Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Nature ; 505(7483): 412-6, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24317696

ABSTRACT

Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b(-/-) mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.


Subject(s)
Lung/immunology , Mucin-5B/metabolism , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Animals , Asthma/immunology , Asthma/metabolism , Bacterial Infections/immunology , Bacterial Infections/microbiology , Cilia/physiology , Ear, Middle/immunology , Ear, Middle/microbiology , Female , Inflammation/pathology , Lung/metabolism , Lung/microbiology , Macrophages/immunology , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Biological , Mucin 5AC/deficiency , Mucin 5AC/metabolism , Mucin-5B/deficiency , Mucin-5B/genetics , Phagocytosis , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/microbiology , Staphylococcus aureus/immunology , Survival Analysis
2.
Am J Respir Cell Mol Biol ; 37(3): 273-90, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17463395

ABSTRACT

Mucus hypersecretion contributes to morbidity and mortality in many obstructive lung diseases. Gel-forming mucins are the chief glycoprotein components of airway mucus, and elevated expression of these during mucous metaplasia precedes the hypersecretory phenotype. Five orthologous genes (MUC2, MUC5AC, MUC5B, MUC6, and MUC19) encode the mammalian gel-forming mucin family, and several have been implicated in asthma, cystic fibrosis, and chronic obstructive pulmonary disease pathologies. However, in the absence of a comprehensive analysis, their relative contributions remain unclear. Here, we assess the expression of the entire gel-forming mucin gene family in allergic mouse airways and show that Muc5ac is the predominant gel-forming mucin induced. We previously showed that the induction of mucous metaplasia in ovalbumin-sensitized and -challenged mouse lungs occurs within bronchial Clara cells. The temporal induction and localization of Muc5ac transcripts correlate with the induced expression and localization of mucin glycoproteins in bronchial airways. To better understand the tight regulation of Muc5ac expression, we analyzed all available 5'-flanking sequences of mammalian MUC5AC orthologs and identified evolutionarily conserved regions within domains proximal to the mRNA coding region. Analysis of luciferase reporter gene activity in a mouse transformed Clara cell line demonstrates that this region possesses strong promoter activity and harbors multiple conserved transcription factor-binding motifs. In particular, SMAD4 and HIF-1alpha bind to the promoter, and mutation of their recognition motifs abolishes promoter function. In conclusion, Muc5ac expression is the central event in antigen-induced mucous metaplasia, and phylogenetically conserved 5' noncoding domains control its regulation.


Subject(s)
Lung/pathology , Lung/physiopathology , Mucins/genetics , Mucins/physiology , 3T3 Cells , Amino Acid Sequence , Animals , Antigens/administration & dosage , Base Sequence , Cell Line , Conserved Sequence , DNA Primers/genetics , Female , Humans , Lung/immunology , Metaplasia , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Mucin 5AC , Mucous Membrane/pathology , Mucous Membrane/physiopathology , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Homology, Amino Acid , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL