Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Nat Immunol ; 16(3): 286-95, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25642823

ABSTRACT

Interleukin 17 (IL-17)-producing helper T cells (TH17 cells) and CD4(+) inducible regulatory T cells (iTreg cells) emerge from an overlapping developmental program. In the intestines, the vitamin A metabolite retinoic acid (RA) is produced at steady state and acts as an important cofactor to induce iTreg cell development while potently inhibiting TH17 cell development. Here we found that IL-1 was needed to fully override RA-mediated expression of the transcription factor Foxp3 and induce protective TH17 cell responses. By repressing expression of the negative regulator SOCS3 dependent on the transcription factor NF-κB, IL-1 increased the amplitude and duration of phosphorylation of the transcription factor STAT3 induced by TH17-polarizing cytokines, which led to an altered balance in the binding of STAT3 and STAT5 to shared consensus sequences in developing T cells. Thus, IL-1 signaling modulated STAT activation downstream of cytokine receptors differently to control the TH17 cell-iTreg cell developmental fate.


Subject(s)
Interleukin-1/metabolism , STAT3 Transcription Factor/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction/physiology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/metabolism , Tretinoin/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , Humans , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Phosphorylation/physiology , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/metabolism
3.
J Immunol ; 209(5): 896-906, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35914835

ABSTRACT

Protein kinase CK2 is a serine/threonine kinase composed of two catalytic subunits (CK2α and/or CK2α') and two regulatory subunits (CK2ß). CK2 promotes cancer progression by activating the NF-κB, PI3K/AKT/mTOR, and JAK/STAT pathways, and also is critical for immune cell development and function. The potential involvement of CK2 in CD8+ T cell function has not been explored. We demonstrate that CK2 protein levels and kinase activity are enhanced upon mouse CD8+ T cell activation. CK2α deficiency results in impaired CD8+ T cell activation and proliferation upon TCR stimulation. Furthermore, CK2α is involved in CD8+ T cell metabolic reprogramming through regulating the AKT/mTOR pathway. Lastly, using a mouse Listeria monocytogenes infection model, we demonstrate that CK2α is required for CD8+ T cell expansion, maintenance, and effector function in both primary and memory immune responses. Collectively, our study implicates CK2α as an important regulator of mouse CD8+ T cell activation, metabolic reprogramming, and differentiation both in vitro and in vivo.


Subject(s)
Casein Kinase II , NF-kappa B , CD8-Positive T-Lymphocytes/metabolism , Casein Kinase II/metabolism , Phosphatidylinositol 3-Kinases , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-akt , Receptors, Antigen, T-Cell , Serine , T-Lymphocytes/metabolism , TOR Serine-Threonine Kinases
4.
J Neurochem ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37932959

ABSTRACT

Alzheimer's disease (AD) affects various brain cell types, including astrocytes, which are the most abundant cell types in the central nervous system (CNS). Astrocytes not only provide homeostatic support to neurons but also actively regulate synaptic signaling and functions and become reactive in response to CNS insults through diverse signaling pathways including the JAK/STAT, NF-κB, and GPCR-elicited pathways. The advent of new technology for transcriptomic profiling at the single-cell level has led to increasing recognition of the highly versatile nature of reactive astrocytes and the context-dependent specificity of astrocyte reactivity. In AD, reactive astrocytes have long been observed in senile plaques and have recently been suggested to play a role in AD pathogenesis and progression. However, the precise contributions of reactive astrocytes to AD remain elusive, and targeting this complex cell population for AD treatment poses significant challenges. In this review, we summarize the current understanding of astrocyte reactivity and its role in AD, with a particular focus on the signaling pathways that promote astrocyte reactivity and the heterogeneity of reactive astrocytes. Furthermore, we explore potential implications for the development of therapeutics for AD. Our objective is to shed light on the complex involvement of astrocytes in AD and offer insights into potential therapeutic targets and strategies for treating and managing this devastating neurodegenerative disorder.

