Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
FASEB J ; 37(10): e23189, 2023 10.
Article in English | MEDLINE | ID: mdl-37713040

ABSTRACT

A protein altering variant in the gene encoding zinc finger homeobox-3 (ZFHX3) has recently been associated with lower BMI in a human genome-wide association study. We investigated metabolic parameters in mice harboring a missense mutation in Zfhx3 (Zfhx3Sci/+ ) and looked for altered in situ expression of transcripts that are associated with energy balance in the hypothalamus to understand how ZFHX3 may influence growth and metabolic effects. One-year-old male and female Zfhx3Sci/+ mice weighed less, had shorter body length, lower fat mass, smaller mesenteric fat depots, and lower circulating insulin, leptin, and insulin-like growth factor-1 (IGF1) concentrations than Zfhx3+/+ littermates. In a second cohort of 9-20-week-old males and females, Zfhx3Sci/+ mice ate less than wildtype controls, in proportion to body weight. In a third cohort of female-only Zfhx3Sci/+ and Zfhx3+/+ mice that underwent metabolic phenotyping from 6 to 14 weeks old, Zfhx3Sci/+ mice weighed less and had lower lean mass and energy expenditure, but fat mass did not differ. We detected increased expression of somatostatin and decreased expression of growth hormone-releasing hormone and growth hormone-receptor mRNAs in the arcuate nucleus (ARC). Similarly, ARC expression of orexigenic neuropeptide Y was decreased and ventricular ependymal expression of orphan G protein-coupled receptor Gpr50 was decreased. We demonstrate for the first time an energy balance effect of the Zfhx3Sci mutation, likely by altering expression of key ARC neuropeptides to alter growth, food intake, and energy expenditure.


Subject(s)
Genes, Homeobox , Homeodomain Proteins , Hypothalamus , Mutation, Missense , Animals , Female , Male , Mice , Gene Expression , Genome-Wide Association Study , Homeodomain Proteins/genetics , Hypothalamus/metabolism , Zinc Fingers
2.
FASEB J ; 37(11): e23211, 2023 11.
Article in English | MEDLINE | ID: mdl-37773757

ABSTRACT

ARL15, a small GTPase protein, was linked to metabolic traits in association studies. We aimed to test the Arl15 gene as a functional candidate for metabolic traits in the mouse. CRISPR/Cas9 germline knockout (KO) of Arl15 showed that homozygotes were postnatal lethal and exhibited a complete cleft palate (CP). Also, decreased cell migration was observed from Arl15 KO mouse embryonic fibroblasts (MEFs). Metabolic phenotyping of heterozygotes showed that females had reduced fat mass on a chow diet from 14 weeks of age. Mild body composition phenotypes were also observed in heterozygous mice on a high-fat diet (HFD)/low-fat diet (LFD). Females on a HFD showed reduced body weight, gonadal fat depot weight and brown adipose tissue (BAT) weight. In contrast, in the LFD group, females showed increased bone mineral density (BMD), while males showed a trend toward reduced BMD. Clinical biochemistry analysis of plasma on HFD showed transient lower adiponectin at 20 weeks of age in females. Urinary and plasma Mg2+ concentrations were not significantly different. Our phenotyping data showed that Arl15 is essential for craniofacial development. Adult metabolic phenotyping revealed potential roles in brown adipose tissue and bone development.


Subject(s)
Cleft Palate , Male , Female , Mice , Animals , Gene Knockout Techniques , Cleft Palate/genetics , Cleft Palate/metabolism , Fibroblasts/metabolism , Diet, High-Fat , Adipose Tissue, Brown/metabolism , Adiponectin/metabolism , Mice, Inbred C57BL , Mice, Knockout
4.
PLoS Biol ; 17(9): e3000414, 2019 09.
Article in English | MEDLINE | ID: mdl-31479441

ABSTRACT

Bardet-Biedl syndrome (BBS), a ciliopathy, is a rare genetic condition characterised by retinal degeneration, obesity, kidney failure, and cognitive impairment. In spite of progress made in our general understanding of BBS aetiology, the molecular and cellular mechanisms underlying cognitive impairment in BBS remain elusive. Here, we report that the loss of BBS proteins causes synaptic dysfunction in principal neurons, providing a possible explanation for the cognitive impairment phenotype observed in BBS patients. Using synaptosomal proteomics and immunocytochemistry, we demonstrate the presence of Bbs proteins in the postsynaptic density (PSD) of hippocampal neurons. Loss of Bbs results in a significant reduction of dendritic spines in principal neurons of Bbs mouse models. Furthermore, we show that spine deficiency correlates with events that destabilise spine architecture, such as impaired spine membrane receptor signalling, known to be involved in the maintenance of dendritic spines. Our findings suggest a role for BBS proteins in dendritic spine homeostasis that may be linked to the cognitive phenotype observed in BBS.


Subject(s)
Bardet-Biedl Syndrome/pathology , Cytoskeletal Proteins/metabolism , Dendritic Spines/pathology , Animals , Anxiety , Bardet-Biedl Syndrome/metabolism , Bardet-Biedl Syndrome/physiopathology , Bardet-Biedl Syndrome/psychology , Dentate Gyrus/physiopathology , Disease Models, Animal , Excitatory Postsynaptic Potentials , Female , Male , Memory , Mice , Receptor, IGF Type 1/metabolism , Synaptosomes/metabolism
5.
Mamm Genome ; 31(1-2): 17-29, 2020 02.
Article in English | MEDLINE | ID: mdl-31974728

ABSTRACT

The proprotein convertase subtilisin/Kexin type 1 (PCSK1/PC1) protein processes inactive pro-hormone precursors into biologically active hormones in a number of neuroendocrine and endocrine cell types. Patients with recessive mutations in PCSK1 exhibit a complex spectrum of traits including obesity, diarrhoea and endocrine disorders. We describe here a new mouse model with a point mutation in the Pcsk1 gene that exhibits obesity, hyperphagia, transient diarrhoea and hyperproinsulinaemia, phenotypes consistent with human patient traits. The mutation results in a pV96L amino acid substitution and changes the first nucleotide of mouse exon 3 leading to skipping of that exon and in homozygotes very little full-length transcript. Overexpression of the exon 3 deleted protein or the 96L protein results in ER retention in Neuro2a cells. This is the second Pcsk1 mouse model to display obesity phenotypes, contrasting knockout mouse alleles. This model will be useful in investigating the basis of endocrine disease resulting from prohormone processing defects.


Subject(s)
Diabetes Mellitus/genetics , Obesity/genetics , Proprotein Convertase 1/genetics , Alleles , Animals , Cell Line , Diarrhea/genetics , Endoplasmic Reticulum/metabolism , Exons , Female , Glucose Intolerance/genetics , Homozygote , Hyperphagia/genetics , Male , Mice , Mutation , Proprotein Convertase 1/metabolism , RNA Splicing
6.
Brain ; 137(Pt 12): 3171-85, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25348630

ABSTRACT

Mutations in the skeletal muscle channel (SCN4A), encoding the Nav1.4 voltage-gated sodium channel, are causative of a variety of muscle channelopathies, including non-dystrophic myotonias and periodic paralysis. The effects of many of these mutations on channel function have been characterized both in vitro and in vivo. However, little is known about the consequences of SCN4A mutations downstream from their impact on the electrophysiology of the Nav1.4 channel. Here we report the discovery of a novel SCN4A mutation (c.1762A>G; p.I588V) in a patient with myotonia and periodic paralysis, located within the S1 segment of the second domain of the Nav1.4 channel. Using N-ethyl-N-nitrosourea mutagenesis, we generated and characterized a mouse model (named draggen), carrying the equivalent point mutation (c.1744A>G; p.I582V) to that found in the patient with periodic paralysis and myotonia. Draggen mice have myotonia and suffer from intermittent hind-limb immobility attacks. In-depth characterization of draggen mice uncovered novel systemic metabolic abnormalities in Scn4a mouse models and provided novel insights into disease mechanisms. We discovered metabolic alterations leading to lean mice, as well as abnormal AMP-activated protein kinase activation, which were associated with the immobility attacks and may provide a novel potential therapeutic target.


Subject(s)
AMP-Activated Protein Kinases/genetics , Channelopathies/genetics , Mutation/genetics , Myotonia/genetics , Myotonic Disorders/genetics , NAV1.4 Voltage-Gated Sodium Channel/genetics , Paralyses, Familial Periodic/genetics , Animals , Humans , Mice , Pedigree
7.
Sci Rep ; 14(1): 2671, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38302474

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by significant metabolic disruptions, including weight loss and hypermetabolism in both patients and animal models. Leptin, an adipose-derived hormone, displays altered levels in ALS. Genetically reducing leptin levels (Lepob/+) to maintain body weight improved motor performance and extended survival in female SOD1G93A mice, although the exact molecular mechanisms behind these effects remain elusive. Here, we corroborated the sexual dimorphism in circulating leptin levels in ALS patients and in SOD1G93A mice. We reproduced a previous strategy to generate a genetically deficient leptin SOD1G93A mice (SOD1G93ALepob/+) and studied the transcriptomic profile in the subcutaneous adipose tissue and the spinal cord. We found that leptin deficiency reduced the inflammation pathways activated by the SOD1G93A mutation in the adipose tissue, but not in the spinal cord. These findings emphasize the importance of considering sex-specific approaches in metabolic therapies and highlight the role of leptin in the systemic modulation of ALS by regulating immune responses outside the central nervous system.


Subject(s)
Amyotrophic Lateral Sclerosis , Animals , Female , Humans , Male , Mice , Adipose Tissue/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Disease Models, Animal , Haploinsufficiency , Leptin/metabolism , Mice, Transgenic , Spinal Cord/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
8.
bioRxiv ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39131393

ABSTRACT

There are multiple independent genetic signals at the Ras-responsive element binding protein 1 (RREB1) locus associated with type 2 diabetes risk, fasting glucose, ectopic fat, height, and bone mineral density. We have previously shown that loss of RREB1 in pancreatic beta cells reduces insulin content and impairs islet cell development and function. However, RREB1 is a widely expressed transcription factor and the metabolic impact of RREB1 loss in vivo remains unknown. Here, we show that male and female global heterozygous knockout (Rreb1 +/-) mice have reduced body length, weight, and fat mass on high-fat diet. Rreb1+/- mice have sex- and diet-specific decreases in adipose tissue and adipocyte size; male mice on high-fat diet had larger gonadal adipocytes, while males on standard chow and females on high-fat diet had smaller, more insulin sensitive subcutaneous adipocytes. Mouse and human precursor cells lacking RREB1 have decreased adipogenic gene expression and activated transcription of genes associated with osteoblast differentiation, which was associated with Rreb1 +/- mice having increased bone mineral density in vivo. Finally, human carriers of RREB1 T2D protective alleles have smaller adipocytes, consistent with RREB1 loss-of-function reducing diabetes risk.

9.
J Clin Invest ; 119(1): 80-90, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19065048

ABSTRACT

Neonatal diabetes is a rare monogenic form of diabetes that usually presents within the first six months of life. It is commonly caused by gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of the plasmalemmal ATP-sensitive K+ (KATP) channel. To better understand this disease, we generated a mouse expressing a Kir6.2 mutation (V59M) that causes neonatal diabetes in humans and we used Cre-lox technology to express the mutation specifically in pancreatic beta cells. These beta-V59M mice developed severe diabetes soon after birth, and by 5 weeks of age, blood glucose levels were markedly increased and insulin was undetectable. Islets isolated from beta-V59M mice secreted substantially less insulin and showed a smaller increase in intracellular calcium in response to glucose. This was due to a reduced sensitivity of KATP channels in pancreatic beta cells to inhibition by ATP or glucose. In contrast, the sulfonylurea tolbutamide, a specific blocker of KATP channels, closed KATP channels, elevated intracellular calcium levels, and stimulated insulin release in beta-V59M beta cells, indicating that events downstream of KATP channel closure remained intact. Expression of the V59M Kir6.2 mutation in pancreatic beta cells alone is thus sufficient to recapitulate the neonatal diabetes observed in humans. beta-V59M islets also displayed a reduced percentage of beta cells, abnormal morphology, lower insulin content, and decreased expression of Kir6.2, SUR1, and insulin mRNA. All these changes are expected to contribute to the diabetes of beta-V59M mice. Their cause requires further investigation.


Subject(s)
Diabetes Mellitus/genetics , Disease Models, Animal , Insulin-Secreting Cells/metabolism , Mutation , Potassium Channels, Inwardly Rectifying/genetics , Protein Subunits/genetics , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Diabetes Mellitus/metabolism , Female , Humans , Hypoglycemic Agents/pharmacology , Infant, Newborn , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/drug effects , Male , Mice , Mice, Transgenic , Patch-Clamp Techniques , Potassium Channels, Inwardly Rectifying/metabolism , Protein Subunits/metabolism , Tolbutamide/pharmacology
10.
Front Physiol ; 13: 953199, 2022.
Article in English | MEDLINE | ID: mdl-36091365

ABSTRACT

Background: Increased waist-to-hip ratio (WHR) is associated with increased mortality and risk of type 2 diabetes and cardiovascular disease. The TBX15-WARS2 locus has consistently been associated with increased WHR. Previous study of the hypomorphic Wars2 V117L/V117L mouse model found phenotypes including severely reduced fat mass, and white adipose tissue (WAT) browning, suggesting Wars2 could be a potential modulator of fat distribution and WAT browning. Methods: To test for differences in browning induction across different adipose depots of Wars2 V117L/V117L mice, we measured multiple browning markers of a 4-month old chow-fed cohort in subcutaneous and visceral WAT and brown adipose tissue (BAT). To explain previously observed fat mass loss, we also tested for the upregulation of plasma mitokines FGF21 and GDF15 and for differences in food intake in the same cohort. Finally, to test for diet-associated differences in fat distribution, we placed Wars2 V117L/V117L mice on low-fat or high-fat diet (LFD, HFD) and assessed their body composition by Echo-MRI and compared terminal adipose depot weights at 6 months of age. Results: The chow-fed Wars2 V117L/V117L mice showed more changes in WAT browning marker gene expression in the subcutaneous inguinal WAT depot (iWAT) than in the visceral gonadal WAT depot (gWAT). These mice also demonstrated reduced food intake and elevated plasma FGF21 and GDF15, and mRNA from heart and BAT. When exposed to HFD, the Wars2 V117L/V117L mice showed resistance to diet-induced obesity and a male and HFD-specific reduction of gWAT: iWAT ratio. Conclusion: Severe reduction of Wars2 gene function causes a systemic phenotype which leads to upregulation of FGF21 and GDF15, resulting in reduced food intake and depot-specific changes in browning and fat mass.

11.
J Endocrinol ; 253(3): 97-113, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35318963

ABSTRACT

Steroid 5ß-reductase (AKR1D1) plays important role in hepatic bile acid synthesis and glucocorticoid clearance. Bile acids and glucocorticoids are potent metabolic regulators, but whether AKR1D1 controls metabolic phenotype in vivo is unknown. Akr1d1-/- mice were generated on a C57BL/6 background. Liquid chromatography/mass spectrometry, metabolomic and transcriptomic approaches were used to determine effects on glucocorticoid and bile acid homeostasis. Metabolic phenotypes including body weight and composition, lipid homeostasis, glucose tolerance and insulin tolerance were evaluated. Molecular changes were assessed by RNA-Seq and Western blotting. Male Akr1d1-/- mice were challenged with a high fat diet (60% kcal from fat) for 20 weeks. Akr1d1-/- mice had a sex-specific metabolic phenotype. At 30 weeks of age, male, but not female, Akr1d1-/- mice were more insulin tolerant and had reduced lipid accumulation in the liver and adipose tissue yet had hypertriglyceridemia and increased intramuscular triacylglycerol. This phenotype was associated with sexually dimorphic changes in bile acid metabolism and composition but without overt effects on circulating glucocorticoid levels or glucocorticoid-regulated gene expression in the liver. Male Akr1d1-/- mice were not protected against diet-induced obesity and insulin resistance. In conclusion, this study shows that AKR1D1 controls bile acid homeostasis in vivo and that altering its activity can affect insulin tolerance and lipid homeostasis in a sex-dependent manner.


Subject(s)
Glucocorticoids , Oxidoreductases , Animals , Bile Acids and Salts , Diet, High-Fat , Female , Glucocorticoids/metabolism , Insulin/metabolism , Lipids , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidoreductases/genetics , Phenotype
12.
Biol Open ; 10(12)2021 12 15.
Article in English | MEDLINE | ID: mdl-34779483

ABSTRACT

The small GTPase ARF family member ARL15 gene locus is associated in population studies with increased risk of type 2 diabetes, lower adiponectin and higher fasting insulin levels. Previously, loss of ARL15 was shown to reduce insulin secretion in a human ß-cell line and loss-of-function mutations are found in some lipodystrophy patients. We set out to understand the role of ARL15 in adipogenesis and showed that endogenous ARL15 palmitoylated and localised in the Golgi of mouse liver. Adipocyte overexpression of palmitoylation-deficient ARL15 resulted in redistribution to the cytoplasm and a mild reduction in expression of some adipogenesis-related genes. Further investigation of the localisation of ARL15 during differentiation of a human white adipocyte cell line showed that ARL15 was predominantly co-localised with a marker of the cis face of Golgi at the preadipocyte stage and then translocated to other Golgi compartments after differentiation was induced. Finally, co-immunoprecipitation and mass spectrometry identified potential interacting partners of ARL15, including the ER-localised protein ARL6IP5. Together, these results suggest a palmitoylation dependent trafficking-related role of ARL15 as a regulator of adipocyte differentiation via ARL6IP5 interaction. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Diabetes Mellitus, Type 2 , Monomeric GTP-Binding Proteins , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Adipocytes/metabolism , Adipogenesis , Animals , Diabetes Mellitus, Type 2/metabolism , Golgi Apparatus/metabolism , Humans , Mice , Monomeric GTP-Binding Proteins/metabolism
13.
Diabetes ; 70(5): 1145-1156, 2021 05.
Article in English | MEDLINE | ID: mdl-33568422

ABSTRACT

The ATP-sensitive K+ (KATP) channel controls blood glucose levels by coupling glucose metabolism to insulin secretion in pancreatic ß-cells. E23K, a common polymorphism in the pore-forming KATP channel subunit (KCNJ11) gene, has been linked to increased risk of type 2 diabetes. Understanding the risk-allele-specific pathogenesis has the potential to improve personalized diabetes treatment, but the underlying mechanism has remained elusive. Using a genetically engineered mouse model, we now show that the K23 variant impairs glucose-induced insulin secretion and increases diabetes risk when combined with a high-fat diet (HFD) and obesity. KATP-channels in ß-cells with two K23 risk alleles (KK) showed decreased ATP inhibition, and the threshold for glucose-stimulated insulin secretion from KK islets was increased. Consequently, the insulin response to glucose and glycemic control was impaired in KK mice fed a standard diet. On an HFD, the effects of the KK genotype were exacerbated, accelerating diet-induced diabetes progression and causing ß-cell failure. We conclude that the K23 variant increases diabetes risk by impairing insulin secretion at threshold glucose levels, thus accelerating loss of ß-cell function in the early stages of diabetes progression.


Subject(s)
Glucose/pharmacology , Insulin/metabolism , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Animals , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genetic Variation/physiology , Humans , Insulin Secretion/drug effects , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism
14.
Sci Adv ; 7(30)2021 07.
Article in English | MEDLINE | ID: mdl-34290091

ABSTRACT

Variants in FTO have the strongest association with obesity; however, it is still unclear how those noncoding variants mechanistically affect whole-body physiology. We engineered a deletion of the rs1421085 conserved cis-regulatory module (CRM) in mice and confirmed in vivo that the CRM modulates Irx3 and Irx5 gene expression and mitochondrial function in adipocytes. The CRM affects molecular and cellular phenotypes in an adipose depot-dependent manner and affects organismal phenotypes that are relevant for obesity, including decreased high-fat diet-induced weight gain, decreased whole-body fat mass, and decreased skin fat thickness. Last, we connected the CRM to a genetically determined effect on steroid patterns in males that was dependent on nutritional challenge and conserved across mice and humans. Together, our data establish cross-species conservation of the rs1421085 regulatory circuitry at the molecular, cellular, metabolic, and organismal level, revealing previously unknown contextual dependence of the variant's action.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Obesity , Adipocytes/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Animals , Diet, High-Fat/adverse effects , Male , Mice , Obesity/genetics , Obesity/metabolism , Phenotype , Polymorphism, Single Nucleotide
15.
Biochim Biophys Acta Gene Regul Mech ; 1863(11): 194640, 2020 11.
Article in English | MEDLINE | ID: mdl-33007465

ABSTRACT

We have prioritised a single nucleotide polymorphism (SNP) rs2645294 as one candidate functional SNP in the TBX15-WARS2 waist-hip-ratio locus using posterior probability analysis. This SNP is located in the 3' untranslated region of the WARS2 (tryptophanyl tRNA synthetase 2, mitochondrial) gene with which it has an expression quantitative trait in subcutaneous white adipose tissue. We show that transcripts of the WARS2 gene in a human white adipose cell line, heterozygous for the rs2645294 SNP, showed allelic imbalance. We tested whether the rs2645294 SNP altered WARS2 RNA stability using three different methods: actinomycin-D inhibition and RNA decay, mature and nascent RNA analysis and luciferase reporter assays. We found no evidence of a difference in RNA stability between the rs2645294 alleles indicating that the allelic expression imbalance was likely due to transcriptional regulation.


Subject(s)
Genetic Association Studies , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , T-Box Domain Proteins/genetics , Tryptophan-tRNA Ligase/genetics , 3' Untranslated Regions , Adipocytes, White/metabolism , Alleles , Cell Line, Tumor , Computational Biology/methods , Genes, Reporter , Heterozygote , Humans , Nucleic Acid Conformation , Quantitative Trait Loci , RNA Stability , Waist-Hip Ratio
16.
Sci Rep ; 9(1): 18779, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31827172

ABSTRACT

The analysis of volatile organic compounds (VOCs) as a non-invasive method for disease monitoring, such as type 2 diabetes (T2D) has shown potential over the years although not yet set in clinical practice. Longitudinal studies to date are limited and the understanding of the underlying VOC emission over the age is poorly understood. This study investigated longitudinal changes in VOCs present in faecal headspace in two mouse models of T2D - Cushing's syndrome and single Afmid knockout mice. Longitudinal changes in bodyweight, blood glucose levels and plasma insulin concentration were also reported. Faecal headspace analysis was carried out using selected ion flow tube mass spectrometry (SIFT-MS) and thermal desorption coupled to gas chromatography-mass spectrometry (TD-GC-MS). Multivariate data analysis of the VOC profile showed differences mainly in acetic acid and butyric acid able to discriminate the groups Afmid and Cushing's mice. Moreover, multivariate data analysis revealed statistically significant differences in VOCs between Cushing's mice/wild-type (WT) littermates, mainly short-chain fatty acids (SCFAs), ketones, and alcohols, and longitudinal differences mainly attributed to methanol, ethanol and acetone. Afmid mice did not present statistically significant differences in their volatile faecal metabolome when compared to their respective WT littermates. The findings suggested that mice developed a diabetic phenotype and that the altered VOC profile may imply a related change in gut microbiota, particularly in Cushing's mice. Furthermore, this study provided major evidence of age-related changes on the volatile profile of diabetic mice.


Subject(s)
Arylformamidase/metabolism , Cushing Syndrome/metabolism , Diabetes Mellitus, Type 2/metabolism , Metabolome , Volatile Organic Compounds/metabolism , Animals , Arylformamidase/genetics , Blood Glucose/metabolism , Cushing Syndrome/diagnosis , Diabetes Mellitus, Experimental/diagnosis , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/diagnosis , Feces , Female , Gas Chromatography-Mass Spectrometry , Gastrointestinal Microbiome , Insulin/blood , Longitudinal Studies , Male , Mice , Mice, Knockout , Monitoring, Physiologic , Multivariate Analysis , Obesity/metabolism
17.
Biofabrication ; 12(1): 015018, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31715591

ABSTRACT

Adipose models have been applied to mechanistic studies of metabolic diseases (such as diabetes) and the subsequent discovery of new therapeutics. However, typical models are either insufficiently complex (2D cell cultures) or expensive and labor intensive (mice/in vivo). To bridge the gap between these models and in order to better inform pre-clinical studies we have developed a drug-responsive 3D model of white adipose tissue (WAT). Here, spheroids (680 ± 60 µm) comprising adipogenic 3T3-L1 cells encapsulated in 3D matrix were fabricated manually on a 96 well scale. Spheroids were highly characterised for lipid morphology, selected metabolite and adipokine secretion, and gene expression; displaying significant upregulation of certain adipogenic-specific genes compared with a 2D model. Furthermore, induction of lipolysis and promotion of lipogenesis in spheroids could be triggered by exposure to 8-br-cAMP and oleic-acid respectively. Metabolic and high content imaging data of spheroids exposed to an adipose-targeting drug, rosiglitazone, resulted in dose-responsive behavior. Thus, our 3D WAT model has potential as a powerful scalable tool for compound screening and for investigating adipose biology.


Subject(s)
Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays/methods , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Adipokines/metabolism , Adipose Tissue/cytology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Drug Evaluation, Preclinical/instrumentation , Mice , Rosiglitazone/pharmacology , Spheroids, Cellular/cytology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism
18.
J Bone Miner Res ; 34(7): 1324-1335, 2019 07.
Article in English | MEDLINE | ID: mdl-30830987

ABSTRACT

Nephrolithiasis (NL) and nephrocalcinosis (NC), which comprise renal calcification of the collecting system and parenchyma, respectively, have a multifactorial etiology with environmental and genetic determinants and affect ∼10% of adults by age 70 years. Studies of families with hereditary NL and NC have identified >30 causative genes that have increased our understanding of extracellular calcium homeostasis and renal tubular transport of calcium. However, these account for <20% of the likely genes that are involved, and to identify novel genes for renal calcification disorders, we investigated 1745 12-month-old progeny from a male mouse that had been treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) for radiological renal opacities. This identified a male mouse with renal calcification that was inherited as an autosomal dominant trait with >80% penetrance in 152 progeny. The calcification consisted of calcium phosphate deposits in the renal papillae and was associated with the presence of the urinary macromolecules osteopontin and Tamm-Horsfall protein, which are features found in Randall's plaques of patients with NC. Genome-wide mapping located the disease locus to a ∼30 Mbp region on chromosome 17A3.3-B3 and whole-exome sequence analysis identified a heterozygous mutation, resulting in a missense substitution (Met149Thr, M149T), in the bromodomain-containing protein 4 (BRD4). The mutant heterozygous (Brd4+/M149T ) mice, when compared with wild-type (Brd4+/+ ) mice, were normocalcemic and normophosphatemic, with normal urinary excretions of calcium and phosphate, and had normal bone turnover markers. BRD4 plays a critical role in histone modification and gene transcription, and cDNA expression profiling, using kidneys from Brd4+/M149T and Brd4+/+ mice, revealed differential expression of genes involved in vitamin D metabolism, cell differentiation, and apoptosis. Kidneys from Brd4+/M149T mice also had increased apoptosis at sites of calcification within the renal papillae. Thus, our studies have established a mouse model, due to a Brd4 Met149Thr mutation, for inherited NC. © 2019 American Society for Bone and Mineral Research.


Subject(s)
Mutation, Missense/genetics , Nephrocalcinosis/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Amino Acid Sequence , Animals , Apoptosis/genetics , Chromosome Segregation/genetics , Chromosomes, Mammalian/genetics , Disease Models, Animal , Female , Genetic Loci , Kidney/pathology , Male , Mice , Nephrocalcinosis/urine , Nuclear Proteins/chemistry , Phenotype , Transcription Factors/chemistry , Transcription, Genetic , Exome Sequencing
19.
J Bone Miner Res ; 34(3): 497-507, 2019 03.
Article in English | MEDLINE | ID: mdl-30395686

ABSTRACT

Renal calcification (RCALC) resulting in nephrolithiasis and nephrocalcinosis, which affects ∼10% of adults by 70 years of age, involves environmental and genetic etiologies. Thus, nephrolithiasis and nephrocalcinosis occurs as an inherited disorder in ∼65% of patients, and may be associated with endocrine and metabolic disorders including: primary hyperparathyroidism, hypercalciuria, renal tubular acidosis, cystinuria, and hyperoxaluria. Investigations of families with nephrolithiasis and nephrocalcinosis have identified some causative genes, but further progress is limited as large families are unavailable for genetic studies. We therefore embarked on establishing mouse models for hereditary nephrolithiasis and nephrocalcinosis by performing abdominal X-rays to identify renal opacities in N-ethyl-N-nitrosourea (ENU)-mutagenized mice. This identified a mouse with RCALC inherited as an autosomal dominant trait, designated RCALC type 2 (RCALC2). Genomewide mapping located the Rcalc2 locus to a ∼16-Mbp region on chromosome 11D-E2 and whole-exome sequence analysis identified a heterozygous mutation in the DNA polymerase gamma-2, accessory subunit (Polg2) resulting in a nonsense mutation, Tyr265Stop (Y265X), which co-segregated with RCALC2. Kidneys of mutant mice (Polg2+/Y265X ) had lower POLG2 mRNA and protein expression, compared to wild-type littermates (Polg2+/+ ). The Polg2+/Y265X and Polg2+/+ mice had similar plasma concentrations of sodium, potassium, calcium, phosphate, chloride, urea, creatinine, glucose, and alkaline phosphatase activity; and similar urinary fractional excretion of calcium, phosphate, oxalate, and protein. Polg2 encodes the minor subunit of the mitochondrial DNA (mtDNA) polymerase and the mtDNA content in Polg2+/Y265X kidneys was reduced compared to Polg2+/+ mice, and cDNA expression profiling revealed differential expression of 26 genes involved in several biological processes including mitochondrial DNA function, apoptosis, and ubiquitination, the complement pathway, and inflammatory pathways. In addition, plasma of Polg2+/Y265X mice, compared to Polg2+/+ littermates had higher levels of reactive oxygen species. Thus, our studies have identified a mutant mouse model for inherited renal calcification associated with a Polg2 nonsense mutation. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.


Subject(s)
Calcinosis , Codon, Terminator , DNA Polymerase gamma , Ethylnitrosourea/toxicity , Kidney Diseases , Kidney , Animals , Calcinosis/genetics , Calcinosis/metabolism , Calcinosis/pathology , DNA Polymerase gamma/genetics , DNA Polymerase gamma/metabolism , Kidney/metabolism , Kidney/pathology , Kidney Diseases/genetics , Kidney Diseases/metabolism , Kidney Diseases/pathology , Mice , Mice, Mutant Strains
20.
Cell Rep ; 25(12): 3315-3328.e6, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30566859

ABSTRACT

Mutations in genes essential for mitochondrial function have pleiotropic effects. The mechanisms underlying these traits yield insights into metabolic homeostasis and potential therapies. Here we report the characterization of a mouse model harboring a mutation in the tryptophanyl-tRNA synthetase 2 (Wars2) gene, encoding the mitochondrial-localized WARS2 protein. This hypomorphic allele causes progressive tissue-specific pathologies, including hearing loss, reduced adiposity, adipose tissue dysfunction, and hypertrophic cardiomyopathy. We demonstrate the tissue heterogeneity arises as a result of variable activation of the integrated stress response (ISR) pathway and the ability of certain tissues to respond to impaired mitochondrial translation. Many of the systemic metabolic effects are likely mediated through elevated fibroblast growth factor 21 (FGF21) following activation of the ISR in certain tissues. These findings demonstrate the potential pleiotropy associated with Wars2 mutations in patients.


Subject(s)
Organ Specificity , Oxidative Phosphorylation , Stress, Physiological , Tryptophan-tRNA Ligase/genetics , Adipose Tissue, Brown/pathology , Adipose Tissue, White/pathology , Adiposity , Alleles , Alternative Splicing/genetics , Animals , Base Sequence , Body Weight , Brain/pathology , Cardiomyopathy, Hypertrophic/blood , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/physiopathology , Disease Models, Animal , Electron Transport , Evoked Potentials, Auditory, Brain Stem , Exons/genetics , Fibroblast Growth Factors/blood , Fibroblasts/metabolism , Hearing Loss/blood , Hearing Loss/complications , Hearing Loss/genetics , Hearing Loss/physiopathology , Mice , Mice, Mutant Strains , Muscle, Skeletal/metabolism , Mutation/genetics , Organelle Biogenesis , Tryptophan-tRNA Ligase/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL