 overexpression also abrogated longevity. A Drosophila strain with ubiquitous overexpression of dSir2 using the UAS-GAL4 system was long-lived relative to wild-type controls, as previously reported, but was not long-lived relative to the appropriate transgenic controls, and nor was a new line with stronger overexpression of dSir2. These findings underscore the importance of controlling for genetic background and for the mutagenic effects of transgene insertions in studies of genetic effects on lifespan. The life-extending effect of dietary restriction on ageing in Drosophila has also been reported to be dSir2 dependent. We found that dietary restriction increased fly lifespan independently of dSir2. Our findings do not rule out a role for sirtuins in determination of metazoan lifespan, but they do cast doubt on the robustness of the previously reported effects of sirtuins on lifespan in C. elegans and Drosophila.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/physiology , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Histone Deacetylases/genetics , Longevity/physiology , Sirtuins/genetics , Aging/genetics , Aging/physiology , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Caloric Restriction , Crosses, Genetic , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Gene Expression , Histone Deacetylases/metabolism , Longevity/genetics , Male , RNA, Messenger/analysis , RNA, Messenger/genetics , Sirtuins/metabolism
12.
PLoS Genet ; 9(3): e1003329, 2013.
Article in English | MEDLINE | ID: mdl-23505383

ABSTRACT

Aging and longevity are complex traits influenced by genetic and environmental factors. To identify quantitative trait loci (QTLs) that control replicative lifespan, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard and a laboratory strain. The predominant QTL mapped to the rDNA, with the vineyard rDNA conferring a lifespan increase of 41%. The lifespan extension was independent of Sir2 and Fob1, but depended on a polymorphism in the rDNA origin of replication from the vineyard strain that reduced origin activation relative to the laboratory origin. Strains carrying vineyard rDNA origins have increased capacity for replication initiation at weak plasmid and genomic origins, suggesting that inability to complete genome replication presents a major impediment to replicative lifespan. Calorie restriction, a conserved mediator of lifespan extension that is also independent of Sir2 and Fob1, reduces rDNA origin firing in both laboratory and vineyard rDNA. Our results are consistent with the possibility that calorie restriction, similarly to the vineyard rDNA polymorphism, modulates replicative lifespan through control of rDNA origin activation, which in turn affects genome replication dynamics.


Subject(s)
Aging/genetics , DNA, Ribosomal/genetics , Quantitative Trait Loci/genetics , Saccharomyces cerevisiae , Caloric Restriction , DNA Replication/genetics , DNA, Ribosomal/physiology , DNA-Binding Proteins/genetics , Gene Expression Regulation, Fungal/genetics , Longevity/genetics , Polymorphism, Genetic , Replication Origin/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/genetics , Sirtuin 2/genetics
13.
J Biol Chem ; 288(3): 1717-25, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23179856

ABSTRACT

Several studies have demonstrated the activation of phosphoinositide-specific phospholipase C (Plc) in nuclei of mammalian cells during synchronous progression through the cell cycle, but the downstream targets of Plc-generated inositol 1,4,5-trisphosphate are poorly described. Phospholipid signaling in the budding yeast Saccharomyces cerevisiae shares similarities with endonuclear phospholipid signaling in mammals, and many recent studies point to a role for inositol phosphates, including InsP(5), InsP(6), and inositol pyrophosphates, in mediating the action of Plc. In this study, we investigated the changes in inositol phosphate levels in α-factor-treated S. cerevisiae, which allows cells to progress synchronously through the cell cycle after release from a G(1) block. We found an increase in the activity of Plc1 early after release from the block with a concomitant increase in the levels of InsP(7) and InsP(8). Treatment of cells with the Plc inhibitor U73122 prevented increases in inositol phosphate levels and blocked progression of cells through S phase after pheromone arrest. The enzymatic activity of Kcs1 in vitro and HPLC analysis of [(3)H]inositol-labeled kcs1Δ cells confirmed that Kcs1 is the principal kinase responsible for generation of pyrophosphates in synchronously progressing cells. Analysis of plc1Δ, kcs1Δ, and ddp1Δ yeast mutants further confirmed the role that a Plc1- and Kcs1-mediated increase in pyrophosphates may have in progression through S phase. Our data provide genetic, metabolic, and biochemical evidence that synthesis of inositol pyrophosphates through activation of Plc1 and Kcs1 plays an important role in the signaling response required for cell cycle progression after mating pheromone arrest.


Subject(s)
Diphosphates/metabolism , Inositol Phosphates/metabolism , Peptides/pharmacology , Phosphotransferases (Phosphate Group Acceptor)/genetics , S Phase/drug effects , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Type C Phospholipases/genetics , Cell Nucleus , Estrenes/pharmacology , G1 Phase/drug effects , G1 Phase/genetics , Gene Expression Regulation, Fungal/drug effects , Mating Factor , Phosphodiesterase Inhibitors/pharmacology , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Pyrrolidinones/pharmacology , S Phase/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction/drug effects , Staining and Labeling , Tritium , Type C Phospholipases/antagonists & inhibitors , Type C Phospholipases/metabolism
14.
Blood ; 119(8): 1856-60, 2012 Feb 23.
Article in English | MEDLINE | ID: mdl-22219225

ABSTRACT

SIRT1 is an NAD(+)-dependent histone deacetylase implicated in the establishment of the primitive hematopoietic system during mouse embryonic development. However, investigation of the role of SIRT1 in adult hematopoiesis has been complicated by the high perinatal mortality of SIRT1-deficient mice (SIRT1(-/-)). We performed a comprehensive in vivo study of the hematopoietic stem cell (HSC) compartment in adult SIRT1(-/-) mice and show that, apart from anemia and leukocytosis in older mice, the production of mature blood cells, lineage distribution within hematopoietic organs, and frequencies of the most primitive HSC populations are comparable to those of wild-type littermate controls. Furthermore, we show that SIRT1-deficient BM cells confer stable long-term reconstitution in competitive repopulation and serial transplantation experiments. The results of the present study rule out an essential physiologic role for cell-autonomous SIRT1 signaling in the maintenance of the adult HSC compartment in mice.


Subject(s)
Hematopoiesis/physiology , Hematopoietic Stem Cells/physiology , Sirtuin 1/physiology , Age Factors , Animals , Antigens, CD/metabolism , Antigens, Ly/metabolism , Blood Cell Count , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Female , Flow Cytometry , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Immunophenotyping , Male , Membrane Proteins/metabolism , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-kit/metabolism , Receptors, Cell Surface/metabolism , Signaling Lymphocytic Activation Molecule Family Member 1 , Sirtuin 1/deficiency , Sirtuin 1/genetics , Time Factors
15.
PLoS Biol ; 9(9): e1001144, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21909241

ABSTRACT

Networks of co-regulated transcripts in genetically diverse populations have been studied extensively, but little is known about the degree to which these networks cause similar co-variation at the protein level. We quantified 354 proteins in a genetically diverse population of yeast segregants, which allowed for the first time construction of a coherent protein co-variation matrix. We identified tightly co-regulated groups of 36 and 93 proteins that were made up predominantly of genes involved in ribosome biogenesis and amino acid metabolism, respectively. Even though the ribosomal genes were tightly co-regulated at both the protein and transcript levels, genetic regulation of proteins was entirely distinct from that of transcripts, and almost no genes in this network showed a significant correlation between protein and transcript levels. This result calls into question the widely held belief that in yeast, as opposed to higher eukaryotes, ribosomal protein levels are regulated primarily by regulating transcript levels. Furthermore, although genetic regulation of the amino acid network was more similar for proteins and transcripts, regression analysis demonstrated that even here, proteins vary predominantly as a result of non-transcriptional variation. We also found that cis regulation, which is common in the transcriptome, is rare at the level of the proteome. We conclude that most inter-individual variation in levels of these particular high abundance proteins in this genetically diverse population is not caused by variation of their underlying transcripts.


Subject(s)
Genetic Variation , Protein Interaction Mapping/methods , Proteome/genetics , Transcription, Genetic , Yeasts/genetics , Chromosome Segregation , Gene Expression Profiling , Quantitative Trait, Heritable , RNA, Messenger/metabolism , Ribosomes/genetics , Yeasts/metabolism
16.
PLoS Genet ; 7(8): e1002250, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21901113

ABSTRACT

Aging and longevity are considered to be highly complex genetic traits. In order to gain insight into aging as a polygenic trait, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard strain RM11 and a laboratory strain S288c, to identify quantitative trait loci that control chronological lifespan. Among the major loci that regulate chronological lifespan in this cross, one genetic linkage was found to be congruent with a previously mapped locus that controls telomere length variation. We found that a single nucleotide polymorphism in BUL2, encoding a component of an ubiquitin ligase complex involved in trafficking of amino acid permeases, controls chronological lifespan and telomere length as well as amino acid uptake. Cellular amino acid availability changes conferred by the BUL2 polymorphism alter telomere length by modulating activity of a transcription factor Gln3. Among the GLN3 transcriptional targets relevant to this phenotype, we identified Wtm1, whose upregulation promotes nuclear retention of ribonucleotide reductase (RNR) components and inhibits the assembly of the RNR enzyme complex during S-phase. Inhibition of RNR is one of the mechanisms by which Gln3 modulates telomere length. Identification of a polymorphism in BUL2 in this outbred yeast population revealed a link among cellular amino acid availability, chronological lifespan, and telomere length control.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Aging/genetics , Amino Acids/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Telomere/genetics , Amino Acid Sequence , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems/metabolism , Amino Acids/genetics , Molecular Sequence Data , Polymorphism, Genetic , Quantitative Trait Loci , Repressor Proteins/genetics , Repressor Proteins/metabolism , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , S Phase/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligase Complexes/genetics , Ubiquitin-Protein Ligase Complexes/metabolism
17.
PLoS Genet ; 7(6): e1002135, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21698133

ABSTRACT

The N-Myc oncoprotein is a critical factor in neuroblastoma tumorigenesis which requires additional mechanisms converting a low-level to a high-level N-Myc expression. N-Myc protein is stabilized when phosphorylated at Serine 62 by phosphorylated ERK protein. Here we describe a novel positive feedback loop whereby N-Myc directly induced the transcription of the class III histone deacetylase SIRT1, which in turn increased N-Myc protein stability. SIRT1 binds to Myc Box I domain of N-Myc protein to form a novel transcriptional repressor complex at gene promoter of mitogen-activated protein kinase phosphatase 3 (MKP3), leading to transcriptional repression of MKP3, ERK protein phosphorylation, N-Myc protein phosphorylation at Serine 62, and N-Myc protein stabilization. Importantly, SIRT1 was up-regulated, MKP3 down-regulated, in pre-cancerous cells, and preventative treatment with the SIRT1 inhibitor Cambinol reduced tumorigenesis in TH-MYCN transgenic mice. Our data demonstrate the important roles of SIRT1 in N-Myc oncogenesis and SIRT1 inhibitors in the prevention and therapy of N-Myc-induced neuroblastoma.


Subject(s)
Dual Specificity Phosphatase 6/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Sirtuin 1/metabolism , Animals , Binding Sites/genetics , Cell Line, Tumor , Cell Proliferation , Dual Specificity Phosphatase 6/genetics , Enzyme Inhibitors/pharmacology , Feedback, Physiological , Gene Expression Regulation, Neoplastic , Mice , Mice, Transgenic , Naphthalenes/pharmacology , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Phosphorylation , Promoter Regions, Genetic , Protein Stability , Proto-Oncogene Proteins c-myc/genetics , Pyrimidinones/pharmacology , Random Allocation , Sirtuin 1/genetics , Sp1 Transcription Factor/metabolism , Tumor Burden/drug effects , Tumor Burden/genetics
18.
Elife ; 122024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315095

ABSTRACT

There are approximately 500 known origins of replication in the yeast genome, and the process by which DNA replication initiates at these locations is well understood. In particular, these sites are made competent to initiate replication by loading of the Mcm replicative helicase prior to the start of S phase; thus, 'a site that binds Mcm in G1' might be considered to provide an operational definition of a replication origin. By fusing a subunit of Mcm to micrococcal nuclease, we previously showed that known origins are typically bound by a single Mcm double hexamer, loaded adjacent to the ARS consensus sequence (ACS). Here, we extend this analysis from known origins to the entire genome, identifying candidate Mcm binding sites whose signal intensity varies over at least three orders of magnitude. Published data quantifying single-stranded DNA (ssDNA) during S phase revealed replication initiation among the most abundant 1600 of these sites, with replication activity decreasing with Mcm abundance and disappearing at the limit of detection of ssDNA. Three other hallmarks of replication origins were apparent among the most abundant 5500 sites. Specifically, these sites: (1) appeared in intergenic nucleosome-free regions flanked on one or both sides by well-positioned nucleosomes; (2) were flanked by ACSs; and (3) exhibited a pattern of GC skew characteristic of replication initiation. We conclude that, if sites at which Mcm double hexamers are loaded can function as replication origins, then DNA replication origins are at least threefold more abundant than previously assumed, and we suggest that replication may occasionally initiate in essentially every intergenic region. These results shed light on recent reports that as many as 15% of replication events initiate outside of known origins, and this broader distribution of replication origins suggest that S phase in yeast may be less distinct from that in humans than widely assumed.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Replication Origin , DNA Replication , Nucleosomes/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA, Intergenic/metabolism , Cell Cycle Proteins/metabolism
19.
bioRxiv ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38585982

ABSTRACT

The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well-known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA arrays (rDNA). We have previously reported that in the absence of SIR2, a derepressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the non-displaced MCMs. Furthermore, we found that both, activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.

20.
Blood Adv ; 7(19): 5851-5859, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37315172

ABSTRACT

Hematopoietic stem cell transplantation is a well-known treatment for hematologic malignancies, wherein nascent stem cells provide regenerating marrow and immunotherapy against the tumor. The progeny of hematopoietic stem cells also populate a wide spectrum of tissues, including the brain, as bone marrow-derived macrophages similar to microglial cells. We developed a sensitive and novel combined immunohistochemistry (IHC) and XY fluorescence in situ hybridization assay to detect, quantify, and characterize donor cells in the cerebral cortices of 19 female patients who underwent allogeneic stem cell transplantation. We showed that the number of male donor cells ranged from 0.14% to 3.0% of the total cells or from 1.2% to 25% of microglial cells. Using tyramide-based fluorescent IHC, we found that at least 80% of the donor cells expressed the microglial marker ionized calcium-binding adapter molecule-1, consistent with bone marrow-derived macrophages. The percentage of donor cells was related to pretransplantation conditioning; donor cells from radiation-based myeloablative cases averaged 8.1% of microglial cells, whereas those from nonmyeloablative cases averaged only 1.3%. The number of donor cells in patients conditioned with busulfan- or treosulfan-based myeloablation was similar to that in total body irradiation-based conditioning; donor cells averaged 6.8% of the microglial cells. Notably, patients who received multiple transplantations and those with the longest posttransplantation survival had the highest level of donor engraftment, with donor cells averaging 16.3% of the microglial cells. Our work represents the largest study characterizing bone marrow-derived macrophages in patients after transplantation. The efficiency of engraftment observed in our study warrants future research on microglial replacement as a therapeutic option for disorders of the central nervous system.


Subject(s)
Hematopoietic Stem Cell Transplantation , Humans , Male , Female , In Situ Hybridization, Fluorescence , Bone Marrow Transplantation , Central Nervous System , Macrophages
SELECTION OF CITATIONS
SEARCH DETAIL