5.
Mov Disord ; 38(5): 743-754, 2023 05.
Article in English | MEDLINE | ID: mdl-36853618

ABSTRACT

OBJECTIVE: To assess the presence of brain and systemic inflammation in subjects newly diagnosed with Parkinson's disease (PD). BACKGROUND: Evidence for a pathophysiologic role of inflammation in PD is growing. However, several key gaps remain as to the role of inflammation in PD, including the extent of immune activation at early stages, potential effects of PD treatments on inflammation and whether pro-inflammatory signals are associated with clinical features and/or predict more rapid progression. METHODS: We enrolled subjects with de novo PD (n = 58) and age-matched controls (n = 62). Subjects underwent clinical assessments, including the Movement Disorder Society-United Parkinson's Disease rating scale (MDS-UPDRS). Comprehensive cognitive assessment meeting MDS Level II criteria for mild cognitive impairment testing was performed. Blood was obtained for flow cytometry and cytokine/chemokine analyses. Subjects underwent imaging with 18 F-DPA-714, a translocator protein 18kd ligand, and lumbar puncture if eligible and consented. RESULTS: Baseline demographics and medical history were comparable between groups. PD subjects showed significant differences in University of Pennsylvania Smell Identification Test, Schwab and England Activities of Daily Living, Scales for Outcomes in PD autonomic dysfunction, and MDS-UPDRS scores. Cognitive testing demonstrated significant differences in cognitive composite, executive function, and visuospatial domain scores at baseline. Positron emission tomography imaging showed increased 18 F-DPA-714 signal in PD subjects. 18 F-DPA-714 signal correlated with several cognitive measures and some chemokines. CONCLUSIONS: 18 F-DPA-714 imaging demonstrated increased central inflammation in de novo PD subjects compared to controls. Longitudinal follow-up will be important to determine whether the presence of inflammation predicts cognitive decline. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , Humans , Activities of Daily Living , Brain/metabolism , Executive Function , Disease Progression
6.
J Immunol ; 207(3): 799-808, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34301844

ABSTRACT

Protein kinase CK2 (also known as Casein Kinase 2) is a serine/threonine kinase composed of two catalytic subunits (CK2α and/or CK2α') and two regulatory CK2ß subunits. CK2 is overexpressed and overactive in B cell acute lymphoblastic leukemia and diffuse large B cell lymphomas, leading to inappropriate activation of the NF-κB, JAK/STAT, and PI3K/AKT/mTOR signaling pathways and tumor growth. However, whether CK2 regulates normal B cell development and differentiation is not known. We generated mice lacking CK2α specifically in B cells (using CD19-driven Cre recombinase). These mice exhibited cell-intrinsic expansion of marginal zone B cells at the expense of transitional B cells, without changes in follicular B cells. Transitional B cells required CK2α to maintain adequate BCR signaling. In the absence of CK2α, reduced BCR signaling and elevated Notch2 signaling activation increased marginal zone B cell differentiation. Our results identify a previously unrecognized function for CK2α in B cell development and differentiation.


Subject(s)
B-Lymphocytes/immunology , Casein Kinase II/metabolism , Precursor Cells, B-Lymphoid/immunology , Animals , Antigens, CD19/metabolism , Casein Kinase II/genetics , Cell Differentiation , Cells, Cultured , Integrases/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Receptors, Antigen, B-Cell/metabolism , Signal Transduction
7.
J Am Soc Nephrol ; 33(4): 747-768, 2022 04.
Article in English | MEDLINE | ID: mdl-35110364

ABSTRACT

BACKGROUND: Inducible disruption of cilia-related genes in adult mice results in slowly progressive cystic disease, which can be greatly accelerated by renal injury. METHODS: To identify in an unbiased manner modifier cells that may be influencing the differential rate of cyst growth in injured versus non-injured cilia mutant kidneys at a time of similar cyst severity, we generated a single-cell atlas of cystic kidney disease. We conducted RNA-seq on 79,355 cells from control mice and adult-induced conditional Ift88 mice (hereafter referred to as cilia mutant mice) that were harvested approximately 7 months post-induction or 8 weeks post 30-minute unilateral ischemia reperfusion injury. RESULTS: Analyses of single-cell RNA-seq data of CD45+ immune cells revealed that adaptive immune cells differed more in cluster composition, cell proportion, and gene expression than cells of myeloid origin when comparing cystic models with one another and with non-cystic controls. Surprisingly, genetic deletion of adaptive immune cells significantly reduced injury-accelerated cystic disease but had no effect on cyst growth in non-injured cilia mutant mice, independent of the rate of cyst growth or underlying genetic mutation. Using NicheNet, we identified a list of candidate cell types and ligands that were enriched in injured cilia mutant mice compared with aged cilia mutant mice and non-cystic controls that may be responsible for the observed dependence on adaptive immune cells during injury-accelerated cystic disease. CONCLUSIONS: Collectively, these data highlight the diversity of immune cell involvement in cystic kidney disease.


Subject(s)
Cysts , Polycystic Kidney Diseases , Animals , Cilia/metabolism , Cysts/genetics , Kidney/metabolism , Mice , Mutation , Polycystic Kidney Diseases/metabolism
8.
Trends Immunol ; 39(2): 82-85, 2018 02.
Article in English | MEDLINE | ID: mdl-29307449

ABSTRACT

Although it has historically been studied in the context of cancer, recent literature has highlighted the importance of the highly conserved serine/threonine kinase casein kinase II (CK2) in inflammatory disorders. Most strikingly, CK2 is a major regulator of the Th17-Treg axis relevant to many T cell-driven autoimmune disorders including multiple sclerosis (MS).


Subject(s)
Autoimmune Diseases/immunology , Casein Kinase II/immunology , Inflammation/immunology , Multiple Sclerosis/immunology , Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Animals , Autoimmune Diseases/drug therapy , Casein Kinase II/antagonists & inhibitors , Clinical Trials as Topic , Emodin/metabolism , Humans , Immunity , Immunomodulation , Mice , Molecular Targeted Therapy , Naphthyridines/pharmacology , Neoplasms/drug therapy , Phenazines , Signal Transduction
9.
Glia ; 68(3): 600-616, 2020 03.
Article in English | MEDLINE | ID: mdl-31664743

ABSTRACT

Liver kinase B1 (LKB1) is a ubiquitously expressed kinase involved in the regulation of cell metabolism, growth, and inflammatory activation. We previously reported that a single nucleotide polymorphism in the gene encoding LKB1 is a risk factor for multiple sclerosis (MS). Since astrocyte activation and metabolic function have important roles in regulating neuroinflammation and neuropathology, we examined the serine/threonine kinase LKB1 in astrocytes in a chronic experimental autoimmune encephalomyelitis mouse model of MS. To reduce LKB1, a heterozygous astrocyte-selective conditional knockout (het-cKO) model was used. While disease incidence was similar, disease severity was worsened in het-cKO mice. RNAseq analysis identified Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in het-cKO mice relating to mitochondrial function, confirmed by alterations in mitochondrial complex proteins and reductions in mRNAs related to astrocyte metabolism. Enriched pathways included major histocompatibility class II genes, confirmed by increases in MHCII protein in spinal cord and cerebellum of het-cKO mice. We observed increased numbers of CD4+ Th17 cells and increased neuronal damage in spinal cords of het-cKO mice, associated with reduced expression of choline acetyltransferase, accumulation of immunoglobulin-γ, and reduced expression of factors involved in motor neuron survival. In vitro, LKB1-deficient astrocytes showed reduced metabolic function and increased inflammatory activation. These data suggest that metabolic dysfunction in astrocytes, in this case due to LKB1 deficiency, can exacerbate demyelinating disease by loss of metabolic support and increase in the inflammatory environment.


Subject(s)
Astrocytes/metabolism , Multiple Sclerosis/metabolism , Myelin Sheath/metabolism , Protein Serine-Threonine Kinases/deficiency , AMP-Activated Protein Kinases , Animals , Cell Differentiation/genetics , Cell Survival/physiology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Liver/metabolism , Mice, Knockout , Multiple Sclerosis/genetics , Spinal Cord/pathology
10.
J Immunol ; 201(2): 383-392, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29891553

ABSTRACT

Growing evidence demonstrates that the highly conserved serine/threonine kinase CK2 promotes Th17 cell differentiation while suppressing the generation of Foxp3+ regulatory T cells (Tregs); however, the exact mechanism by which CK2 regulates the Th17/Treg axis remains unclear. CK2 can be composed of three distinct subunits: two catalytic subunits, CK2α and CK2α', and the regulatory subunit CK2ß. We generated mice that lack the major catalytic subunit of CK2, CK2α, specifically in mature T cells using the distal Lck-Cre (CK2α-/-). Importantly, CK2α deficiency resulted in a significant decrease in the overall kinase activity of CK2. Further, CK2α deficiency resulted in a significant defect in Th17 cell polarization and a reciprocal increase in Tregs both in vitro and in vivo in the context of autoimmune neuroinflammation. The transcription factor forkhead box protein O1 (FoxO1) directly inhibits Th17 cell differentiation and is essential for the generation of Tregs. CK2α-/- CD4+ T cells exhibit less phosphorylated FoxO1 and a corresponding increase in the transcription of FoxO1-regulated genes. Treatment of CK2α-/- CD4+ T cells with the FoxO1 inhibitor AS1842856 or short hairpin RNA knockdown of FoxO1 is sufficient to rescue Th17 cell polarization. Through use of a genetic approach to target CK2 kinase activity, the current study provides evidence of a major mechanism by which CK2 regulates the Th17/Treg axis through the inhibition of FoxO1.


Subject(s)
Casein Kinase II/metabolism , Cell Differentiation/physiology , Forkhead Box Protein O1/metabolism , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , Catalytic Domain/physiology , Female , Gene Expression Regulation/physiology , Lymphocyte Activation/physiology , Male , Mice , Phosphorylation/physiology
11.
J Am Soc Nephrol ; 30(10): 1841-1856, 2019 10.
Article in English | MEDLINE | ID: mdl-31337691

ABSTRACT

BACKGROUND: Mutations affecting cilia proteins have an established role in renal cyst formation. In mice, the rate of cystogenesis is influenced by the age at which cilia dysfunction occurs and whether the kidney has been injured. Disruption of cilia function before postnatal day 12-14 results in rapid cyst formation; however, cyst formation is slower when cilia dysfunction is induced after postnatal day 14. Rapid cyst formation can also be induced in conditional adult cilia mutant mice by introducing renal injury. Previous studies indicate that macrophages are involved in cyst formation, however the specific role and type of macrophages responsible has not been clarified. METHODS: We analyzed resident macrophage number and subtypes during postnatal renal maturation and after renal injury in control and conditional Ift88 cilia mutant mice. We also used a pharmacological inhibitor of resident macrophage proliferation and accumulation to determine the importance of these cells during rapid cyst formation. RESULTS: Our data show that renal resident macrophages undergo a phenotypic switch from R2b (CD11clo) to R2a (CD11chi) during postnatal renal maturation. The timing of this switch correlates with the period in which cyst formation transitions from rapid to slow following induction of cilia dysfunction. Renal injury induces the reaccumulation of juvenile-like R2b resident macrophages in cilia mutant mice and restores rapid cystogenesis. Loss of primary cilia in injured conditional Ift88 mice results in enhanced epithelial production of membrane-bound CSF1, a cytokine that promotes resident macrophage proliferation. Inhibiting CSF1/CSF1-receptor signaling with a CSF1R kinase inhibitor reduces resident macrophage proliferation, R2b resident macrophage accumulation, and renal cyst formation in two mouse models of cystic disease. CONCLUSIONS: These data uncover an important pathogenic role for resident macrophages during rapid cyst progression.


Subject(s)
Kidney Diseases, Cystic/etiology , Macrophages/physiology , Animals , Cilia/genetics , Female , Kidney/growth & development , Macrophages/classification , Male , Mice , Mutation
12.
J Immunol ; 198(11): 4244-4254, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28468969

ABSTRACT

CK2 is a highly conserved and pleiotropic serine/threonine kinase that promotes many prosurvival and proinflammatory signaling pathways, including PI3K/Akt/mTOR and JAK/STAT. These pathways are essential for CD4+ T cell activation and polarization, but little is known about how CK2 functions in T cells. In this article, we demonstrate that CK2 expression and kinase activity are induced upon CD4+ T cell activation. Targeting the catalytic activity of CK2 using the next-generation small molecule inhibitor CX-4945 in vitro significantly and specifically inhibited mouse and human Th17 cell differentiation while promoting the generation of Foxp3+ regulatory T cells (Tregs). These findings were associated with suppression of PI3K/Akt/mTOR activation and STAT3 phosphorylation upon CX-4945 treatment. Furthermore, we demonstrate that CX-4945 treatment inhibits the maturation of Th17 cells into inflammatory IFN-γ-coproducing effector cells. The Th17/Treg axis and maturation of Th17 cells are major contributing factors to the pathogenesis of many autoimmune disorders, including multiple sclerosis. Using a murine model of multiple sclerosis, experimental autoimmune encephalomyelitis, we demonstrate that in vivo administration of CX-4945 targets Akt/mTOR signaling in CD4+ T cells and the Th17/Treg axis throughout disease. Importantly, CX-4945 treatment after disease initiation significantly reduced disease severity, which was associated with a significant decrease in the frequency of pathogenic IFN-γ+ and GM-CSF+ Th17 cells in the CNS. Our data implicate CK2 as a regulator of the Th17/Treg axis and Th17 cell maturation and suggest that CK2 could be targeted for the treatment of Th17 cell-driven autoimmune disorders.


Subject(s)
Casein Kinase II/metabolism , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/genetics , Cell Differentiation , Class I Phosphatidylinositol 3-Kinases , Encephalomyelitis, Autoimmune, Experimental/immunology , Gene Expression Regulation , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Lymphocyte Activation , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/physiopathology , Naphthyridines/pharmacology , Phenazines , Phosphatidylinositol 3-Kinases/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/physiology , Th1 Cells/immunology , Th17 Cells/physiology
13.
Glia ; 66(5): 987-998, 2018 05.
Article in English | MEDLINE | ID: mdl-29380422

ABSTRACT

Previously, we determined microRNA-31 (miR-31) is a noncoding tumor suppressive gene frequently deleted in glioblastoma (GBM); miR-31 suppresses tumor growth, in part, by limiting the activity of NF-κB. Herein, we expand our previous studies by characterizing the role of miR-31 during neural precursor cell (NPC) to astrocyte differentiation. We demonstrate that miR-31 expression and activity is suppressed in NPCs by stem cell factors such as Lin28, c-Myc, SOX2 and Oct4. However, during astrocytogenesis, miR-31 is induced by STAT3 and SMAD1/5/8, which mediate astrocyte differentiation. We determined miR-31 is required for terminal astrocyte differentiation, and that the loss of miR-31 impairs this process and/or prevents astrocyte maturation. We demonstrate that miR-31 promotes astrocyte development, in part, by reducing the levels of Lin28, a stem cell factor implicated in NPC renewal. These data suggest that miR-31 deletions may disrupt astrocyte development and/or homeostasis.


Subject(s)
Astrocytes/metabolism , Cell Differentiation/physiology , MicroRNAs/metabolism , Neural Stem Cells/metabolism , Animals , Cells, Cultured , Fluorescent Antibody Technique , Immunoblotting , In Situ Hybridization , Mice, Inbred C57BL , RNA-Binding Proteins/metabolism , Real-Time Polymerase Chain Reaction , Xenopus laevis
14.
Clin Immunol ; 189: 4-13, 2018 04.
Article in English | MEDLINE | ID: mdl-27713030

ABSTRACT

The Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway is utilized by numerous cytokines and interferons, and is essential for the development and function of both innate and adaptive immunity. Aberrant activation of the JAK/STAT pathway is evident in neuroinflammatory diseases such as Multiple Sclerosis and Parkinson's Disease. Innate immunity is the front line defender of the immune system and is composed of various cell types, including microglia, macrophages and neutrophils. Innate immune responses have both pathogenic and protective roles in neuroinflammation, depending on disease context and the microenvironment in the central nervous system. In this review, we discuss the role of innate immunity in the pathogenesis of neuroinflammatory diseases, how the JAK/STAT signaling pathway regulates the innate immune response, and finally, the potential for ameliorating neuroinflammation by utilization of JAK/STAT inhibitors.


Subject(s)
Immunity, Innate/immunology , Janus Kinases/immunology , Multiple Sclerosis/immunology , Parkinson Disease/immunology , STAT Transcription Factors/immunology , Signal Transduction/immunology , Humans , Janus Kinases/metabolism , Macrophages/immunology , Macrophages/metabolism , Microglia/immunology , Microglia/metabolism , Models, Immunological , Multiple Sclerosis/metabolism , Parkinson Disease/metabolism , STAT Transcription Factors/metabolism
15.
J Neurosci ; 36(18): 5144-59, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27147665

ABSTRACT

UNLABELLED: Parkinson's Disease (PD) is an age-related, chronic neurodegenerative disorder. At present, there are no disease-modifying therapies to prevent PD progression. Activated microglia and neuroinflammation are associated with the pathogenesis and progression of PD. Accumulation of α-synuclein (α-SYN) in the brain is a core feature of PD and leads to microglial activation, inflammatory cytokine/chemokine production, and ultimately to neurodegeneration. Given the importance of the JAK/STAT pathway in activating microglia and inducing cytokine/chemokine expression, we investigated the therapeutic potential of inhibiting the JAK/STAT pathway using the JAK1/2 inhibitor, AZD1480. In vitro, α-SYN exposure activated the JAK/STAT pathway in microglia and macrophages, and treatment with AZD1480 inhibited α-SYN-induced major histocompatibility complex Class II and inflammatory gene expression in microglia and macrophages by reducing STAT1 and STAT3 activation. For in vivo studies, we used a rat model of PD induced by viral overexpression of α-SYN. AZD1480 treatment inhibited α-SYN-induced neuroinflammation by suppressing microglial activation, macrophage and CD4(+) T-cell infiltration and production of proinflammatory cytokines/chemokines. Numerous genes involved in cell-cell signaling, nervous system development and function, inflammatory diseases/processes, and neurological diseases are enhanced in the substantia nigra of rats with α-SYN overexpression, and inhibited upon treatment with AZD1480. Importantly, inhibition of the JAK/STAT pathway prevented the degeneration of dopaminergic neurons in vivo These results indicate that inhibiting the JAK/STAT pathway can prevent neuroinflammation and neurodegeneration by suppressing activation of innate and adaptive immune responses to α-SYN. Furthermore, this suggests the feasibility of targeting the JAK/STAT pathway as a neuroprotective therapy for neurodegenerative diseases. SIGNIFICANCE STATEMENT: α-SYN plays a central role in the pathophysiology of PD through initiation of neuroinflammatory responses. Using an α-SYN overexpression PD model, we demonstrate a beneficial therapeutic effect of AZD1480, a specific inhibitor of JAK1/2, in suppressing neuroinflammation and neurodegeneration. Our findings document that inhibition of the JAK/STAT pathway influences both innate and adaptive immune responses by suppressing α-SYN-induced microglia and macrophage activation and CD4(+) T-cell recruitment into the CNS, ultimately suppressing neurodegeneration. These findings are the first documentation that suppression of the JAK/STAT pathway disrupts the circuitry of neuroinflammation and neurodegeneration, thus attenuating PD pathogenesis. JAK inhibitors may be a viable therapeutic option for the treatment of PD patients.


Subject(s)
Dopaminergic Neurons/drug effects , Inflammation/prevention & control , Janus Kinases/antagonists & inhibitors , Neurodegenerative Diseases/prevention & control , Neuroprotective Agents/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , STAT Transcription Factors/antagonists & inhibitors , alpha-Synuclein/antagonists & inhibitors , alpha-Synuclein/toxicity , Animals , Inflammation/chemically induced , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Parkinson Disease/pathology , Rats , Rats, Sprague-Dawley
16.
J Biol Chem ; 291(30): 15830-40, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27226638

ABSTRACT

Inflammation and endoplasmic reticulum (ER) stress are associated with many neurological diseases. ER stress is brought on by the accumulation of misfolded proteins in the ER, which leads to activation of the unfolded protein response (UPR), a conserved pathway that transmits signals to restore homeostasis or eliminate the irreparably damaged cell. We provide evidence that inhibition or genetic haploinsufficiency of protein kinase R-like endoplasmic reticulum kinase (PERK) can selectively control inflammation brought on by ER stress without impinging on UPR-dependent survival and adaptive responses or normal immune responses. Using astrocytes lacking one or both alleles of PERK or the PERK inhibitor GSK2606414, we demonstrate that PERK haploinsufficiency or partial inhibition led to reduced ER stress-induced inflammation (IL-6, CCL2, and CCL20 expression) without compromising prosurvival responses. In contrast, complete loss of PERK blocked canonical PERK-dependent UPR genes and promoted apoptosis. Reversal of eIF2α-mediated translational repression using ISRIB potently suppressed PERK-dependent inflammatory gene expression, indicating that the selective modulation of inflammatory gene expression by PERK inhibition may be linked to attenuation of eIF2α phosphorylation and reveals a previously unknown link between translational repression and transcription of inflammatory genes. Additionally, ER-stressed astrocytes can drive an inflammatory M1-like phenotype in microglia, and this can be attenuated with inhibition of PERK. Importantly, targeting PERK neither disrupted normal cytokine signaling in astrocytes or microglia nor impaired macrophage phagocytosis or T cell polarization. Collectively, this work suggests that targeting PERK may provide a means for selective immunoregulation in the context of ER stress without disrupting normal immune function.


Subject(s)
Astrocytes/immunology , Endoplasmic Reticulum Stress/immunology , Macrophages/immunology , Microglia/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , eIF-2 Kinase/immunology , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/immunology , Indoles/pharmacology , Inflammation/genetics , Inflammation/immunology , Mice , Mice, Knockout , Phosphorylation/drug effects , Phosphorylation/genetics , Phosphorylation/immunology , Signal Transduction/drug effects , Signal Transduction/genetics , eIF-2 Kinase/antagonists & inhibitors , eIF-2 Kinase/genetics
17.
J Neurooncol ; 132(2): 219-229, 2017 04.
Article in English | MEDLINE | ID: mdl-28181105

ABSTRACT

Protein kinase CK2 is a ubiquitously expressed serine/threonine kinase composed of two catalytic subunits (α) and/or (α') and two regulatory (ß) subunits. The expression and kinase activity of CK2 is elevated in many different cancers, including glioblastoma (GBM). Brain tumor initiating cells (BTICs) are a subset of cells that are highly tumorigenic and promote the resistance of GBM to current therapies. We previously reported that CK2 activity promotes prosurvival signaling in GBM. In this study, the role of CK2 signaling in BTIC function was examined. We found that expression of CK2α was increased in CD133+ BTICs compared to CD133- cells within the same GBM xenolines. Treatment with CX-4945, an ATP-competitive inhibitor of CK2, led to reduced expression of Sox2 and Nestin, transcription factors important for the maintenance of stem cells. Similarly, inhibition of CK2 also reduced the frequency of CD133+ BTICs over the course of 7 days, indicating a role for CK2 in BTIC persistence and survival. Importantly, using an in vitro limiting dilution assay, we found that inhibition of CK2 kinase activity with CX-4945 or siRNA knockdown of the CK2 catalytic subunits reduced neurosphere formation in GBM xenolines of different molecular subtypes. Lastly, we found that inhibition of CK2 led to decreased EGFR levels in some xenolines, and combination treatment with CX-4945 and Gefitinib to inhibit CK2 and EGFR, respectively, provided optimal inhibition of viability of cells. Therefore, due to the integration of CK2 in multiple signaling pathways important for BTIC survival, CK2 is a promising target in GBM.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , AC133 Antigen/metabolism , Animals , Casein Kinase II/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Female , Gefitinib , Humans , Mice , Mice, Inbred C57BL , Mice, Nude , Naphthyridines/pharmacology , Phenazines , Pregnancy , Quinazolines/pharmacology , RNA, Small Interfering/pharmacology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
18.
J Immunol ; 195(3): 841-52, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26085687

ABSTRACT

The JAK/STAT pathway is critical for development, regulation, and termination of immune responses, and dysregulation of the JAK/STAT pathway, that is, hyperactivation, has pathological implications in autoimmune and neuroinflammatory diseases. Suppressor of cytokine signaling 3 (SOCS3) regulates STAT3 activation in response to cytokines that play important roles in the pathogenesis of neuroinflammatory diseases, including IL-6 and IL-23. We previously demonstrated that myeloid lineage-specific deletion of SOCS3 resulted in a severe, nonresolving atypical form of experimental autoimmune encephalomyelitis (EAE), characterized by lesions, inflammatory infiltrates, elevated STAT activation, and elevated cytokine and chemokine expression in the cerebellum. Clinically, these mice exhibit ataxia and tremors. In this study, we provide a detailed analysis of this model, demonstrating that the atypical EAE observed in LysMCre-SOCS3(fl/fl) mice is characterized by extensive neutrophil infiltration into the cerebellum and brainstem, increased inducible NO synthase levels in the cerebellum and brainstem, and prominent axonal damage. Importantly, infiltrating SOCS3-deficient neutrophils produce high levels of CXCL2, CCL2, CXCL10, NO, TNF-α, and IL-1ß. Kinetic studies demonstrate that neutrophil infiltration into the cerebellum and brainstem of LysMCre-SOCS3(fl/fl) mice closely correlates with atypical EAE clinical symptoms. Ab-mediated depletion of neutrophils converts the atypical phenotype to the classical EAE phenotype and, in some cases, a mixed atypical/classical phenotype. Blocking CXCR2 signaling ameliorates atypical EAE development by reducing neutrophil infiltration into the cerebellum/brainstem. Thus, neutrophils lacking SOCS3 display elevated STAT3 activation and expression of proinflammatory mediators and play a critical role in the development of atypical EAE.


Subject(s)
Brain Stem/immunology , Cerebellum/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Neutrophil Infiltration/immunology , Neutrophils/immunology , Suppressor of Cytokine Signaling Proteins/immunology , Animals , Brain Stem/cytology , Cerebellum/cytology , Chemokines/biosynthesis , Enzyme Activation/immunology , Interleukin-1beta/biosynthesis , Interleukin-23/immunology , Interleukin-6/immunology , Mice , Mice, Knockout , Neutrophil Infiltration/genetics , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/metabolism , Receptors, Interleukin-8B/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/genetics , Tumor Necrosis Factor-alpha/biosynthesis
19.
Am J Physiol Lung Cell Mol Physiol ; 311(5): L868-L880, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27638904

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are diseases with high mortality. Macrophages and neutrophils are responsible for inflammatory responses in ALI and ARDS, which are characterized by excessive production of proinflammatory mediators in bronchoalveolar lavage fluid (BALF) and plasma. Aberrant activation of the JAK/STAT pathway is critical for persistent inflammation in many conditions such as infection and autoimmunity. Given the importance of the STAT3 transcription factor in activating macrophages and neutrophils and augmenting inflammation, we investigated the therapeutic potential of inhibiting STAT3 activity using the small-molecule STAT3 inhibitor, LLL12. Our results demonstrate that LPS induces STAT3 activation in macrophages in vitro and in CD45+CD11b+ cells from BALF in the LPS-induced ALI model in vivo. LLL12 treatment inhibits LPS-induced lung inflammation in the ALI model, which is accompanied by suppression of LPS-induced STAT3 activation and an inhibition of macrophage and inflammatory cell infiltration in lung and BALF. LLL12 treatment also suppresses expression of proinflammatory genes including IL-1ß, IL-6, TNF-α, iNOS, CCL2, and MHC class II in macrophages and inflammatory cells from BALF and serum as determined by ELISA. Furthermore, hyperactivation of STAT3 in LysMCre-SOCS3fl/fl mice accelerates the severity of inflammation in the ALI model. Both pre- and post-LPS treatment with LLL12 decrease LPS-induced inflammatory responses in mice with ALI. Importantly, LLL12 treatment attenuates STAT3 phosphorylation in human peripheral blood mononuclear cells induced by plasma from patients with ARDS, which suggests the feasibility of targeting the STAT3 pathway therapeutically for patients with ALI and ARDS.


Subject(s)
Acute Lung Injury/metabolism , Acute Lung Injury/prevention & control , STAT3 Transcription Factor/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Animals , Anthraquinones/pharmacology , Bronchoalveolar Lavage Fluid/cytology , Cell Separation , Chemokines/metabolism , Disease Models, Animal , Gene Deletion , Gene Expression Regulation/drug effects , Humans , Inflammation/genetics , Inflammation/pathology , Inflammation Mediators/metabolism , Integrases/metabolism , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , Myeloid Cells/drug effects , Myeloid Cells/metabolism , Pneumonia/genetics , Pneumonia/pathology , Respiratory Distress Syndrome/blood , Sulfonamides/pharmacology , Suppressor of Cytokine Signaling 3 Protein/metabolism
20.
Crit Rev Immunol ; 35(6): 505-27, 2015.
Article in English | MEDLINE | ID: mdl-27279046

ABSTRACT

Pathogenic CD4+ T cells and myeloid cells play critical roles in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. These immune cells secrete aberrantly high levels of pro-inflammatory cytokines that pathogenically bridge the innate and adaptive immune systems and damage neurons and oligodendrocytes. These cytokines include interleukin-2 (IL-2), IL-6, IL-12, IL-21, IL-23, granulocyte macrophage-colony stimulating factor (GM-CSF), and interferon-γ (IFN-γ). It is, therefore, not surprising that both the dysregulated expression of these cytokines and the subsequent activation of their downstream signaling cascades is a common feature in MS/EAE. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is utilized by numerous cytokines for signal transduction and is essential for the development and regulation of immune responses. Unbridled activation of the JAK/STAT pathway by pro-inflammatory cytokines has been demonstrated to be critically involved in the pathogenesis of MS/EAE. In this review, we discuss recent advancements in our understanding of the involvement of the JAK/STAT signaling pathway in the pathogenesis of MS/EAE, with a particular focus on therapeutic approaches to target the JAK/STAT pathway.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Janus Kinases/physiology , Multiple Sclerosis/immunology , STAT Transcription Factors/physiology , Signal Transduction/physiology , Animals , Cytokines/metabolism , Humans , Translational Research, Biomedical
SELECTION OF CITATIONS
SEARCH DETAIL