Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Publication year range
1.
Glob Chang Biol ; 30(8): e17417, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39105285

ABSTRACT

Marine heatwaves (MHWs) are increasing in frequency, duration and intensity, disrupting global marine ecosystems. While most reported impacts have been in tropical areas, New Zealand experienced its strongest and longest MHW in 2022, profoundly affecting marine sponges. Sponges are vital to rocky benthic marine communities, with their abundance influencing ecosystem functioning. This study examines the impact of this MHW on the photosynthetic sponge Cymbastella lamellata in Fiordland, New Zealand. We describe the extent, physiological responses, mortality, microbial community changes and ecological impact of this MHW on C. lamellata. The Fiordland MHW reached a maximum temperature of 4.4°C above average, lasting for 259 days. Bleaching occurred in >90% of the C. lamellata Fiordland population. The population size exceeded 66 million from 5 to 25 m, making this the largest bleaching event of its kind ever recorded. We identified the photosynthetic symbiont as a diatom, and bleached sponges had reduced photosynthetic efficiency. Post-MHW surveys in 2023 found that over 50% of sponges at sampling sites had died but that the remaining sponges had mostly recovered from earlier bleaching. Using a simulated MHW experiment, we found that temperature stress was a driver of necrosis rather than bleaching, despite necrosis only rarely being observed in the field (<2% of sponges). This suggests that bleaching may not be the cause of the mortality directly. We also identified a microbial community shift in surviving sponges, which we propose represents a microbial-mediated adaptive response to MHWs. We also found that C. lamellata are key contributors of dissolved organic carbon to the water column, with their loss likely impacting ecosystem function. We demonstrate the potential for MHWs to disrupt key marine phyla in temperate regions, highlighting how susceptible temperate sponges globally might be to MHWs.


Subject(s)
Microbiota , Porifera , Porifera/microbiology , Porifera/physiology , Animals , New Zealand , Photosynthesis , Extreme Heat/adverse effects , Ecosystem , Symbiosis , Diatoms/physiology , Diatoms/growth & development
2.
Proc Biol Sci ; 290(2000): 20222539, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37282536

ABSTRACT

Marine heatwaves are increasingly subjecting organisms to unprecedented stressful conditions, but the biological consequences of these events are still poorly understood. Here we experimentally tested the presence of carryover effects of heatwave conditions on the larval microbiome, settlers growth rate and metamorphosis duration of the temperate sponge Crella incrustans. The microbial community of adult sponges changed significantly after ten days at 21°C. There was a relative decrease in symbiotic bacteria, and an increase in stress-associated bacteria. Sponge larvae derived from control sponges were mainly characterised by a few bacterial taxa also abundant in adults, confirming the occurrence of vertical transmission. The microbial community of sponge larvae derived from heatwave-exposed sponges showed significant increase in the endosymbiotic bacteria Rubritalea marina. Settlers derived from heatwave-exposed sponges had a greater growth rate under prolonged heatwave conditions (20 days at 21°C) compared to settlers derived from control sponges exposed to the same conditions. Moreover, settler metamorphosis was significantly delayed at 21°C. These results show, for the first time, the occurrence of heatwave-induced carryover effects across life-stages in sponges and highlight the potential role of selective vertical transmission of microbes in sponge resilience to extreme thermal events.


Subject(s)
Microbiota , Porifera , Animals , Bacteria , Symbiosis , Phylogeny
3.
Dis Aquat Organ ; 155: 59-71, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37589490

ABSTRACT

Bioeroding sponges can cause extensive damage to aquaculture and wild shellfish fisheries. It has been suggested that heavy sponge infestations that reach the inner cavity of oysters may trigger shell repair and lead to adductor detachment. Consequently, energy provision into shell repair could reduce the energy available for other physiological processes and reduce the meat quality of commercially fished oysters. Nevertheless, the impacts of boring sponges on oysters and other shellfish hosts are inconclusive. We studied the interaction between boring sponges and their hosts and examined potential detrimental effects on an economically important oyster species Ostrea chilensis from Foveaux Strait (FS), New Zealand. We investigated the effect of different infestation levels with the bioeroding sponge Cliona sp. on commercial meat quality, condition, reproduction, and disease susceptibility. Meat quality was assessed with an index based on visual assessments used in the FS O. chilensis fishery. Meat condition was assessed with a common oyster condition index, while histological methods were used to assess sex, gonad stage, reproductive capacity, and pathogen presence. Commercial meat quality and condition of O. chilensis were unaffected by sponge infestation. There was no relationship between sex ratio, gonad developmental stage, or gonad index and sponge infestation. Lastly, we found no evidence that sponge infestation affects disease susceptibility in O. chilensis. Our results suggest that O. chilensis in FS is largely unaffected by infestation with Cliona sp. and therefore reinforces the growing body of evidence that the effects of sponge infestation can be highly variable among different host species, environments, and habitats.


Subject(s)
Ostrea , Porifera , Animals , New Zealand , Disease Susceptibility/veterinary , Aquaculture , Fisheries
4.
Glob Chang Biol ; 28(16): 4900-4911, 2022 08.
Article in English | MEDLINE | ID: mdl-35662355

ABSTRACT

Sponges are major components of benthic communities across the world and have been identified as potential "winners" on coral reefs in the face of global climate change as result of their tolerance to ocean warming and acidification (OA). Previous studies have also hypothesised that photosymbiont-containing sponges might have higher productivity under future OA conditions as a result of photosymbionts having increased access to CO2 and subsequently greater carbon production. Here we test this hypothesis for a widespread and abundant photosymbiont-containing sponge species Lamellodysidea herbacea at a CO2 seep in Papua New Guinea simulating OA conditions. We found seep sponges had relatively higher cyanobacterial abundance, chlorophyll concentrations and symbiont photosynthetic efficiency than non-seep sponges, and a three-fold higher sponge abundance at the seep site. However, while gross oxygen production was the same for seep and non-seep sponges, seep sponge dark respiration rates were higher and instantaneous photosynthesis: respiration (P:R) ratios were lower. We show that while photosymbiont containing sponges may not have increased productivity under OA, they are able to show flexibility in their relationships with microbes and offset increased metabolic costs associated with climate change associated stress.


Subject(s)
Anthozoa , Porifera , Animals , Carbon/metabolism , Carbon Dioxide/metabolism , Climate Change , Coral Reefs , Photosynthesis , Seawater
5.
Glob Chang Biol ; 28(6): 1972-1989, 2022 03.
Article in English | MEDLINE | ID: mdl-34854178

ABSTRACT

Ocean deoxygenation is one of the major consequences of climate change. In coastal waters, this process can be exacerbated by eutrophication, which is contributing to an alarming increase in the so-called 'dead zones' globally. Despite its severity, the effect of reduced dissolved oxygen has only been studied for a very limited number of organisms, compared to other climate change impacts such as ocean acidification and warming. Here, we experimentally assessed the response of sponges to moderate and severe simulated hypoxic events. We ran three laboratory experiments on four species from two different temperate oceans (NE Atlantic and SW Pacific). Sponges were exposed to a total of five hypoxic treatments, with increasing severity (3.3, 1.6, 0.5, 0.4 and 0.13 mg O2  L-1 , over 7-12-days). We found that sponges are generally very tolerant of hypoxia. All the sponges survived in the experimental conditions, except Polymastia crocea, which showed significant mortality at the lowest oxygen concentration (0.13 mg O2  L-1 , lethal median time: 286 h). In all species except Suberites carnosus, hypoxic conditions do not significantly affect respiration rate down to 0.4 mg O2  L-1 , showing that sponges can uptake oxygen at very low concentrations in the surrounding environment. Importantly, sponges displayed species-specific phenotypic modifications in response to the hypoxic treatments, including physiological, morphological and behavioural changes. This phenotypic plasticity likely represents an adaptive strategy to live in reduced or low oxygen water. Our results also show that a single sponge species (i.e., Suberites australiensis) can display different strategies at different oxygen concentrations. Compared to other sessile organisms, sponges generally showed higher tolerance to hypoxia, suggesting that sponges could be favoured and survive in future deoxygenated oceans.


Subject(s)
Climate Change , Seawater , Eutrophication , Hydrogen-Ion Concentration , Oceans and Seas
6.
Conserv Biol ; : e13945, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35587786

ABSTRACT

The ecology and function of rocky temperate mesophotic ecosystems (TMEs) remain poorly understood globally despite their widespread distribution. They typically occur at 20-150 m (the limit of photosynthesis), and on rocky substratum they support rich benthic communities and mobile fauna. We determined the distribution of rocky TMEs, their conservation status, and their most characteristic biological groups. Rocky TMEs were dominated by algae, turf-invertebrate matrices (<50 m only), sponges, bryozoans, and cnidarians. The community composition of TMEs differed significantly from shallow (0-15 m) subtidal reefs. Data were geographically biased and variable, available only from the North and South Atlantic, Mediterranean, and Temperate Australasia. Degree of protection of rocky TMEs varied considerably across the world. The biggest threats to rocky TMEs were identified changes in temperature, sedimentation rates, nutrient concentrations, and certain fishing types. We propose a conservation framework to inform future rocky TME management and conservation, highlighting the need to recognize the importance of these biologically diverse and functionally important ecosystems.


Resumen La ecología y la función de los ecosistemas mesofóticos templados (TME) rocosos todavía no están muy comprendidas a nivel mundial a pesar de su amplia distribución. Comúnmente se encuentran entre los 20 y los 150 metros (el límite de la fotosíntesis) sobre sustratos rocosos que mantienen comunidades bénticas diversas y fauna móvil. Determinamos la distribución, estado de conservación y grupos biológicos más característicos de los TME rocosos. Estos ecosistemas estuvieron dominados por algas, matrices de invertebrados de pastos marinos (solamente a <50 m), esponjas marinas, briozoos y cnidarios. La composición comunitaria de los TME difirió significativamente de los arrecifes submareales someros (0-15 m). Los datos estuvieron sesgados geográficamente y fueron variables, pues sólo estaban disponibles para el Atlántico norte y sur, el Mediterráneo y la Australasia templada. El nivel de protección de los TME rocosos varió considerablemente en todo el mundo. Las principales amenazas que enfrenta este ecosistema son los cambios en la temperatura, las tasas de sedimentación, la concentración de nutrientes y ciertos tipos de pesca. Proponemos un encuadre de conservación para orientar a futuro la gestión y conservación de los TME, el cual destaque la necesidad de reconocer la importancia de estos ecosistemas biológicamente diversos y funcionalmente importantes.

7.
Mol Ecol ; 30(5): 1223-1236, 2021 03.
Article in English | MEDLINE | ID: mdl-33342039

ABSTRACT

Investigating historical gene flow in species complexes can indicate how environmental and reproductive barriers shape genome divergence during speciation. The processes influencing species diversification under environmental change remain one of the central focal points of evolutionary biology, particularly for marine organisms with high dispersal potential. We investigated genome-wide divergence, introgression patterns and inferred demographic history between species pairs of all six extant rock lobster species (Jasus spp.), which have a long larval duration of up to two years and have populated continental shelf and seamount habitats around the globe at approximately 40o S. Genetic differentiation patterns reflected geographic isolation and the environment (i.e. habitat structure). Eastern Pacific species (J. caveorum and J. frontalis) were geographically more distant and genetically more differentiated from the remaining four species. Species associated with continental shelf habitats shared a common ancestry, but are geographically distant from one another. Similarly, species associated with island/seamount habitats in the Atlantic and Indian Oceans shared a common ancestry, but are also geographically distant. Benthic temperature was the environmental variable that explained most of the genetic differentiation (FST ), while controlling for the effects of geographic distance. Eastern Pacific species retained a signal of strict isolation following ancient migration, whereas species pairs from Australia and Africa, and seamounts in the Indian and Atlantic oceans, included events of introgression after secondary contact. Our results reveal important effects of habitat and demographic processes on the recent divergence of species within the genus Jasus, providing one of the first empirical studies of genome-wide drivers of diversification that incorporates all extant species in a marine genus with long pelagic larval duration.


Subject(s)
Phylogeny , Africa , Atlantic Ocean , Australia , Indian Ocean , Islands
8.
J Exp Biol ; 224(22)2021 11 15.
Article in English | MEDLINE | ID: mdl-34661236

ABSTRACT

Tropical lagoon-inhabiting organisms live in highly irradiated ecosystems and are particularly susceptible to thermal stress resulting from climate change. However, despite living close to their thermal maxima, stress response mechanisms found in these organisms are poorly understood. We used a novel physiological-proteomic approach for sponges to describe the stress response mechanisms of the lagoon-inhabiting sponge Amphimedon navalis, when exposed to elevated seawater temperatures of +2°C and +4°C relative to a 26°C ambient temperature for 4 weeks. After 4 weeks of thermal exposure, the buoyant weight of the sponge experienced a significant decline, while its pumping rates and oxygen consumption rates significantly increased. Proteome dynamics revealed 50 differentially abundant proteins in sponges exposed to elevated temperature, suggesting that shifts in the sponge proteome were potential drivers of physiological dysfunction. Thermal stress promoted an increase in detoxification proteins, such as catalase, suggesting that an excess of reactive oxygen species in sponge cells was responsible for the significant increase in oxygen consumption. Elevated temperature also disrupted cellular growth and cell proliferation, promoting the loss of sponge biomass, and the high abundance of multiple α-tubulin chain proteins also indicated an increase in cytoskeletal activities within sponge cells, which may have induced the increase in sponge pumping rate. Our results show that sustained thermal exposure in susceptible lagoonal sponges may induce significant disruption of cellular homeostasis, leading to physiological dysfunction, and that a combined physiological-proteomic approach may provide new insights into physiological functions and cellular processes occurring in sponges.


Subject(s)
Ecosystem , Porifera , Animals , Climate Change , Protein Transport , Proteomics , Stress, Physiological
9.
Environ Microbiol ; 22(9): 3985-3999, 2020 09.
Article in English | MEDLINE | ID: mdl-32827171

ABSTRACT

Marine sponge reefs usually comprise a complex array of taxonomically different sponge species, many of these hosting highly diverse microbial communities. The number of microbial species known to occupy a given sponge ranges from tens to thousands, bringing numerous challenges to their analysis. One way to deal with such complexity is to use a core microbiota approach, in which only prevalent and abundant microbes are considered. Here we aimed to test the strength and sensitivity of the core microbiota approach by applying different core definitions to 20 host sponge species. Application of increasingly stringent relative abundance and/or percentage occurrence thresholds to qualify as part of the core microbiota decreased the number of 'core' OTUs and phyla and, consequently, changed both alpha- and beta-diversity patterns. Moreover, microbial co-occurrence patterns explored using correlation networks were also affected by the core microbiota definition. The application of stricter thresholds resulted in smaller and less compartmentalized networks, with different keystone species. These results highlight that the application of different core definitions to phylogenetically disparate host species can result in the drawing of markedly different conclusions. Consequently, we recommend to assess the effects of different core community definitions on the specific system of study before considering its application.


Subject(s)
Microbiota/genetics , Porifera/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , Metagenome , Phylogeny , Porifera/classification
10.
Environ Microbiol ; 22(11): 4732-4744, 2020 11.
Article in English | MEDLINE | ID: mdl-32869905

ABSTRACT

Coral reefs are facing increasing pressure from rising seawater temperatures and ocean acidification. Sponges have been proposed as possible winners in the face of climate change; however, little is known about the mechanisms underpinning their predicted tolerance. Here we assessed whether microbiome-mediated cross-generational acclimatization could enable the photosynthetic sponge Carteriospongia foliascens to survive under future climate scenarios. To achieve this, we first established the potential for vertical (cross-generational) transmission of symbionts. Sixty-four amplicon sequence variants accounting for >90% of the total C. foliascens microbial community were present across adult, larval and juvenile life stages, showing that a large proportion of the microbiome is vertically acquired and maintained. When C. foliascens were exposed to climate scenarios projected for 2050 and 2100, the host remained visibly unaffected (i.e. no necrosis/bleaching) and the overall microbiome was not significantly different amongst treatments in adult tissue, the respective larvae or recruits transplanted amongst climate treatments. However, indicator species analysis revealed that parental exposure to future climate scenarios altered the presence and abundance of a small suite of microbial taxa in the recruits, thereby revealing the potential for microbiome-mediated cross-generational acclimatization through both symbiont shuffling and symbiont switching within a vertically acquired microbiome.


Subject(s)
Climate Change , Microbiota , Porifera/microbiology , Porifera/physiology , Acclimatization , Animals , Hydrogen-Ion Concentration , Larva/microbiology , Larva/physiology , Photosynthesis , Seawater/chemistry , Seawater/microbiology , Temperature
11.
Heredity (Edinb) ; 122(3): 354-369, 2019 03.
Article in English | MEDLINE | ID: mdl-30131516

ABSTRACT

Correctly determining species' identity is critical for estimating biodiversity and effectively managing marine populations, but is difficult for species that have few morphological traits or are highly plastic. Sponges are considered a taxonomically difficult group because they lack multiple consistent diagnostic features, which coupled with their common phenotypic plasticity, makes the presence of species complexes likely, but difficult to detect. Here, we investigated the evolutionary relationship of Tethya spp. in central New Zealand using both molecular and morphological techniques to highlight the potential for cryptic speciation in sponges. Phylogenetic reconstructions based on two mitochondrial markers (rnl, COI-ext) and one nuclear marker (18S) revealed three genetic clades, with one clade representing Tethya bergquistae and two clades belonging to what was a priori thought to be a single species, Tethya burtoni. Eleven microsatellite markers were also used to further resolve the T. burtoni group, revealing a division consistent with the 18S and rnl data. Morphological analysis based on spicule characteristics allowed T. bergquistae to be distinguished from T. burtoni, but revealed no apparent differences between the T. burtoni clades. Here, we highlight hidden genetic diversity within T. burtoni, likely representing a group consisting of incipient species that have undergone speciation but have yet to express clear morphological differences. Our study supports the notion that cryptic speciation in sponges may go undetected and diversity underestimated when using only morphology-based taxonomy, which has broad scale implications for conservation and management of marine systems.


Subject(s)
Biodiversity , Genetic Variation , Porifera/anatomy & histology , Porifera/genetics , Animals , Biological Evolution , Gene Frequency , Genotype , New Zealand , Phylogeny , Porifera/classification , Sequence Analysis, DNA
12.
Ecology ; 99(9): 1920-1931, 2018 09.
Article in English | MEDLINE | ID: mdl-29989167

ABSTRACT

Anthropogenic stressors are impacting ecological systems across the world. Of particular concern are the recent rapid changes occurring in coral reef systems. With ongoing degradation from both local and global stressors, future reefs are likely to function differently from current coral-dominated ecosystems. Determining key attributes of future reef states is critical to reliably predict outcomes for ecosystem service provision. Here we explore the impacts of changing sponge dominance on coral reefs. Qualitative modelling of reef futures suggests that changing sponge dominance due to increased sponge abundance will have different outcomes for other trophic levels compared with increased sponge dominance as a result of declining coral abundance. By exploring uncertainty in the model outcomes we identify the need to (1) quantify changes in carbon flow through sponges, (2) determine the importance of food limitation for sponges, (3) assess the ubiquity of the recently described "sponge loop," (4) determine the competitive relationships between sponges and other benthic taxa, particularly algae, and (5) understand how changing dominance of other organisms alters trophic pathways and energy flows through ecosystems. Addressing these knowledge gaps will facilitate development of more complex models that assess functional attributes of sponge-dominated reef ecosystems.


Subject(s)
Anthozoa , Ecosystem , Animals , Carbon , Climate Change , Coral Reefs
13.
Glob Chang Biol ; 24(7): 3130-3144, 2018 07.
Article in English | MEDLINE | ID: mdl-29505691

ABSTRACT

Ocean warming (OW) and ocean acidification (OA) are threatening coral reef ecosystems, with a bleak future forecast for reef-building corals, which are already experiencing global declines in abundance. In contrast, many coral reef sponge species are able to tolerate climate change conditions projected for 2100. To increase our understanding of the mechanisms underpinning this tolerance, we explored the lipid and fatty acid (FA) composition of four sponge species with differing sensitivities to climate change, experimentally exposed to OW and OA levels predicted for 2100, under two CO2 Representative Concentration Pathways. Sponges with greater concentrations of storage lipid, phospholipids, sterols and elevated concentrations of n-3 and n-6 long-chain polyunsaturated FA (LC PUFA), were more resistant to OW. Such biochemical constituents likely contribute to the ability of these sponges to maintain membrane function and cell homeostasis in the face of environmental change. Our results suggest that n-3 and n-6 LC PUFA are important components of the sponge stress response potentially via chain elongation and the eicosanoid stress-signalling pathways. The capacity for sponges to compositionally alter their membrane lipids in response to stress was also explored using a number of specific homeoviscous adaptation (HVA) indicators. This revealed a potential mechanism via which additional CO2 could facilitate the resistance of phototrophic sponges to thermal stress through an increased synthesis of membrane-stabilizing sterols. Finally, OW induced an increase in FA unsaturation in phototrophic sponges but a decrease in heterotrophic species, providing support for a difference in the thermal response pathway between the sponge host and the associated photosymbionts. Here we have shown that sponge lipids and FA are likely to be an important component of the sponge stress response and may play a role in facilitating sponge survival under future climate conditions.


Subject(s)
Adaptation, Physiological/physiology , Climate Change , Fatty Acids/metabolism , Lipid Metabolism , Porifera/physiology , Stress, Physiological/physiology , Animals , Carbon Dioxide , Cell Membrane/chemistry , Coral Reefs , Fatty Acids/analysis , Lipids/analysis , Porifera/chemistry , Porifera/classification , Seawater/chemistry
14.
Environ Microbiol ; 19(4): 1450-1462, 2017 04.
Article in English | MEDLINE | ID: mdl-28078754

ABSTRACT

The study of complex microbial communities poses unique conceptual and analytical challenges, with microbial species potentially numbering in the thousands. With transient or allochthonous microorganisms often adding to this complexity, a 'core' microbiota approach, focusing only on the stable and permanent members of the community, is becoming increasingly popular. Given the various ways of defining a core microbiota, it is prudent to examine whether the definition of the core impacts upon the results obtained. Here we used complex marine sponge microbiotas and undertook a systematic evaluation of the degree to which different factors used to define the core influenced the conclusions. Significant differences in alpha- and beta-diversity were detected using some but not all core definitions. However, findings related to host specificity and environmental quality were largely insensitive to major changes in the core microbiota definition. Furthermore, none of the applied definitions altered our perception of the ecological networks summarising interactions among bacteria within the sponges. These results suggest that, while care should still be taken in interpretation, the core microbiota approach is surprisingly robust, at least for comparing microbiotas of closely related samples.


Subject(s)
Microbiota , Porifera/microbiology , Animals , Bacteria , Phylogeny
15.
Glob Chang Biol ; 23(5): 2031-2046, 2017 05.
Article in English | MEDLINE | ID: mdl-27550825

ABSTRACT

As atmospheric CO2 concentrations rise, associated ocean warming (OW) and ocean acidification (OA) are predicted to cause declines in reef-building corals globally, shifting reefs from coral-dominated systems to those dominated by less sensitive species. Sponges are important structural and functional components of coral reef ecosystems, but despite increasing field-based evidence that sponges may be 'winners' in response to environmental degradation, our understanding of how they respond to the combined effects of OW and OA is limited. To determine the tolerance of adult sponges to climate change, four abundant Great Barrier Reef species were experimentally exposed to OW and OA levels predicted for 2100, under two CO2 Representative Concentration Pathways (RCPs). The impact of OW and OA on early life-history stages was also assessed for one of these species to provide a more holistic view of species impacts. All species were generally unaffected by conditions predicted under RCP6.0, although environmental conditions projected under RCP8.5 caused significant adverse effects: with elevated temperature decreasing the survival of all species, increasing levels of tissue necrosis and bleaching, elevating respiration rates and decreasing photosynthetic rates. OA alone had little adverse effect, even under RCP8.5 concentrations. Importantly, the interactive effect of OW and OA varied between species with different nutritional modes, with elevated pCO2 exacerbating temperature stress in heterotrophic species but mitigating temperature stress in phototrophic species. This antagonistic interaction was reflected by reduced mortality, necrosis and bleaching of phototrophic species in the highest OW/OA treatment. Survival and settlement success of Carteriospongia foliascens larvae were unaffected by experimental treatments, and juvenile sponges exhibited greater tolerance to OW than their adult counterparts. With elevated pCO2 providing phototrophic species with protection from elevated temperature, across different life stages, climate change may ultimately drive a shift in the composition of sponge assemblages towards a dominance of phototrophic species.


Subject(s)
Anthozoa/growth & development , Climate Change , Coral Reefs , Temperature , Animals , Carbon Dioxide , Hydrogen-Ion Concentration , Seawater , Stress, Physiological
16.
Conserv Biol ; 29(1): 42-53, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25599574

ABSTRACT

Sponges are important for maintaining ecosystem function and integrity of marine and freshwater benthic communities worldwide. Despite this, there has been no assessment of their current global conservation status. We assessed their status, accounting for the distribution of research effort; patterns of temporal variation in sponge populations and assemblages; the number of sponges on threatened species lists; and the impact of environmental pressures. Sponge research effort has been variable; marine sponges in the northeastern Atlantic and Mediterranean and freshwater sponges in Europe and North America have received the most attention. Although sponge abundance has increased in some locations since 1990, these were typically on coral reefs, in response to declines in other benthic organisms, and restricted to a few species. Few data were available on temporal trends in freshwater sponge abundance. Despite over 8500 described sponge species, only 20 are on threatened species lists, and all are marine species from the northeastern Atlantic and Mediterranean. Of the 202 studies identified, the effects of temperature, suspended sediment, substratum loss, and microbial pathogens have been studied the most intensively for marine sponges, although responses appear to be variable. There were 20 studies examining environmental impacts on freshwater sponges, and most of these were on temperature and heavy metal contamination. We found that most sponges do not appear to be threatened globally. However, little information is available for most species and more data are needed on the impacts of anthropogenic-related pressures. This is a critical information gap in understanding sponge conservation status.


Subject(s)
Conservation of Natural Resources , Ecosystem , Porifera/physiology , Animals , Species Specificity
17.
J Clin Microbiol ; 52(3): 906-10, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24391198

ABSTRACT

The performance characteristics of two commercially available rapid tests for influenza, the BD Veritor System for Flu A+B (BD) and the Alere BinaxNOW influenza A&B card (BN), were evaluated using 200 frozen clinical specimens collected from January 2011 to June 2012 from pediatric patients. Real-time reverse transcriptase PCR (RT-PCR) was used as the gold standard to evaluate the results obtained by the two different assays. Of the 200 specimens tested, real-time RT-PCR assay detected influenza A or B virus in 116 samples, while BD detected 104 samples and BN detected 84 samples as positive. The overall sensitivity and specificity for detection of both influenza A and B virus in comparison to those of real-time RT-PCR were 89.6% (95% confidence interval [CI], 82.2 to 94.3) and 98.8% (95% CI, 92.6 to 99.9) for BD Veritor and 72.4% (95% CI, 63.2 to 80.0) and 100% (95% CI, 94.5 to 100.0) for BinaxNOW. Workflow analysis indicated that overall processing times for a batch size of 10 specimens were virtually identical between both systems. Overall, these results indicate that the BD Veritor assay was more sensitive than the BinaxNOW assay in detection of influenza A and B viruses in respiratory specimens from pediatric patients.


Subject(s)
Bodily Secretions/virology , Diagnostic Tests, Routine/methods , Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Influenza, Human/diagnosis , Respiratory System/virology , Virology/methods , Adolescent , Child , Child, Preschool , Female , Humans , Immunoassay/methods , Infant , Infant, Newborn , Influenza, Human/virology , Male , Sensitivity and Specificity
18.
Mar Environ Res ; 193: 106254, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979404

ABSTRACT

Corals provide a complex 3D framework that offers habitat to diverse coral reef fauna. However, future reefs are likely to experience reduced coral abundance. Sponges have been proposed as one potential winner on future coral reefs, but little is known of how they contribute to reef 3D structure. Given the ecological importance of structural complexity, it is critical to understand how changes in the abundance of structure-building organisms will affect the three-dimensional properties of coral reefs. To investigate the potentially important functional role of coral reef sponges as providers of structural complexity, we compared the structural complexity of coral- and sponge-dominated areas of an Indonesian coral reef, using 3D photogrammetry at a 4 m2 spatial scale. Structural complexity of 31 4 m2 quadrats was expressed as rugosity indicating reef contour complexity (R), vector dispersion indicating heterogeneity of angles between reef surfaces (1/k), and fractal dimension indicating geometrical complexity at five different spatial scales between 1 and 120 cm (D1-5). Quadrats were identified as high- or low-complexity using hierarchical clustering based on the complexity metrics. At high structural complexity, coral- and sponge-dominated quadrats were similar in terms of R and 1/k. However, smallest-scale refuge spaces (1-5 cm) were more abundant in coral-dominated quadrats, whereas larger scale refuge spaces (30-60 cm) were more abundant in sponge-dominated quadrats. Branching and massive corals contributed the most to structural complexity in coral-dominated quadrats, and barrel sponges in sponge-dominated quadrats. We show that smaller-scale refugia (1-5 cm) are reduced on sponge-dominated reefs at the spatial scale considered here (4 m2), with potential negative implications for smaller reef fauna.


Subject(s)
Anthozoa , Coral Reefs , Animals , Ecosystem
19.
J Sport Exerc Psychol ; 35(4): 387-97, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23966448

ABSTRACT

This study assessed whether cardiovascular (CV) reactivity patterns indexing challenge and threat states predicted batting performance in elite male county (N = 12) and national (N = 30) academy cricketers. Participants completed a batting test under pressure, before which CV reactivity was recorded in response to ego-threatening audio instructions. Self-reported self-efficacy, control, achievement goals, and emotions were also assessed. Challenge CV reactivity predicted superior performance in the Batting Test, compared with threat CV reactivity. The relationships between self-report measures and CV reactivity, and self-report measures and performance were inconsistent. A small subsample of participants who exhibited threat CV reactivity, but performed well, reported greater self-efficacy than participants who exhibited threat CV reactivity, but performed poorly. Also a small subsample of participants who exhibited challenge reactivity, but performed poorly, had higher avoidance goals than participants with challenge reactivity who performed well. The mechanisms for the observed relationship between CV reactivity and performance are discussed alongside implications for future research and applied practice.


Subject(s)
Athletes/psychology , Sports/psychology , Stress, Psychological/psychology , Adolescent , Athletic Performance/physiology , Athletic Performance/psychology , Blood Pressure/physiology , Cardiovascular Physiological Phenomena , Electrocardiography , Emotions/physiology , Humans , Male , Self Efficacy , Sports/physiology , Stress, Psychological/physiopathology , Surveys and Questionnaires
20.
Adv Mar Biol ; 95: 27-89, 2023.
Article in English | MEDLINE | ID: mdl-37923539

ABSTRACT

Sponges are ecologically important benthic organisms with many important functional roles. However, despite increasing global interest in the functions that sponges perform, there has been limited focus on how such functions will be impacted by different anthropogenic stressors. In this review, we describe the progress that has been made in our understanding of the functional roles of sponges over the last 15 years and consider the impacts of anthropogenic stressors on these roles. We split sponge functional roles into interactions with the water column and associations with other organisms. We found evidence for an increasing focus on functional roles among sponge-focused research articles, with our understanding of sponge-mediated nutrient cycling increasing substantially in recent years. From the information available, many anthropogenic stressors have the potential to negatively impact sponge pumping, and therefore have the potential to cause ecosystem level impacts. While our understanding of the importance of sponges has increased in the last 15 years, much more experimental work is required to fully understand how sponges will contribute to reef ecosystem function in future changing oceans.


Subject(s)
Ecosystem , Nutrients , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL