Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Cell ; 153(5): 939-40, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23706730

ABSTRACT

Induction of pluripotency in somatic cells has been achieved by myriad combinations of transcription factors that belong to the core pluripotency circuitry. In this issue, Shu et al. report reprogramming with lineage specifiers, lending support to the view of the pluripotent state as a fine balance between competing differentiation forces.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Transcription Factors/metabolism , Animals
2.
Nature ; 590(7846): 486-491, 2021 02.
Article in English | MEDLINE | ID: mdl-33505028

ABSTRACT

Selective targeting of aneuploid cells is an attractive strategy for cancer treatment1. However, it is unclear whether aneuploidy generates any clinically relevant vulnerabilities in cancer cells. Here we mapped the aneuploidy landscapes of about 1,000 human cancer cell lines, and analysed genetic and chemical perturbation screens2-9 to identify cellular vulnerabilities associated with aneuploidy. We found that aneuploid cancer cells show increased sensitivity to genetic perturbation of core components of the spindle assembly checkpoint (SAC), which ensures the proper segregation of chromosomes during mitosis10. Unexpectedly, we also found that aneuploid cancer cells were less sensitive than diploid cells to short-term exposure to multiple SAC inhibitors. Indeed, aneuploid cancer cells became increasingly sensitive to inhibition of SAC over time. Aneuploid cells exhibited aberrant spindle geometry and dynamics, and kept dividing when the SAC was inhibited, resulting in the accumulation of mitotic defects, and in unstable and less-fit karyotypes. Therefore, although aneuploid cancer cells could overcome inhibition of SAC more readily than diploid cells, their long-term proliferation was jeopardized. We identified a specific mitotic kinesin, KIF18A, whose activity was perturbed in aneuploid cancer cells. Aneuploid cancer cells were particularly vulnerable to depletion of KIF18A, and KIF18A overexpression restored their response to SAC inhibition. Our results identify a therapeutically relevant, synthetic lethal interaction between aneuploidy and the SAC.


Subject(s)
Aneuploidy , M Phase Cell Cycle Checkpoints/drug effects , Neoplasms/pathology , Abnormal Karyotype/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chromosome Segregation/drug effects , Diploidy , Genes, Lethal , Humans , Kinesins/deficiency , Kinesins/genetics , Kinesins/metabolism , Neoplasms/genetics , Spindle Apparatus/drug effects , Synthetic Lethal Mutations/drug effects , Synthetic Lethal Mutations/genetics , Time Factors
3.
EMBO Rep ; 25(4): 1909-1935, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38424231

ABSTRACT

Stabilization of microtubule plus end-directed kinesin CENP-E at the metaphase kinetochores is important for chromosome alignment, but its mechanism remains unclear. Here, we show that CKAP5, a conserved microtubule plus tip protein, regulates CENP-E at kinetochores in human cells. Depletion of CKAP5 impairs CENP-E localization at kinetochores at the metaphase plate and results in increased kinetochore-microtubule stability and attachment errors. Erroneous attachments are also supported by computational modeling. Analysis of CKAP5 knockout cancer cells of multiple tissue origins shows that CKAP5 is preferentially essential in aneuploid, chromosomally unstable cells, and the sensitivity to CKAP5 depletion is correlated to that of CENP-E depletion. CKAP5 depletion leads to reduction in CENP-E-BubR1 interaction and the interaction is rescued by TOG4-TOG5 domain of CKAP5. The same domain can rescue CKAP5 depletion-induced CENP-E removal from the kinetochores. Interestingly, CKAP5 depletion facilitates recruitment of PP1 to the kinetochores and furthermore, a PP1 target site-specific CENP-E phospho-mimicking mutant gets stabilized at kinetochores in the CKAP5-depleted cells. Together, the results support a model in which CKAP5 controls mitotic chromosome attachment errors by stabilizing CENP-E at kinetochores and by regulating stability of the kinetochore-attached microtubules.


Subject(s)
Chromosomal Proteins, Non-Histone , Kinetochores , Humans , Kinetochores/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Microtubules/metabolism , Metaphase , Kinesins/genetics , HeLa Cells , Mitosis , Chromosome Segregation , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism
4.
Nat Rev Genet ; 21(1): 44-62, 2020 01.
Article in English | MEDLINE | ID: mdl-31548659

ABSTRACT

Cancer is driven by multiple types of genetic alterations, which range in size from point mutations to whole-chromosome gains and losses, known as aneuploidy. Chromosome instability, the process that gives rise to aneuploidy, can promote tumorigenesis by increasing genetic heterogeneity and promoting tumour evolution. However, much less is known about how aneuploidy itself contributes to tumour formation and progression. Unlike some pan-cancer oncogenes and tumour suppressor genes that drive transformation in virtually all cell types and cellular contexts, aneuploidy is not a universal promoter of tumorigenesis. Instead, recent studies suggest that aneuploidy is a context-dependent, cancer-type-specific oncogenic event that may have clinical relevance as a prognostic marker and as a potential therapeutic target.


Subject(s)
Aneuploidy , Cell Transformation, Neoplastic/pathology , Chromosomal Instability , Neoplasms/genetics , Neoplasms/pathology , Animals , Humans , Phenotype
5.
Nature ; 560(7718): 325-330, 2018 08.
Article in English | MEDLINE | ID: mdl-30089904

ABSTRACT

Human cancer cell lines are the workhorse of cancer research. Although cell lines are known to evolve in culture, the extent of the resultant genetic and transcriptional heterogeneity and its functional consequences remain understudied. Here we use genomic analyses of 106 human cell lines grown in two laboratories to show extensive clonal diversity. Further comprehensive genomic characterization of 27 strains of the common breast cancer cell line MCF7 uncovered rapid genetic diversification. Similar results were obtained with multiple strains of 13 additional cell lines. Notably, genetic changes were associated with differential activation of gene expression programs and marked differences in cell morphology and proliferation. Barcoding experiments showed that cell line evolution occurs as a result of positive clonal selection that is highly sensitive to culture conditions. Analyses of single-cell-derived clones demonstrated that continuous instability quickly translates into heterogeneity of the cell line. When the 27 MCF7 strains were tested against 321 anti-cancer compounds, we uncovered considerably different drug responses: at least 75% of compounds that strongly inhibited some strains were completely inactive in others. This study documents the extent, origins and consequences of genetic variation within cell lines, and provides a framework for researchers to measure such variation in efforts to support maximally reproducible cancer research.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Evolution, Molecular , Genetic Variation/genetics , Genomic Instability/genetics , Transcription, Genetic/genetics , Breast Neoplasms/pathology , Cell Proliferation , Cell Shape , Clone Cells/cytology , Clone Cells/drug effects , Clone Cells/metabolism , Genetic Variation/drug effects , Genomic Instability/drug effects , Humans , MCF-7 Cells , Reproducibility of Results
6.
Mol Cancer ; 22(1): 192, 2023 11 30.
Article in English | MEDLINE | ID: mdl-38031025

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) are a therapeutic strategy for various cancers although only a subset of patients respond to the therapy. Identifying patients more prone to respond to ICIs may increase the therapeutic benefit and allow studying new approaches for resistant patients. METHODS: We analyzed the TCGA cohort of HNSCC patients in relation to their activation of 26 immune gene expression signatures, as well as their cell type composition, in order to define signaling pathways associated with resistance to ICIs. Results were validated on two cohorts of 102 HNSCC patients and 139 HNSCC patients under treatment with PD-L1 inhibitors, respectively, and a cohort of 108 HNSCC HPV negative patients and by in vitro experiments in HNSCC cell lines. RESULTS: We observed a significant association between the gene set and TP53 gene status and OS and PFS of HNSCC patients. Surprisingly, the presence of a TP53 mutation together with another co-driver mutation was associated with significantly higher levels of the immune gene expression, in comparison to tumors in which the TP53 gene was mutated alone. In addition, the higher level of TP53 mutated-dependent MYC signature was associated with lower levels of the immune gene expression signature. In vitro and three different patient cohorts validation analyses corroborated these findings. CONCLUSIONS: Immune gene signature sets associated with TP53 status and co-mutations classify with more accuracy HNSCC patients. These biomarkers may be easily implemented in clinical setting.


Subject(s)
Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Head and Neck Neoplasms/genetics , Cohort Studies , Signal Transduction , Mutation , Prognosis , Tumor Suppressor Protein p53/genetics
7.
EMBO Rep ; 22(8): e52032, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34105235

ABSTRACT

The immune system plays a major role in the protection against cancer. Identifying and characterizing the pathways mediating this immune surveillance are thus critical for understanding how cancer cells are recognized and eliminated. Aneuploidy is a hallmark of cancer, and we previously found that untransformed cells that had undergone senescence due to highly abnormal karyotypes are eliminated by natural killer (NK) cells in vitro. However, the mechanisms underlying this process remained elusive. Here, using an in vitro NK cell killing system, we show that non-cell-autonomous mechanisms in aneuploid cells predominantly mediate their clearance by NK cells. Our data indicate that in untransformed aneuploid cells, NF-κB signaling upregulation is central to elicit this immune response. Inactivating NF-κB abolishes NK cell-mediated clearance of untransformed aneuploid cells. In cancer cell lines, NF-κB upregulation also correlates with the degree of aneuploidy. However, such upregulation in cancer cells is not sufficient to trigger NK cell-mediated clearance, suggesting that additional mechanisms might be at play during cancer evolution to counteract NF-κB-mediated immunogenicity.


Subject(s)
Killer Cells, Natural , NF-kappa B , Aneuploidy , Cellular Senescence/genetics , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction
8.
Nature ; 604(7904): 44-45, 2022 04.
Article in English | MEDLINE | ID: mdl-35354975

Subject(s)
Polyploidy , Humans
9.
Proc Natl Acad Sci U S A ; 117(48): 30566-30576, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33203674

ABSTRACT

Aneuploidy, defined as whole chromosome gains and losses, is associated with poor patient prognosis in many cancer types. However, the condition causes cellular stress and cell cycle delays, foremost in G1 and S phase. Here, we investigate how aneuploidy causes both slow proliferation and poor disease outcome. We test the hypothesis that aneuploidy brings about resistance to chemotherapies because of a general feature of the aneuploid condition-G1 delays. We show that single chromosome gains lead to increased resistance to the frontline chemotherapeutics cisplatin and paclitaxel. Furthermore, G1 cell cycle delays are sufficient to increase chemotherapeutic resistance in euploid cells. Mechanistically, G1 delays increase drug resistance to cisplatin and paclitaxel by reducing their ability to damage DNA and microtubules, respectively. Finally, we show that our findings are clinically relevant. Aneuploidy correlates with slowed proliferation and drug resistance in the Cancer Cell Line Encyclopedia (CCLE) dataset. We conclude that a general and seemingly detrimental effect of aneuploidy, slowed proliferation, provides a selective benefit to cancer cells during chemotherapy treatment.


Subject(s)
Aneuploidy , Antineoplastic Agents/pharmacology , Cell Division/drug effects , Cell Division/genetics , Drug Resistance, Neoplasm/genetics , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cisplatin/pharmacology , DNA Damage/drug effects , Genes, p53 , Humans , Paclitaxel/pharmacology , Trisomy/genetics
10.
Biochim Biophys Acta ; 1849(4): 427-35, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25132386

ABSTRACT

Cancer cells and stem cells share many traits, including a tendency towards genomic instability. Human cancers exhibit tumor-specific genomic aberrations, which often affect their malignancy and drug response. During their culture propagation, human pluripotent stem cells (hPSCs) also acquire characteristic genomic aberrations, which may have significant impact on their molecular and cellular phenotypes. These aberrations vary in size from single nucleotide alterations to copy number alterations to whole chromosome gains. A prominent challenge in both cancer and stem cell research is to identify "driver aberrations" that confer a selection advantage, and "driver genes" that underlie the recurrence of these aberrations. Following principles that are already well-established in cancer research, candidate driver genes have also been suggested in hPSCs. Experimental validation of the functional role of such candidates can uncover whether these are bona fide driver genes. The identification of driver genes may bring us closer to a mechanistic understanding of the genomic instability of stem cells. Guided by terminologies and methodologies commonly applied in cancer research, such understanding may have important ramifications for both stem cell and cancer biology. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.


Subject(s)
Genes, Switch/physiology , Genomic Instability , Neoplasms/genetics , Pluripotent Stem Cells/physiology , Selection, Genetic , Aneuploidy , Animals , Gene Dosage , Humans , Neoplasms/pathology
11.
Stem Cells ; 33(3): 1013-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25377277

ABSTRACT

Pluripotent-specific inhibitors (PluriSIns) make a powerful tool to study the mechanisms controlling the survival of human pluripotent stem cells (hPSCs). Here, we characterize the mechanism of action of PluriSIn#2, a compound that selectively eliminates undifferentiated hPSCs, while sparing various other cell types derived from them. Toxicogenomic analysis predicts this compound to be a topoisomerase inhibitor. Gene expression analyses reveal that one of the human topoisomerase enzymes, topoisomerase II alpha (TOP2A), is uniquely expressed in hPSCs: TOP2A is highly expressed in undifferentiated cells, is downregulated during their differentiation, and its expression depends on the expression of core pluripotency transcription factors. Furthermore, siRNA-based knockdown of TOP2A in undifferentiated hPSCs results in their cell death, revealing that TOP2A expression is required for the survival of these cells. We find that PluriSIn#2 does not directly inhibit TOP2A enzymatic activity, but rather selectively represses its transcription, thereby significantly reducing TOP2A protein levels. As undifferentiated hPSCs require TOP2A activity for their survival, TOP2A inhibition by PluriSIn#2 thus causes their cell death. Therefore, TOP2A dependency can be harnessed for the selective elimination of tumorigenic hPSCs from culture.


Subject(s)
DNA-Binding Proteins/antagonists & inhibitors , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Topoisomerase Inhibitors/pharmacology , Antigens, Neoplasm/metabolism , Cell Differentiation/drug effects , Cell Differentiation/physiology , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/enzymology , Humans , Pluripotent Stem Cells/enzymology , Poly-ADP-Ribose Binding Proteins , Small Molecule Libraries/pharmacology
13.
Genome Biol ; 25(1): 95, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622679

ABSTRACT

BACKGROUND: Aneuploidy, an abnormal number of chromosomes within a cell, is a hallmark of cancer. Patterns of aneuploidy differ across cancers, yet are similar in cancers affecting closely related tissues. The selection pressures underlying aneuploidy patterns are not fully understood, hindering our understanding of cancer development and progression. RESULTS: Here, we apply interpretable machine learning methods to study tissue-selective aneuploidy patterns. We define 20 types of features corresponding to genomic attributes of chromosome-arms, normal tissues, primary tumors, and cancer cell lines (CCLs), and use them to model gains and losses of chromosome arms in 24 cancer types. To reveal the factors that shape the tissue-specific cancer aneuploidy landscapes, we interpret the machine learning models by estimating the relative contribution of each feature to the models. While confirming known drivers of positive selection, our quantitative analysis highlights the importance of negative selection for shaping aneuploidy landscapes. This is exemplified by tumor suppressor gene density being a better predictor of gain patterns than oncogene density, and vice versa for loss patterns. We also identify the importance of tissue-selective features and demonstrate them experimentally, revealing KLF5 as an important driver for chr13q gain in colon cancer. Further supporting an important role for negative selection in shaping the aneuploidy landscapes, we find compensation by paralogs to be among the top predictors of chromosome arm loss prevalence and demonstrate this relationship for one paralog interaction. Similar factors shape aneuploidy patterns in human CCLs, demonstrating their relevance for aneuploidy research. CONCLUSIONS: Our quantitative, interpretable machine learning models improve the understanding of the genomic properties that shape cancer aneuploidy landscapes.


Subject(s)
Aneuploidy , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/pathology , Chromosome Deletion , Chromosomes , Machine Learning
14.
bioRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38313282

ABSTRACT

The co-occurrence of chromosome 10 loss and chromosome 7 gain in gliomas is the most frequent loss-gain co-aneuploidy pair in human cancers, a phenomenon that has been investigated without resolution since the late 1980s. Expanding beyond previous gene-centric studies, we investigate the co-occurrence in a genome-wide manner taking an evolutionary perspective. First, by mining large tumor aneuploidy data, we predict that the more likely order is 10 loss followed by 7 gain. Second, by analyzing extensive genomic and transcriptomic data from both patients and cell lines, we find that this co-occurrence can be explained by functional rescue interactions that are highly enriched on 7, which can possibly compensate for any detrimental consequences arising from the loss of 10. Finally, by analyzing transcriptomic data from normal, non-cancerous, human brain tissues, we provide a plausible reason why this co-occurrence happens preferentially in cancers originating in certain regions of the brain.

15.
Cancer Res ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078448

ABSTRACT

The co-occurrence of chromosome 10 loss and chromosome 7 gain in gliomas is the most frequent loss-gain co-aneuploidy pair in human cancers. This phenomenon has been investigated since the late 1980s without resolution. Expanding beyond previous gene-centric studies, we investigated the co-occurrence in a genome-wide manner taking an evolutionary perspective. Mining of large-scale tumor aneuploidy data confirmed the previous finding of a small-scale longitudinal study that the most likely order is chromosome 10 loss followed by chromosome 7 gain. Extensive analysis of genomic and transcriptomic data from both patients and cell lines revealed that this co-occurrence can be explained by functional rescue interactions that are highly enriched on chromosome 7, which could potentially compensate for any detrimental consequences arising from the loss of chromosome 10. Transcriptomic data from various normal, non-cancerous human brain tissues were analyzed to assess which tissues may be most predisposed to tolerate compensation of chromosome 10 loss by chromosome 7 gain. The analysis indicated that the pre-existing transcriptomic states in the cortex and frontal cortex, where gliomas arise, are more favorable than other brain regions for compensation by rescuer genes that are active on chromosome 7. Collectively, these findings suggest that the phenomenon of chromosome 10 loss and chromosome 7 gain in gliomas is orchestrated by a complex interaction of many genes residing within these two chromosomes and provide a plausible reason why this co-occurrence happens preferentially in cancers originating in certain regions of the brain.

16.
Stem Cell Reports ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38964325

ABSTRACT

Culture-acquired variants in human pluripotent stem cells (hPSCs) hinder their applications in research and clinic. However, the mechanisms that underpin selection of variants remain unclear. Here, through analysis of comprehensive karyotyping datasets from over 23,000 hPSC cultures of more than 1,500 lines, we explored how culture conditions shape variant selection. Strikingly, we identified an association of chromosome 1q gains with feeder-free cultures and noted a rise in its prevalence in recent years, coinciding with increased usage of feeder-free regimens. Competition experiments of multiple isogenic lines with and without a chromosome 1q gain confirmed that 1q variants have an advantage in feeder-free (E8/vitronectin), but not feeder-based, culture. Mechanistically, we show that overexpression of MDM4, located on chromosome 1q, drives variants' advantage in E8/vitronectin by alleviating genome damage-induced apoptosis, which is lower in feeder-based conditions. Our study explains condition-dependent patterns of hPSC aberrations and offers insights into the mechanisms of variant selection.

17.
Stem Cells ; 30(4): 612-22, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22328490

ABSTRACT

Mouse pluripotent stem cells (PSCs) are the best studied pluripotent system and are regarded as the "gold standard" to which human PSCs are compared. However, while the genomic integrity of human PSCs has recently drawn much attention, mouse PSCs have not been systematically evaluated in this regard. The genomic stability of PSCs is a matter of profound significance, as it affects their pluripotency, differentiation, and tumorigenicity. We thus performed a thorough analysis of the genomic integrity of 325 samples of mouse PSCs, including 127 induced pluripotent stem cell (iPSC) samples. We found that genomic aberrations occur frequently in mouse embryonic stem cells of various mouse strains, add in mouse iPSCs of various cell origins and derivation techniques. Four hotspots of chromosomal aberrations were detected: full trisomy 11 (with a minimally recurrent gain in 11qE2), full trisomy 8, and deletions in chromosomes 10qB and 14qC-14qE. The most recurrent aberration in mouse PSCs, gain 11qE2, turned out to be fully syntenic to the common aberration 17q25 in human PSCs, while other recurrent aberrations were found to be species specific. Analysis of chromosomal aberrations in 74 samples of rhesus macaque PSCs revealed a gain in chromosome 16q, syntenic to the hotspot in human 17q. Importantly, these common aberrations jeopardize the interpretation of published comparisons of PSCs, which were unintentionally conducted between normal and aberrant cells. Therefore, this work emphasizes the need to carefully monitor genomic integrity of PSCs from all species, for their proper use in biomedical research.


Subject(s)
Chromosome Aberrations , Conserved Sequence/genetics , Evolution, Molecular , Genome/genetics , Pluripotent Stem Cells/metabolism , Animals , Gene Expression Regulation , Humans , Macaca mulatta/genetics , Mice , Species Specificity , Synteny/genetics
18.
NPJ Precis Oncol ; 7(1): 54, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37270587

ABSTRACT

Identifying patients that are likely to respond to cancer immunotherapy is an important, yet highly challenging clinical need. Using 3139 patients across 17 different cancer types, we comprehensively studied the ability of two common copy-number alteration (CNA) scores-the tumor aneuploidy score (AS) and the fraction of genome single nucleotide polymorphism encompassed by copy-number alterations (FGA)-to predict survival following immunotherapy in both pan-cancer and individual cancer types. First, we show that choice of cutoff during CNA calling significantly influences the predictive power of AS and FGA for patient survival following immunotherapy. Remarkably, by using proper cutoff during CNA calling, AS and FGA can predict pan-cancer survival following immunotherapy for both high-TMB and low-TMB patients. However, at the individual cancer level, our data suggest that the use of AS and FGA for predicting immunotherapy response is currently limited to only a few cancer types. Therefore, larger sample sizes are needed to evaluate the clinical utility of these measures for patient stratification in other cancer types. Finally, we propose a simple, non-parameterized, elbow-point-based method to help determine the cutoff used for calling CNAs.

19.
Genome Biol ; 24(1): 267, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001542

ABSTRACT

BACKGROUND: RNA editing has been described as promoting genetic heterogeneity, leading to the development of multiple disorders, including cancer. The cytosine deaminase APOBEC3B is implicated in tumor evolution through DNA mutation, but whether it also functions as an RNA editing enzyme has not been studied. RESULTS: Here, we engineer a novel doxycycline-inducible mouse model of human APOBEC3B-overexpression to understand the impact of this enzyme in tissue homeostasis and address a potential role in C-to-U RNA editing. Elevated and sustained levels of APOBEC3B lead to rapid alteration of cellular fitness, major organ dysfunction, and ultimately lethality in mice. Importantly, RNA-sequencing of mouse tissues expressing high levels of APOBEC3B identifies frequent UCC-to-UUC RNA editing events that are not evident in the corresponding genomic DNA. CONCLUSIONS: This work identifies, for the first time, a new deaminase-dependent function for APOBEC3B in RNA editing and presents a preclinical tool to help understand the emerging role of APOBEC3B as a driver of carcinogenesis.


Subject(s)
Neoplasms , RNA Editing , Humans , Animals , Mice , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Mutation , Neoplasms/pathology , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , DNA/metabolism
20.
Nat Commun ; 14(1): 1353, 2023 03 11.
Article in English | MEDLINE | ID: mdl-36906648

ABSTRACT

Chromosome instability (CIN) is the most common form of genome instability and is a hallmark of cancer. CIN invariably leads to aneuploidy, a state of karyotype imbalance. Here, we show that aneuploidy can also trigger CIN. We found that aneuploid cells experience DNA replication stress in their first S-phase and precipitate in a state of continuous CIN. This generates a repertoire of genetically diverse cells with structural chromosomal abnormalities that can either continue proliferating or stop dividing. Cycling aneuploid cells display lower karyotype complexity compared to the arrested ones and increased expression of DNA repair signatures. Interestingly, the same signatures are upregulated in highly-proliferative cancer cells, which might enable them to proliferate despite the disadvantage conferred by aneuploidy-induced CIN. Altogether, our study reveals the short-term origins of CIN following aneuploidy and indicates the aneuploid state of cancer cells as a point mutation-independent source of genome instability, providing an explanation for aneuploidy occurrence in tumors.


Subject(s)
Chromosome Aberrations , Neoplasms , Humans , Aneuploidy , Genomic Instability , Chromosomal Instability , Neoplasms/genetics , Karyotype , Chromosome Segregation
SELECTION OF CITATIONS
SEARCH DETAIL