ABSTRACT
Focused ultrasound (FUS) stimulation is a promising neuromodulation technique with the merits of non-invasiveness, high spatial resolution, and deep penetration depth. However, simultaneous imaging of FUS-induced brain tissue displacement and the subsequent effect of FUS stimulation on brain hemodynamics has proven challenging thus far. In addition, earlier studies lack in situ confirmation of targeting except for the magnetic resonance imaging-guided FUS system-based studies. The purpose of this study is 1) to introduce a fully ultrasonic approach to in situ target, modulate neuronal activity, and monitor the resultant neuromodulation effect by respectively leveraging displacement imaging, FUS, and functional ultrasound (fUS) imaging, and 2) to investigate FUS-evoked cerebral blood volume (CBV) response and the relationship between CBV and displacement. We performed displacement imaging on craniotomized mice to confirm the in situ targeting for neuromodulation site. We recorded hemodynamic responses evoked by FUS while fUS imaging revealed an ipsilateral CBV increase that peaks at 4 s post-FUS. We report a stronger hemodynamic activation in the subcortical region than cortical, showing good agreement with a brain elasticity map that can also be obtained using a similar methodology. We observed dose-dependent CBV responses with peak CBV, activated area, and correlation coefficient increasing with the ultrasonic dose. Furthermore, by mapping displacement and hemodynamic activation, we found that displacement colocalized and linearly correlated with CBV increase. The findings presented herein demonstrated that FUS evokes ipsilateral hemodynamic activation in cortical and subcortical depths while the evoked hemodynamic responses colocalize and correlate with FUS-induced displacement. We anticipate that our findings will help consolidate accurate targeting as well as shedding light on one of the mechanisms behind FUS modulation, i.e., how FUS mechanically displaces brain tissue affecting cerebral hemodynamics and thereby its associated connectivity.
Subject(s)
Brain , Animals , Mice , Male , Brain/physiology , Brain/diagnostic imaging , Mice, Inbred C57BL , Hemodynamics/physiology , Ultrasonography/methodsABSTRACT
Parkinson's disease (PD) is the second most common neurodegenerative disorder, with increasing numbers of affected patients. Many patients lack adequate care due to insufficient specialist neurologists/geriatricians, and older patients experience difficulties traveling far distances to reach their treating physicians. A new option for these obstacles would be telemedicine and wearables. During the last decade, the development of wearable sensors has allowed for the continuous monitoring of bradykinesia and dyskinesia. Meanwhile, other systems can also detect tremors, freezing of gait, and gait problems. The most recently developed systems cover both sides of the body and include smartphone apps where the patients have to register their medication intake and well-being. In turn, the physicians receive advice on changing the patient's medication and recommendations for additional supportive therapies such as physiotherapy. The use of smartphone apps may also be adapted to detect PD symptoms such as bradykinesia, tremor, voice abnormalities, or changes in facial expression. Such tools can be used for the general population to detect PD early or for known PD patients to detect deterioration. It is noteworthy that most PD patients can use these digital tools. In modern times, wearable sensors and telemedicine open a new window of opportunity for patients with PD that are easy to use and accessible to most of the population.
Subject(s)
Gait Disorders, Neurologic , Parkinson Disease , Wearable Electronic Devices , Humans , Parkinson Disease/diagnosis , Parkinson Disease/therapy , Hypokinesia/diagnosis , TremorABSTRACT
Focused ultrasound (FUS) stimulation is a promising neuromodulation technique with the merits of non-invasiveness, high spatial resolution, and deep penetration depth. However, simultaneous imaging of FUS-induced brain tissue displacement and the subsequent effect of FUS stimulation on brain hemodynamics has proven challenging thus far. In addition, earlier studies lack in situ confirmation of targeting except for the magnetic resonance imaging-guided FUS system-based studies. The purpose of this study is 1) to introduce a fully ultrasonic approach to in situ target, modulate neuronal activity, and monitor the resultant neuromodulation effect by respectively leveraging displacement imaging, FUS, and functional ultrasound (fUS) imaging, and 2) to investigate FUS-evoked cerebral blood volume (CBV) response and the relationship between CBV and displacement. We performed displacement imaging on craniotomized mice to confirm the in targeting for neuromodulation site. We recorded hemodynamic responses evoked by FUS and fUS revealed an ipsilateral CBV increase that peaks at 4 s post-FUS. We saw a stronger hemodynamic activation in the subcortical region than cortical, showing good agreement with the brain elasticity map that can also be obtained using a similar methodology. We observed dose-dependent CBV response with peak CBV, activated area, and correlation coefficient increasing with ultrasonic dose. Furthermore, by mapping displacement and hemodynamic activation, we found that displacement colocalizes and linearly correlates with CBV increase. The findings presented herein demonstrated that FUS evokes ipsilateral hemodynamic activation in cortical and subcortical depths and the evoked hemodynamic responses colocalized and correlate with FUS-induced displacement. We anticipate that our findings will help consolidate accurate targeting as well as an understanding of how FUS displaces brain tissue and affects cerebral hemodynamics.
ABSTRACT
Different stages of Parkinson's disease (PD) are defined by clinical criteria, while late-stage PD is marked by the onset of morbidity milestones and rapid clinical deterioration. Based on neuropathological evidence, degeneration in the dopaminergic system occurs primarily in the early stage of PD, raising the question of what drives disease progression in late-stage PD. This study aimed to investigate whether late-stage PD is associated with increased neurodegeneration dynamics rather than functional decompensation using the blood-based biomarker serum neurofilament light chain (sNfL) as a proxy for the rate of neurodegeneration. The study included 118 patients with PD in the transition and late-stage (minimum disease duration 5 years, mean (SD) disease duration 15 (±7) years). The presence of clinical milestones (hallucinations, dementia, recurrent falls, and admission to a nursing home) and mortality were determined based on chart review. We found that sNfL was higher in patients who presented with at least one clinical milestone and increased with a higher number of milestones (Spearman's ρ = 0.66, p < 0.001). Above a cutoff value of 26.9 pg/ml, death was 13.6 times more likely during the follow-up period (95% CI: 3.53-52.3, p < 0.001), corresponding to a sensitivity of 85.0% and a specificity of 85.7% (AUC 0.91, 95% CI: 0.85-0.97). Similar values were obtained when using an age-adjusted cutoff percentile of 90% for sNfL. Our findings suggest that the rate of ongoing neurodegeneration is higher in advanced PD (as defined by the presence of morbidity milestones) than in earlier disease stages. A better understanding of the biological basis of stage-dependent neurodegeneration may facilitate the development of neuroprotective means.
ABSTRACT
Focused ultrasound (FUS) is an emerging noinvasive technique for neuromodulation in the central nervous system (CNS). To evaluate the effects of FUS-induced neuromodulation, many studies used behavioral changes, functional magnetic resonance imaging (fMRI) or electroencephalography (EEG). However, behavioral readouts are often not easily mapped to specific brain activity, EEG has low spatial resolution limited to the surface of the brain and fMRI requires a large importable scanner that limits additional readouts and manipulations. In this context, functional ultrasound imaging (fUSI) holds promise to directly monitor the effects of FUS neuromodulation with high spatiotemporal resolution in a large field of view, with a comparatively simple and flexible setup. fUSI uses ultrafast Power Doppler Imaging (PDI) to measure changes in cerebral blood volume, which correlates well with neuronal activity and local field potentials. We designed a setup that aligns a FUS transducer with a linear array to allow immediate subsequent monitoring of the hemodynamic response with fUSI during and after FUS neuromodulation. We established a positive correlation between FUS pressure and the size of the activated area, as well as changes in cerebral blood volume (CBV) and found that unilateral sonications produce bilateral hemodynamic changes with ipsilateral accentuation in mice. We further demonstrated the ability to perform fully noninvasive, transcranial FUS-fUSI in nonhuman primates for the first time by using a lower-frequency transducer configuration.
ABSTRACT
Focused ultrasound can non-invasively modulate neural activity, but whether effective stimulation parameters generalize across brain regions and cell types remains unknown. We used focused ultrasound coupled with fiber photometry to identify optimal neuromodulation parameters for four different arousal centers of the brain in an effort to yield overt changes in behavior. Applying coordinate descent, we found that optimal parameters for excitation or inhibition are highly distinct, the effects of which are generally conserved across brain regions and cell types. Optimized stimulations induced clear, target-specific behavioral effects, whereas non-optimized protocols of equivalent energy resulted in substantially less or no change in behavior. These outcomes were independent of auditory confounds and, contrary to expectation, accompanied by a cyclooxygenase-dependent and prolonged reduction in local blood flow and temperature with brain-region-specific scaling. These findings demonstrate that carefully tuned and targeted ultrasound can exhibit powerful effects on complex behavior and physiology.
Subject(s)
Ultrasonic Waves , Animals , Brain/physiology , Brain/diagnostic imaging , Male , Mice , Behavior, Animal/physiologyABSTRACT
Deep brain stimulation (DBS) is a potent symptomatic therapy for Parkinson's disease, but it is debated whether it causes or prevents neurodegeneration. We used serum neurofilament light chain (NFL) as a reporter for neuronal damage and found no difference between 92 patients with chronic STN-DBS and 57 patients on best medical treatment. Serum NFL transiently increased after DBS surgery whereas the initiation of STN stimulation did not affect NFL levels, suggesting that DBS surgery can be associated with neuronal damage whereas stimulation itself is not.
Subject(s)
Deep Brain Stimulation/adverse effects , Neurofilament Proteins/blood , Neurosurgical Procedures/adverse effects , Parkinson Disease/therapy , Subthalamic Nucleus/pathology , Aged , Deep Brain Stimulation/methods , Female , Humans , Longitudinal Studies , Male , Middle Aged , Neurons/pathology , Subthalamic Nucleus/cytology , Subthalamic Nucleus/surgeryABSTRACT
Background: In Parkinson's disease, postural instability and falls are of particular socioeconomic relevance. Although effective fall prevention and the prophylaxis of fall-related injuries depend on low-threshold symptom monitoring, validated instruments are lacking. Objectives: To develop a self-report questionnaire for the assessment of falls, near falls, fear of falling, fall-related injuries, and causes of falls for patients with Parkinson's disease (PwPD). Methods: A pool of potential items was generated from a literature review and by discussion in an expert panel. The first version of the Dresden Fall Questionnaire (DREFAQ) was tested in a group of German-speaking movement disorder specialists as well as PwPD. The resulting 5-item questionnaire was assessed in a validation cohort of 36 PwPD who documented fall events and near-fall events in a calendar for 3 months and completed the DREFAQ at the end of the study. The questionnaire was subsequently used in a separate cohort of 46 PwPD to determine test-retest reliability and confirm the factor structure. Results: The DREFAQ showed good internal consistency (Cronbach's α = 0.84) and good test-retest reliability (intraclass correlation coefficient, 0.76; 95% confidence interval, 0.60-0.86). The total DREFAQ score showed good concurrent validity with fall events (Spearman's ρ = 0.82) and near-fall events (Spearman's ρ = 0.78) as determined by fall and near-fall diaries. Factor analysis revealed a 2-factor structure composed of near falls with fear of falling and severe falls with injuries. Conclusions: The DREFAQ is a reliable and valid 5-item questionnaire for determining the incidence of falls, near falls, fear of falling, fall-related injuries, and causes of falls in PwPD.
ABSTRACT
BACKGROUND: Parkinson disease (PD) is a neurodegenerative disorder with a variety of motor and nonmotor symptoms. Many of these symptoms can be monitored by eHealth solutions, including smartphone apps, wearable sensors, and camera systems. The usability of such systems is a key factor in long-term use, but not much is known about the predictors of successful use and preferable methods to assess usability in patients with PD. OBJECTIVE: This study tested methods to assess usability and determined prerequisites for successful use in patients with PD. METHODS: We performed comprehensive usability assessments with 18 patients with PD using a mixed methods usability battery containing the System Usability Scale, a rater-based evaluation of device-specific tasks, and qualitative interviews. Each patient performed the usability battery with 2 of 3 randomly assigned devices: a tablet app, wearable sensors, and a camera system. The usability battery was administered at the beginning and at the end of a 4-day testing period. Between usability batteries, the systems were used by the patients during 3 sessions of motor assessments (wearable sensors and camera system) and at the movement disorder ward (tablet app). RESULTS: In this study, the rater-based evaluation of tasks discriminated the best between the 3 eHealth solutions, whereas subjective modalities such as the System Usability Scale were not able to distinguish between the systems. Successful use was associated with different clinical characteristics for each system: eHealth literacy and cognitive function predicted successful use of the tablet app, and better motor function and lower age correlated with the independent use of the camera system. The successful use of the wearable sensors was independent of clinical characteristics. Unfortunately, patients who were not able to use the devices well provided few improvement suggestions in qualitative interviews. CONCLUSIONS: eHealth solutions should be developed with a specific set of patients in mind and subsequently tested in this cohort. For a complete picture, usability assessments should include a rater-based evaluation of task performance, and there is a need to develop strategies to circumvent the underrepresentation of poorly performing patients in qualitative usability research.
ABSTRACT
Symptoms of Parkinson's disease (PD) can be controlled well, but treatment often requires expert judgment. Telemedicine and sensor-based assessments can allow physicians to better observe the evolvement of symptoms over time, in particular with motor fluctuations. In addition, they potentially allow less frequent visits to the expert's office and facilitate care in rural areas. A variety of systems with different strengths and shortcomings has been investigated in recent years. We designed a multimodal telehealth intervention (TelePark) to mitigate the shortcomings of individual systems and assessed the feasibility of our approach in 12 patients with PD over 12 weeks in preparation for a larger randomized controlled trial. TelePark uses video visits, a smartphone app, a camera system, and wearable sensors. Structured training included setting up the equipment in patients' homes and group-based online training. Usability was assessed by questionnaires and semi-standardized telephone interviews. Overall, 11 out of 12 patients completed the trial (5 female, 6 male). Mean age was 65 years, mean disease duration 7 years, mean MoCA score 27. Adherence was stable throughout the study and 79% for a short questionnaire administered every second day, 62% for medication confirmation, and 33% for an electronic Hauser diary. Quality of life did not change in the course of the study, and a larger cohort will be required to determine the effect on motor symptoms. Interviews with trial participants identified motivations to use such systems and areas for improvements. These insights can be helpful in designing similar trials.
ABSTRACT
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
ABSTRACT
Human peripheral nerves hold the potential to regenerate after injuries; however, whether a successful axonal regrowth was achieved can be elucidated only months after injury by assessing function. The axolotl salamander is a regenerative model where nerves always regenerate quickly and fully after all types of injury. Here, de- and regeneration of the axolotl sciatic nerve were investigated in a single and double injury model by label-free multiphoton imaging in comparison to functional recovery. We used coherent anti-Stokes Raman scattering to visualize myelin fragmentation and axonal regeneration. The presence of axons at the lesion site corresponded to onset of functional recovery in both lesion models. In addition, we detected axonal regrowth later in the double injury model in agreement with a higher severity of injury. Moreover, endogenous two-photon excited fluorescence visualized macrophages and revealed a similar timecourse of inflammation in both injury models, which did not correlate with functional recovery. Finally, using the same techniques, axonal structure and status of myelin were visualized in vivo after sciatic nerve injury. Label-free imaging is a new experimental approach that provides mechanistic insights in animal models, with the potential to be used in the future for investigation of regeneration after nerve injuries in humans.