Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Nature ; 581(7807): 184-189, 2020 05.
Article in English | MEDLINE | ID: mdl-32405020

ABSTRACT

A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog1,2, but how it occurs in cities is often puzzling3. If the growth rates of urban particles are similar to those found in cleaner environments (1-10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below -15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid-base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms4,5.

2.
Environ Sci Technol ; 58(20): 8857-8866, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38718183

ABSTRACT

Comprehensive identification of aerosol sources and their constituent organic compounds requires aerosol-phase molecular-level characterization with a high time resolution. While real-time chemical characterization of aerosols is becoming increasingly common, information about functionalization and structure is typically obtained from offline methods. This study presents a method for determining the presence of carboxylic acid functional groups in real time using extractive electrospray ionization mass spectrometry based on measurements of [M - H + 2Na]+ adducts. The method is validated and characterized using standard compounds. A proof-of-concept application to α-pinene secondary organic aerosol (SOA) shows the ability to identify carboxylic acids even in complex mixtures. The real-time capability of the method allows for the observation of the production of carboxylic acids, likely formed in the particle phase on short time scales (<120 min). Our research explains previous findings of carboxylic acids being a significant component of SOA and a quick decrease in peroxide functionalization following SOA formation. We show that the formation of these acids is commensurate with the increase of dimers in the particle phase. Our results imply that SOA is in constant evolution through condensed-phase processes, which lower the volatility of the aerosol components and increase the available condensed mass for SOA growth and, therefore, aerosol mass loading in the atmosphere. Further work could aim to quantify the effect of particle-phase acid formation on the aerosol volatility distributions.


Subject(s)
Aerosols , Carboxylic Acids , Spectrometry, Mass, Electrospray Ionization
3.
Environ Sci Technol ; 58(3): 1601-1614, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38185880

ABSTRACT

Highly oxygenated organic molecules (HOMs) are a major source of new particles that affect the Earth's climate. HOM production from the oxidation of volatile organic compounds (VOCs) occurs during both the day and night and can lead to new particle formation (NPF). However, NPF involving organic vapors has been reported much more often during the daytime than during nighttime. Here, we show that the nitrate radicals (NO3), which arise predominantly at night, inhibit NPF during the oxidation of monoterpenes based on three lines of observational evidence: NPF experiments in the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN (European Organization for Nuclear Research), radical chemistry experiments using an oxidation flow reactor, and field observations in a wetland that occasionally exhibits nocturnal NPF. Nitrooxy-peroxy radicals formed from NO3 chemistry suppress the production of ultralow-volatility organic compounds (ULVOCs) responsible for biogenic NPF, which are covalently bound peroxy radical (RO2) dimer association products. The ULVOC yield of α-pinene in the presence of NO3 is one-fifth of that resulting from ozone chemistry alone. Even trace amounts of NO3 radicals, at sub-parts per trillion level, suppress the NPF rate by a factor of 4. Ambient observations further confirm that when NO3 chemistry is involved, monoterpene NPF is completely turned off. Our results explain the frequent absence of nocturnal biogenic NPF in monoterpene (α-pinene)-rich environments.


Subject(s)
Air Pollutants , Bicyclic Monoterpenes , Ozone , Volatile Organic Compounds , Monoterpenes/chemistry , Nitrates/chemistry , Aerosols/analysis , Volatile Organic Compounds/chemistry
4.
Anal Chem ; 95(37): 13788-13795, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37656668

ABSTRACT

The quantification of an aerosol chemical composition is complicated by the uncertainty in the sensitivity of each species detected. Soft-ionization response factors can vary widely from molecule to molecule. Here, we have employed a method to separate molecules by their volatility through systematic evaporation with a thermal denuder (TD). The fraction remaining after evaporation is compared between an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) and a scanning mobility particle sizer (SMPS), which provides a comparison between a quantified mass loss by the SMPS and the signal loss in the EESI-TOF. The sensitivity of the EESI-TOF is determined for both a simplified complex mixture (PEG-300) and also for a complex mixture of α-pinene secondary organic aerosol (SOA). For PEG-300, separation is possible on a molecule-by-molecule level with the TD and provides insights into the molecule-dependent sensitivity of the EESI-TOF, showing a higher sensitivity toward the most volatile molecule. For α-pinene SOA, sensitivity determination for specific classes is possible because of the number of molecular formula observed by the EESI-TOF. These classes are separated by their volatility and are broken down into monomers (O3-5,6-7,8+), dimers (O4-7,8+), and higher order oligomers (e.g., trimers and tetramers). Here, we show that the EESI-TOF initially measures 60.1% monomers, 32.7% dimers, and 7.2% trimers and tetramers in α-pinene SOA, but after sensitivity correction, the distribution of SOA is 37.4% monomers, 56.1% dimers, and 6.4% trimers and tetramers. These results provide a path forward for the quantification of aerosol components with the EESI-TOF in other applications and potentially for atmospheric measurements.

5.
Environ Sci Technol ; 57(31): 11572-11582, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37496264

ABSTRACT

Aromatic hydrocarbons (ArHCs) and oxygenated aromatic hydrocarbons (ArHC-OHs) are emitted from a variety of anthropogenic activities and are important precursors of secondary organic aerosol (SOA) in urban areas. Here, we analyzed and compared the composition of SOA formed from the oxidation of a mixture of aromatic VOCs by OH and NO3 radicals. The VOC mixture was composed of toluene (C7H8), p-xylene + ethylbenzene (C8H10), 1,3,5-trimethylbenzene (C9H12), phenol (C6H6O), cresol (C7H8O), 2,6-dimethylphenol (C8H10O), and 2,4,6-trimethylphenol (C9H12O) in a proportion where the aromatic VOCs were chosen to approximate day-time traffic-related emissions in Delhi, and the aromatic alcohols make up 20% of the mixture. These VOCs are prominent in other cities as well, including those influenced by biomass combustion. In the NO3 experiments, large contributions from CxHyOzN dimers (C15-C18) were observed, corresponding to fast SOA formation within 15-20 min after the start of chemistry. Additionally, the dimers were a mixture of different combinations of the initial VOCs, highlighting the importance of exploring SOAs from mixed VOC systems. In contrast, the experiments with OH radicals yielded gradual SOA mass formation, with CxHyOz monomers (C6-C9) being the dominant constituents. The evolution of SOA composition with time was tracked and a fast degradation of dimers was observed in the NO3 experiments, with concurrent formation of monomer species. The rates of dimer decomposition in NO3 SOA were ∼2-3 times higher compared to those previously determined for α-pinene + O3 SOA, highlighting the dependence of particle-phase reactions on VOC precursors and oxidants. In contrast, the SOA produced in the OH experiments did not dramatically change over the same time frame. No measurable effects of humidity were observed on the composition and evolution of SOA.


Subject(s)
Air Pollutants , Hydrocarbons, Aromatic , Volatile Organic Compounds , Air Pollutants/analysis , Volatile Organic Compounds/chemistry , Aerosols/analysis , Toluene
6.
Environ Sci Technol ; 57(6): 2297-2309, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36716278

ABSTRACT

The mechanistic pathway by which high relative humidity (RH) affects gas-particle partitioning remains poorly understood, although many studies report increased secondary organic aerosol (SOA) yields at high RH. Here, we use real-time, molecular measurements of both the gas and particle phase to provide a mechanistic understanding of the effect of RH on the partitioning of biogenic oxidized organic molecules (from α-pinene and isoprene) at low temperatures (243 and 263 K) at the CLOUD chamber at CERN. We observe increases in SOA mass of 45 and 85% with increasing RH from 10-20 to 60-80% at 243 and 263 K, respectively, and attribute it to the increased partitioning of semi-volatile compounds. At 263 K, we measure an increase of a factor 2-4 in the concentration of C10H16O2-3, while the particle-phase concentrations of low-volatility species, such as C10H16O6-8, remain almost constant. This results in a substantial shift in the chemical composition and volatility distribution toward less oxygenated and more volatile species at higher RH (e.g., at 263 K, O/C ratio = 0.55 and 0.40, at RH = 10 and 80%, respectively). By modeling particle growth using an aerosol growth model, which accounts for kinetic limitations, we can explain the enhancement in the semi-volatile fraction through the complementary effect of decreased compound activity and increased bulk-phase diffusivity. Our results highlight the importance of particle water content as a diluting agent and a plasticizer for organic aerosol growth.


Subject(s)
Air Pollutants , Monoterpenes , Monoterpenes/chemistry , Humidity , Aerosols
7.
Ecol Lett ; 25(5): 1237-1249, 2022 May.
Article in English | MEDLINE | ID: mdl-35291051

ABSTRACT

Elevational and latitudinal gradients in species diversity may be mediated by biotic interactions that cause density-dependent effects of conspecifics on survival or growth to differ from effects of heterospecifics (i.e. conspecific density dependence), but limited evidence exists to support this. We tested the hypothesis that conspecific density dependence varies with elevation using over 40 years of data on tree survival and growth from 23 old-growth temperate forest stands across a 1,000-m elevation gradient. We found that conspecific-density-dependent effects on survival of small-to-intermediate-sized focal trees were negative in lower elevation, higher diversity forest stands typically characterised by warmer temperatures and greater relative humidity. Conspecific-density-dependent effects on survival were less negative in higher elevation stands and ridges than in lower elevation stands and valley bottoms for small-to-intermediate-sized trees, but were neutral for larger trees across elevations. Conspecific-density-dependent effects on growth were negative across all tree size classes and elevations. These findings reveal fundamental differences in biotic interactions that may contribute to relationships between species diversity, elevation and climate.


Subject(s)
Ecosystem , Trees , Biodiversity , Climate , Forests
8.
Glob Chang Biol ; 28(21): 6180-6193, 2022 11.
Article in English | MEDLINE | ID: mdl-36065828

ABSTRACT

Climate change is contributing to biodiversity redistributions and species declines. However, cooler microclimate conditions provided by old-growth forest structures compared with surrounding open or younger forests have been hypothesized to provide thermal refugia for species that are sensitive to climate warming and dampen the negative effects of warming on population trends of animals (i.e., the microclimate buffering hypothesis). In addition to thermal refugia, the compositional and structural diversity of old-growth forest vegetation itself may provide resources to species that are less available in forests with simpler structure (i.e., the insurance hypothesis). We used 8 years of breeding bird abundance data from a forested watershed, accompanied with sub-canopy temperature data, and ground- and LiDAR-based vegetation data to test these hypotheses and identify factors influencing bird population changes from 2011 to 2018. After accounting for imperfect detection, we found that for 5 of 20 bird species analyzed, abundance trends tended to be less negative or neutral at sites with cooler microclimates, which supports the microclimate buffering hypothesis. Negative effects of warming on two species were also reduced in locations with greater forest compositional diversity supporting the insurance hypothesis. We provide the first empirical evidence that complex forest structure and vegetation diversity confer microclimatic advantages to some animal populations in the face of climate change. Conservation of old-growth forests, or their characteristics in managed forests, could help slow the negative effects of climate warming on some breeding bird populations via microclimate buffering and possibly insurance effects.


Subject(s)
Forests , Microclimate , Animals , Biodiversity , Birds , Climate Change , Ecosystem , Trees
9.
Environ Sci Technol ; 56(22): 15389-15397, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36306277

ABSTRACT

The first excited state of molecular oxygen is singlet-state oxygen (1O2), formed by indirect photochemistry of chromophoric organic matter. To determine whether 1O2 can be a competitive atmospheric oxidant, we must first quantify its production in organic aerosols (OA). Here, we report the spatiotemporal distribution of 1O2 over a 1-year dataset of PM10 extracts at two locations in Switzerland, representing a rural and suburban site. Using a chemical probe technique, we measured 1O2 steady-state concentrations with a seasonality over an order of magnitude peaking in wintertime at 4.59 ± 0.01 × 10-13 M and with a quantum yield of up to 2%. Next, we identified biomass burning and anthropogenic secondary OA (SOA) as the drivers for 1O2 formation in the PM10 aqueous extracts using source apportionment data. Importantly, the quantity, the amount of brown carbon present in PM10, and the quality, the chemical composition of the brown carbon present, influence the concentration of 1O2 sensitized in each extract. Anthropogenic SOA in the extracts were 4 times more efficient in sensitizing 1O2 than primary biomass burning aerosols. Last, we developed an empirical fit to estimate 1O2 concentrations based on PM10 components, unlocking the ability to estimate 1O2 from existing source apportionment data. Overall, 1O2 is likely a competitive photo-oxidant in PM10 since 1O2 is sensitized by ubiquitous biomass burning OA and anthropogenic SOA.


Subject(s)
Air Pollutants , Particulate Matter , Particulate Matter/analysis , Air Pollutants/analysis , Singlet Oxygen , Biomass , Aerosols/chemistry , Water , Carbon , Oxygen , Oxidants , Environmental Monitoring
10.
Environ Sci Technol ; 56(17): 12066-12076, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35976919

ABSTRACT

Monoterpene photooxidation plays an important role in secondary organic aerosol (SOA) formation in the atmosphere. The low-volatility products can enhance new particle formation and particle growth and thus influence climate feedback. Here, we present the results of α-pinene and Δ-3-carene photooxidation experiments conducted in continuous-flow mode in an environmental chamber under several reaction conditions. The roles of oxidants, addition of NO, and VOC molecular structure in influencing SOA yield are illustrated. SOA yield from α-pinene photooxidation shows a weak dependence on H2O2 concentration, which is a proxy for HO2 concentration. The high O/C ratios observed in the α-pinene photooxidation products suggest the production of highly oxygenated organic molecules (HOM). Addition of ozone to the chamber during low-NOx photooxidation experiments leads to higher SOA yield. With the addition of NO, the production of N-containing HOMs is enhanced and the SOA yield shows a modest, nonlinear dependence on the input NO concentration. Carene photooxidation leads to higher SOA yield than α-pinene under similar reaction conditions, which agrees with the lower volatility retrieved from evaporation kinetics experiments. These results improve the understanding of SOA formation from monoterpene photooxidation and could be applied to refine the representation of biogenic SOA formation in models.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Aerosols/chemistry , Air Pollutants/analysis , Hydrogen Peroxide , Monoterpenes/chemistry , Oxidants , Oxidation-Reduction
11.
Environ Sci Technol ; 56(4): 2213-2224, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35119266

ABSTRACT

Oxidation of the monoterpene Δ3-carene (C10H16) is a potentially important and understudied source of atmospheric secondary organic aerosol (SOA). We present chamber-based measurements of speciated gas and particle phases during photochemical oxidation of Δ3-carene. We find evidence of highly oxidized organic molecules (HOMs) in the gas phase and relatively low-volatility SOA dominated by C7-C10 species. We then use computational methods to develop the first stages of a Δ3-carene photochemical oxidation mechanism and explain some of our measured compositions. We find that alkoxy bond scission of the cyclohexyl ring likely leads to efficient HOM formation, in line with previous studies. We also find a surprising role for the abstraction of primary hydrogens from methyl groups, which has been calculated to be rapid in the α-pinene system, and suggest more research is required to determine if this is more general to other systems and a feature of autoxidation. This work develops a more comprehensive view of Δ3-carene photochemical oxidation products via measurements and lays out a suggested mechanism of oxidation via computationally derived rate coefficients.


Subject(s)
Monoterpenes , Aerosols/chemistry , Bicyclic Monoterpenes , Monoterpenes/chemistry , Oxidation-Reduction
12.
Environ Sci Technol ; 56(19): 13931-13944, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36137236

ABSTRACT

Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, H2SO4). Despite their importance, accurate prediction of MSA and H2SO4 from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to -10 °C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while H2SO4 production is modestly affected. This leads to a gas-phase H2SO4-to-MSA ratio (H2SO4/MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CH3S(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2-10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NOx effect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase H2SO4/MSA measurements.

13.
Anal Chem ; 93(44): 14859-14868, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34705434

ABSTRACT

Airborne redox-active compounds (ARC) account for a substantial fraction of atmospheric aerosols and play a vital role in chemical processes that influence global climate and human and ecological health. With the exception of the determination of total organic carbon by the expensive total organic carbon (TOC) analyzer, there is currently no easy-to-use method to quantify ARC. Here, we designed a method to detect the concentration of ARC by using the thermal-induced reduction and colorimetric behaviors of gold nanoparticles (AuNPs), in which the humic substances (HS) was used as a standard model of ARC to calculate the HS-equivalent concentration of ARC. Distinguished from the conventional complex methods, e.g., TOC analysis, the proposed approach measured localized surface plasmon resonance absorption of AuNPs and the target ARC concentration can be either directly quantified by the absorption spectrometer or qualitatively evaluated by the naked eyes. By using the absorption spectrometer, a limit of detection of 0.005 ppm by our AuNP sensor was achieved. To validate this sensing technique, aerosol samples collected from Basel (suburban), Bern (urban), and Rigi mountain (rural and high-altitude) sites in Switzerland were further investigated through the TOC combustion method. The results thereby substantiated that our plasmonic absorption-based AuNP sensor upholds a great promise for fast, cost-efficient total ARC detection and air quality assessment.


Subject(s)
Gold , Metal Nanoparticles , Colorimetry , Heating , Humans , Oxidation-Reduction
14.
Environ Sci Technol ; 55(10): 6936-6943, 2021 05 18.
Article in English | MEDLINE | ID: mdl-33961408

ABSTRACT

Atmospheric secondary organic aerosol (SOA) undergoes chemical and physical changes when exposed to UV radiation, affecting the atmospheric lifetime of the involved molecules. However, these photolytic processes remain poorly constrained. Here, we present a study aimed at characterizing, at a molecular level and in real time, the chemical composition of α-pinene SOA exposed to UV-A light at 50% relative humidity in an atmospheric simulation chamber. Significant SOA mass loss is observed at high loadings (∼100 µg m-3), whereas the effect is less prevalent at lower loadings (∼20 µg m-3). For the vast majority of molecules measured by the extractive electrospray time-of-flight mass spectrometer, there is a fraction that is photoactive and decays when exposed to UV-A radiation and a fraction that appears photorecalcitrant. The molecules that are most photoactive contain between 4 and 6 oxygen atoms, while the more highly oxygenated compounds and dimers do not exhibit significant decay. Overall, photolysis results in a reduction of the volatility of SOA, which cannot be explained by simple evaporative losses but requires either a change in volatility related to changes in functional groups or a change in physical parameters (i.e., viscosity).


Subject(s)
Air Pollutants , Aerosols , Bicyclic Monoterpenes , Monoterpenes , Photolysis
15.
Glob Chang Biol ; 26(3): 1714-1724, 2020 03.
Article in English | MEDLINE | ID: mdl-31507026

ABSTRACT

Insects and pathogens are widely recognized as contributing to increased tree vulnerability to the projected future increasing frequency of hot and dry conditions, but the role of parasitic plants is poorly understood even though they are common throughout temperate coniferous forests in the western United States. We investigated the influence of western hemlock dwarf mistletoe (Arceuthobium tsugense) on large (≥45.7 cm diameter) western hemlock (Tsuga heterophylla) growth and mortality in a 500 year old coniferous forest at the Wind River Experimental Forest, Washington State, United States. We used five repeated measurements from a long-term tree record for 1,395 T. heterophylla individuals. Data were collected across a time gradient (1991-2014) capturing temperature increases and precipitation decreases. The dwarf mistletoe rating (DMR), a measure of infection intensity, varied among individuals. Our results indicated that warmer and drier conditions amplified dwarf mistletoe effects on T. heterophylla tree growth and mortality. We found that heavy infection (i.e., high DMR) resulted in reduced growth during all four measurement intervals, but during warm and dry intervals (a) growth declined across the entire population regardless of DMR level, and (b) both moderate and heavy infections resulted in greater growth declines compared to light infection levels. Mortality rates increased from cooler-wetter to warmer-drier measurement intervals, in part reflecting increasing mortality with decreasing tree growth. Mortality rates were positively related to DMR, but only during the warm and dry measurement intervals. These results imply that parasitic plants like dwarf mistletoe can amplify the impact of climatic stressors of trees, contributing to the vulnerability of forest landscapes to climate-induced productivity losses and mortality events.


Subject(s)
Tracheophyta , Trees , Animals , Ecosystem , Forests , Washington
16.
Environ Sci Technol ; 54(5): 2595-2605, 2020 03 03.
Article in English | MEDLINE | ID: mdl-31994876

ABSTRACT

The diffusivity of semivolatile organic compounds (SVOCs) in the bulk particle phase of a viscous atmospheric secondary organic aerosol (SOA) can have a profound impact on aerosol growth and size distribution dynamics. Here, we investigate the bulk diffusivity of SVOCs formed from photo-oxidation of isoprene as they partition to a bimodal aerosol consisting of an Aitken (potassium sulfate) and accumulation mode (aged α-pinene SOA) particles as a function of relative humidity (RH). The model analysis of the observed size distribution evolution shows that liquid-like diffusion coefficient values of Db > 10-10 cm2 s-1 fail to explain the growth of the Aitken mode. Instead, much lower values of Db between 2.5 × 10-15 cm2 s-1 at 32% RH and 8 × 10-15 cm2 s-1 at 82% RH were needed to successfully reproduce the growth of both modes. The diffusivity within the aged α-pinene SOA remains appreciably slow even at 80% RH, resulting in hindered partitioning of SVOCs to large viscous particles and allowing smaller and relatively less viscous particles to effectively absorb the available SVOCs and grow much faster than would be possible otherwise. These results have important implications for modeling SOA formation and growth in the ambient atmosphere.


Subject(s)
Bicyclic Monoterpenes , Organic Chemicals , Aerosols , Atmosphere , Diffusion , Monoterpenes
17.
Environ Sci Technol ; 53(12): 6669-6677, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31125204

ABSTRACT

Accurate long-range atmospheric transport (LRAT) modeling of polycyclic aromatic hydrocarbons (PAHs) and PAH oxidation products (PAH-OPs) in secondary organic aerosol (SOA) particles relies on the known chemical composition of the particles. Four PAHs, phenanthrene (PHE), dibenzothiophene (DBT), pyrene (PYR), and benz(a)anthracene (BaA), were studied individually to identify and quantify PAH-OPs produced and incorporated into SOA particles formed by ozonolysis of α-pinene in the presence of PAH vapor. SOA particles were characterized using real-time in situ instrumentation, and collected on quartz fiber filters for offline analysis of PAHs and PAH-OPs. PAH-OPs were measured in all PAH experiments at equal or greater concentrations than the individual PAHs they were produced from. The total mass of PAH and PAH-OPs, relative to the total SOA mass, varied for different experiments on individual parent PAHs: PHE and 6 quantified PHE-OPs (3.0%), DBT and dibenzothiophene sulfone (4.9%), PYR and 3 quantified PYR-OPs (3.1%), and BaA and benz(a)anthracene-7,12-dione (0.26%). Further exposure of PAH-SOA to ozone generally increased the concentration ratio of PAH-OPs to PAH, suggesting longer atmospheric lifetimes for PAH-OPs, relative to PAHs. These data indicate that PAH-OPs are formed during SOA particle formation and growth.


Subject(s)
Air Pollutants , Ozone , Polycyclic Aromatic Hydrocarbons , Aerosols , Bicyclic Monoterpenes , Monoterpenes
18.
Environ Sci Technol ; 52(3): 1191-1199, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29244949

ABSTRACT

Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. Here, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversibly reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.


Subject(s)
Organic Chemicals , Aerosols , Diffusion , Kinetics , Viscosity
19.
Faraday Discuss ; 200: 143-164, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28581016

ABSTRACT

When secondary organic aerosol (SOA) particles are formed by ozonolysis in the presence of gas-phase polycyclic aromatic hydrocarbons (PAHs), their formation and properties are significantly different from SOA particles formed without PAHs. For all SOA precursors and all PAHs, discussed in this study, the presence of the gas-phase PAHs during SOA formation significantly affects particle mass loadings, composition, growth, evaporation kinetics, and viscosity. SOA particles formed in the presence of PAHs have, as part of their compositions, trapped unreacted PAHs and products of heterogeneous reactions between PAHs and ozone. Compared to 'pure' SOA particles, these particles exhibit slower evaporation kinetics, have higher fractions of non-volatile components, like oligomers, and higher viscosities, assuring their longer atmospheric lifetimes. In turn, the increased viscosity and decreased volatility provide a shield that protects PAHs from chemical degradation and evaporation, allowing for the long-range transport of these toxic pollutants. The magnitude of the effect of PAHs on SOA formation is surprisingly large. The presence of PAHs during SOA formation increases mass loadings by factors of two to five, and particle number concentrations, in some cases, by more than a factor of 100. Increases in SOA mass, particle number concentrations, and lifetime have important implications to many atmospheric processes related to climate, weather, visibility, and human health, all of which relate to the interactions between biogenic SOA and anthropogenic PAHs. The synergistic relationship between SOA and PAHs presented here are clearly complex and call for future research to elucidate further the underlying processes and their exact atmospheric implications.


Subject(s)
Polycyclic Aromatic Hydrocarbons/chemistry , Aerosols/chemical synthesis , Aerosols/chemistry , Aerosols/metabolism , Gases/chemistry , Molecular Structure , Particle Size
20.
Ecol Appl ; 27(5): 1666-1676, 2017 07.
Article in English | MEDLINE | ID: mdl-28421698

ABSTRACT

While advances in remote sensing have made stand, landscape, and regional assessments of the direct impacts of disturbance on forests quite common, the edge influence of timber harvesting on the structure of neighboring unharvested forests has not been examined extensively. In this study, we examine the impact of historical timber harvests on basal area patterns of neighboring old-growth forests to assess the magnitude and scale of harvest edge influence in a forest landscape of western Oregon, USA. We used lidar data and forest plot measurements to construct 30-m resolution live tree basal area maps in lower and middle elevation mature and old-growth forests. We assessed how edge influence on total, upper canopy, and lower canopy basal area varied across this forest landscape as a function of harvest characteristics (i.e., harvest size and age) and topographic conditions in the unharvested area. Upper canopy, lower canopy, and total basal area increased with distance from harvest edge and elevation. Forests within 75 m of harvest edges (20% of unharvested forests) had 4% to 6% less live tree basal area compared with forest interiors. An interaction between distance from harvest edge and elevation indicated that elevation altered edge influence in this landscape. We observed a positive edge influence at low elevations (<800 m) and a negative edge influence at moderate to high elevations (>800 m). Surprisingly, we found no or weak effects of harvest age (13-60 yr) and harvest area (0.2-110 ha) on surrounding unharvested forest basal area, implying that edge influence was relatively insensitive to the scale of disturbance and multi-decadal recovery processes. Our study indicates that the edge influence of past clearcutting on the structure of neighboring uncut old-growth forests is widespread and persistent. These indirect and diffuse legacies of historical timber harvests complicate forest management decision-making in old-growth forest landscapes by broadening the traditional view of stand boundaries. Furthermore, the consequences of forest harvesting may reach across ownership boundaries, highlighting complex governance issues surrounding landscape management of old-growth forests.


Subject(s)
Forestry , Forests , Trees/growth & development , Conservation of Natural Resources , Oregon
SELECTION OF CITATIONS
SEARCH DETAIL