Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nature ; 517(7533): 191-5, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25517098

ABSTRACT

Crust at many divergent plate boundaries forms primarily by the injection of vertical sheet-like dykes, some tens of kilometres long. Previous models of rifting events indicate either lateral dyke growth away from a feeding source, with propagation rates decreasing as the dyke lengthens, or magma flowing vertically into dykes from an underlying source, with the role of topography on the evolution of lateral dykes not clear. Here we show how a recent segmented dyke intrusion in the Bárðarbunga volcanic system grew laterally for more than 45 kilometres at a variable rate, with topography influencing the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred primarily over 14 days, was revealed by propagating seismicity, ground deformation mapped by Global Positioning System (GPS), interferometric analysis of satellite radar images (InSAR), and graben formation. The strike of the dyke segments varies from an initially radial direction away from the Bárðarbunga caldera, towards alignment with that expected from regional stress at the distal end. A model minimizing the combined strain and gravitational potential energy explains the propagation path. Dyke opening and seismicity focused at the most distal segment at any given time, and were simultaneous with magma source deflation and slow collapse at the Bárðarbunga caldera, accompanied by a series of magnitude M > 5 earthquakes. Dyke growth was slowed down by an effusive fissure eruption near the end of the dyke. Lateral dyke growth with segment barrier breaking by pressure build-up in the dyke distal end explains how focused upwelling of magma under central volcanoes is effectively redistributed over long distances to create new upper crust at divergent plate boundaries.

2.
Mol Syst Biol ; 13(2): 913, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28193641

ABSTRACT

The low costs of array-synthesized oligonucleotide libraries are empowering rapid advances in quantitative and synthetic biology. However, high synthesis error rates, uneven representation, and lack of access to individual oligonucleotides limit the true potential of these libraries. We have developed a cost-effective method called Recombinase Directed Indexing (REDI), which involves integration of a complex library into yeast, site-specific recombination to index library DNA, and next-generation sequencing to identify desired clones. We used REDI to generate a library of ~3,300 DNA probes that exhibited > 96% purity and remarkable uniformity (> 95% of probes within twofold of the median abundance). Additionally, we created a collection of ~9,000 individually accessible CRISPR interference yeast strains for > 99% of genes required for either fermentative or respiratory growth, demonstrating the utility of REDI for rapid and cost-effective creation of strain collections from oligonucleotide pools. Our approach is adaptable to any complex DNA library, and fundamentally changes how these libraries can be parsed, maintained, propagated, and characterized.


Subject(s)
Sequence Analysis, DNA/methods , Yeasts/genetics , CRISPR-Cas Systems , Computational Biology/methods , DNA, Fungal/genetics , Gene Library
3.
Cell Biol Toxicol ; 30(4): 195-205, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24894427

ABSTRACT

Mustard gas is a simple molecule with a deadly past. First used as a chemical weapon in World War I, its simple formulation has raised concerns over its use by terrorist organizations and unstable governments. Mustard gas is a powerful vesicant and alkylating agent that causes painful blisters on epithelial surfaces and increases the incidence of cancer in those exposed. The mechanism of mustard gas toxicity and tumorigenesis is not well understood but is thought to be mediated by its ability to induce oxidative stress and DNA damage. Interestingly, several proteins that have been shown to either be targets of mustard gas or mediate mustard gas toxicity have also been shown to regulate centrosome duplication. Centrosomes are small nonmembrane-bound organelles that direct the segregation of chromosomes during mitosis through the formation of the bipolar mitotic spindle. Cells with more or less than two centrosomes during mitosis can segregate their chromosomes unequally, resulting in chromosome instability, a common phenotype of cancer cells. In our studies, we show that subtoxic levels of 2-chloroethyl ethylsulfide (2-CEES), a mustard gas analog, induce centrosome amplification and chromosome instability in cells, which may hasten the mutation rate necessary for tumorigenesis. These data may explain why those exposed to mustard gas exhibit higher incidences of cancer than unexposed individuals of the same cohort.


Subject(s)
Aneuploidy , Centrosome/drug effects , Chemical Warfare Agents/toxicity , Chromosomal Instability , Mustard Gas/analogs & derivatives , Animals , Cell Line, Tumor , Cell Survival/drug effects , Centrosome/physiology , Humans , Mice , Mustard Gas/toxicity , NIH 3T3 Cells
4.
Biochemistry ; 48(23): 5396-404, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19374445

ABSTRACT

The base excision repair (BER) pathway recognizes and repairs most nonbulky lesions, uracil and abasic (AP) sites in DNA. Several participants are embryonic lethals in knockout mice. Since the pathway has never been investigated during embryogenesis, we characterized the first three steps of BER in zebrafish extracts from unfertilized eggs, embryos at different developmental stages, and adults. Using a 45-mer double-stranded substrate with a U/G mispair at position 21, we showed that extracts from all stages are capable of performing BER. Before 3 days postfertilization (dpf), aphidicolin-sensitive polymerases perform most nucleotide insertion. In fact, eggs and early stage embryos lack DNA polymerase-beta protein. After the eggs have hatched at 3 dpf, an aphidicolin-resistant polymerase, probably DNA polymerase-beta, becomes the primary polymerase. Previously, we showed that when the zebrafish AP endonuclease protein (ZAP1) level is knocked down, embryos cease dividing after the initial phase of rapid proliferation and die without apoptosis shortly thereafter. Nevertheless, extracts from embryos in which ZAP1 has been largely depleted process substrate as well as extracts from control embryos. Since apex1 and apex2 are both strongly expressed in early embryos relative to adults, these data indicate that both may play important roles in DNA repair in early development. In brief, the major differences in BER performed by early stage embryos and adults are the absence of DNA polymerase-beta, leading to predominance of replicative polymerases, and the presence of backup Mg(2+)-dependent endonuclease activity in early stage embryos. The switch to normal, adult BER occurs fully when the embryos hatch from the chorionic membrane and encounter normal oxidative stress.


Subject(s)
DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-Directed DNA Polymerase/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , DNA Polymerase beta/genetics , DNA Polymerase beta/metabolism , Embryo, Nonmammalian/enzymology , Embryo, Nonmammalian/metabolism , Uracil-DNA Glycosidase/metabolism
5.
Oncogene ; 23(40): 6823-9, 2004 Sep 02.
Article in English | MEDLINE | ID: mdl-15273731

ABSTRACT

Chromosome instability (CIN) is one of the most important phenotypes in tumor progression, introducing multiple mutations required for acquisition of further malignant characteristics. Abnormal amplification of centrosomes, which is frequently observed in human cancer, has been shown to contribute to CIN by increasing the frequency of mitotic defects. Here, we show that transient exposure to subtoxic concentrations of commonly used anticancer drugs that target DNA synthesis induces centrosome amplification in cells lacking p53 tumor suppressor protein, by allowing continuous centrosome duplication in the absence of DNA synthesis. When these cells are released from cell cycle arrest by removal of drugs, cells suffer extensive destabilization of chromosomes. Considering that p53 is the most frequently mutated gene in human cancer and that CIN is known to be associated with acquisition of malignant phenotypes, our observations may explain why recurrent tumors, after chemotherapy, often exhibit more malignant characteristics than the original tumors. The tumor cells that are exposed to subtoxic levels of DNA synthesis-targeting drugs will be arrested and undergo centrosome amplification. Upon cessation of chemotherapy, these cells will re-enter cell cycling, and experience extensive CIN due to the presence of amplified centrosomes. This in turn promotes generation of tumor cells equipped with further malignant characteristics.


Subject(s)
Antineoplastic Agents/toxicity , Centrosome/drug effects , Chromosome Aberrations , Gene Amplification/genetics , S Phase/drug effects , DNA Replication/drug effects , DNA Replication/genetics , Gene Amplification/drug effects , Humans , S Phase/genetics
6.
Proc Natl Acad Sci U S A ; 102(49): 17711-6, 2005 Dec 06.
Article in English | MEDLINE | ID: mdl-16314579

ABSTRACT

Abasic [apurinic/apyrimidinic (AP)] sites are common, noncoding DNA lesions. Despite extensive investigation, the mutational pattern they provoke in eukaryotic cells remains unresolved. We constructed Saccharomyces cerevisiae strains in which chromosomal AP sites were generated during normal cell growth by altered human uracil-DNA glycosylases that remove undamaged cytosines or thymines. The mutation target was the URA3 gene inserted near the ARS309 origin to allow defined replication polarity. Expression of the altered glycosylases caused a 7- to 18-fold mutator effect in AP endonuclease-deficient (deltaapn1) yeast, which depended highly on the known translesion synthesis enzymes Rev1 and DNA polymerase zeta. For the C-glycosylase, GC>CG transversions were the predominant mutations, followed by GC>AT transitions. AT>CG transversions predominated for the T-glycosylase. These results support a major role for Rev1-dependent dCMP insertion across from AP sites and a lesser role for dAMP insertion. Unexpectedly, there was also a significant proportion of dTMP insertions that suggest another mutational pathway at AP sites. Although replication polarity did not strongly influence mutagenesis at AP sites, for certain mutation types, there was a surprisingly strong difference between the transcribed and non-transcribed strands of URA3. The basis for this strand discrimination requires further exploration.


Subject(s)
Chromosomes, Fungal/genetics , DNA, Fungal/genetics , Mutation/genetics , Saccharomyces cerevisiae/genetics , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Substrate Specificity , Uracil-DNA Glycosidase/genetics , Uracil-DNA Glycosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL