Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
J Chem Inf Model ; 63(3): 910-927, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36525563

ABSTRACT

In the present work, we delineate the molecular mechanism of a bulky antibiotic permeating through a bacterial channel and uncover the role of conformational dynamics of the constriction loop in this process. Using the temperature accelerated sliced sampling approach, we shed light onto the dynamics of the L3 loop, in particular the F118 to S125 segment, at the constriction regions of the OmpF porin. We complement the findings with single channel electrophysiology experiments and applied-field simulations, and we demonstrate the role of hydrogen-bond stabilization in the conformational dynamics of the L3 loop. A molecular mechanism of permeation is put forward wherein charged antibiotics perturb the network of stabilizing hydrogen-bond interactions and induce conformational changes in the L3 segment, thereby aiding the accommodation and permeation of bulky antibiotic molecules across the constriction region. We complement the findings with single channel electrophysiology experiments and demonstrate the importance of the hydrogen-bond stabilization in the conformational dynamics of the L3 loop. The generality of the present observations and experimental results regarding the L3 dynamics enables us to identify this L3 segment as the source of gating. We propose a mechanism of OmpF gating that is in agreement with previous experimental data that showed the noninfluence of cysteine double mutants that tethered the L3 tip to the barrel wall on the OmpF gating behavior. The presence of similar loop stabilization networks in porins of other clinically relevant pathogens suggests that the conformational dynamics of the constriction loop is possibly of general importance in the context of antibiotic permeation through porins.


Subject(s)
Anti-Bacterial Agents , Porins , Anti-Bacterial Agents/pharmacology , Molecular Conformation , Porins/chemistry , Porins/metabolism , Hydrogen
2.
J Am Chem Soc ; 144(7): 2953-2967, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35164499

ABSTRACT

The voltage-dependent anion channel (VDAC), the most abundant protein in the outer mitochondrial membrane, is responsible for the transport of all ions and metabolites into and out of mitochondria. Larger than any of the ß-barrel structures determined to date by magic-angle spinning (MAS) NMR, but smaller than the size limit of cryo-electron microscopy (cryo-EM), VDAC1's 31 kDa size has long been a bottleneck in determining its structure in a near-native lipid bilayer environment. Using a single two-dimensional (2D) crystalline sample of human VDAC1 in lipids, we applied proton-detected fast magic-angle spinning NMR spectroscopy to determine the arrangement of ß strands. Combining these data with long-range restraints from a spin-labeled sample, chemical shift-based secondary structure prediction, and previous MAS NMR and atomic force microscopy (AFM) data, we determined the channel's structure at a 2.2 Å root-mean-square deviation (RMSD). The structure, a 19-stranded ß-barrel, with an N-terminal α-helix in the pore is in agreement with previous data in detergent, which was questioned due to the potential for the detergent to perturb the protein's functional structure. Using a quintuple mutant implementing the channel's closed state, we found that dynamics are a key element in the protein's gating behavior, as channel closure leads to the destabilization of not only the C-terminal barrel residues but also the α2 helix. We showed that cholesterol, previously shown to reduce the frequency of channel closure, stabilizes the barrel relative to the N-terminal helix. Furthermore, we observed channel closure through steric blockage by a drug shown to selectively bind to the channel, the Bcl2-antisense oligonucleotide G3139.


Subject(s)
Lipid Bilayers/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Binding Sites , Cholesterol/chemistry , Cholesterol/metabolism , Humans , Ion Channel Gating , Ligands , Mutation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Thionucleotides/chemistry , Thionucleotides/metabolism , Voltage-Dependent Anion Channel 1/chemistry , Voltage-Dependent Anion Channel 1/genetics
3.
Mol Microbiol ; 116(1): 97-108, 2021 07.
Article in English | MEDLINE | ID: mdl-33561903

ABSTRACT

The Gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen, responsible for many hospital-acquired infections. The bacterium is quite resistant toward many antibiotics, in particular because of the fine-tuned permeability of its outer membrane (OM). General diffusion outer membrane pores are quite rare in this organism. Instead, its OM contains many substrate-specific porins. Their expression is varying according to growth conditions and virulence. Phosphate limitations, as well as pathogenicity factors, result in the induction of the two mono- and polyphosphate-specific porins, OprP and OprO, respectively, together with an inner membrane uptake mechanism and a periplasmic binding protein. These outer membrane channels could serve as outer membrane pathways for the uptake of phosphonates. Among them are not only herbicides, but also potent antibiotics, such as fosfomycin and fosmidomycin. In this study, we investigated the interaction between OprP and OprO and fosmidomycin in detail. We could demonstrate that fosmidomycin is able to bind to the phosphate-specific binding site inside the two porins. The inhibition of chloride conductance of OprP and OprO by fosmidomycin is considerably less than that of phosphate or diphosphate, but it can be measured in titration experiments of chloride conductance and also in single-channel experiments. The results suggest that fosmidomycin transport across the OM of P. aeruginosa occurs through OprP and OprO. Our data with the ones already known in the literature show that phosphonic acid-containing antibiotics are in general good candidates to treat the infections of P. aeruginosa at the very beginning through a favorable OM transport system.


Subject(s)
Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism , Fosfomycin/analogs & derivatives , Ion Transport/physiology , Porins/metabolism , Pseudomonas aeruginosa/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/genetics , Binding Sites/physiology , Chlorides/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Fosfomycin/metabolism , Phosphorous Acids/metabolism , Porins/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics
4.
Eur Biophys J ; 51(4-5): 309-323, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35567623

ABSTRACT

The cell wall of Rhodococcus corynebacteroides formerly known as Nocardia corynebacteroides contains cell wall channels that are responsible for the cell wall permeability of this bacterium. Based on partial sequencing of the polypeptide subunits and a BLAST search, we identified one polypeptide of R. corynebacteroides (PorARc) and two polypeptides (PorARr and PorBRr) from the closely related bacterium Rhodococcus ruber. The corresponding genes, porARc (606 bp), porARr (702 bp), and porBRr (540 bp) are constituents of the known genome of R. corynebacteroides DSM-20151 and R. ruber DSM-43338, respectively. porARr and porBRr of R. ruber are possibly forming a common operon coding for the polypeptide subunits of the cell wall channel. The genes coding for PorARc and for PorARr and PorBRr without signal peptide were separately expressed in the porin-deficient Escherichia coli BL21DE3Omp8 strain and the proteins were purified to homogeneity. All proteins were checked for channel formation in lipid bilayers. PorARc formed channels with characteristics that were very similar to those of a previous study. The proteins PorARr and PorBRr expressed in E. coli could alone create channels in lipid bilayer membranes, despite the possibility that the two corresponding genes form a porin operon and that both subunits possibly form the cell wall channels in vivo. Based on amino acid sequence comparison of a variety of proteins forming cell wall channels in bacteria of the suborder Corynebacterineae, it seems very likely that PorARc, PorARr, and PorBRr are members of a huge family of proteins (PF09203) that form MspA-like cell wall channels.


Subject(s)
Escherichia coli , Rhodococcus , Cell Wall/chemistry , Cell Wall/metabolism , Escherichia coli/metabolism , Lipid Bilayers/chemistry , Peptides/metabolism , Porins/chemistry , Rhodococcus/genetics , Rhodococcus/metabolism
5.
Eur Biophys J ; 51(1): 15-27, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34854958

ABSTRACT

Clostridium perfringens is a potent producer of a variety of toxins. Well studied from these are five toxins (alpha, Beta (CPB), epsilon, iota and CPE) that are produced by seven toxinotype strains (A-G) of C. perfringens. Besides these toxins, C. perfringens produces also another toxin that causes necrotizing enterocolitis in piglets. This toxin termed consensus Beta2 toxin (cCPB2) has a molecular mass of 27,620 Da and shows only little homology to CPB and no one to the other toxins of C. perfringens. Its primary action on cells remained unknown to date. cCPB2 was heterogeneously expressed as fusion protein with GST in Escherichia coli and purified to homogeneity. Although cCPB2 does not exhibit the typical structure of beta-stranded pore-forming proteins and contains no indication for the presence of amphipathic alpha-helices we could demonstrate that cCPB2 is a pore-forming component with an extremely high activity in lipid bilayers. The channels have a single-channel conductance of about 700 pS in 1 M KCl and are highly cation-selective as judged from selectivity measurements in the presence of salt gradients. The high cation selectivity is caused by the presence of net negative charges in or near the channel that allowed an estimate of the channel size being about 1.4 nm wide. Our measurements suggest that the primary effect of cCPB2 is the formation of cation-selective channels followed by necrotic enteritis in humans and animals. We searched in databases for homologs of cCPB2 and constructed a cladogram representing the phylogenetic relationship to the next relatives of cCPB2.


Subject(s)
Clostridium perfringens , Lipid Bilayers , Animals , Cations , Humans , Phylogeny , Swine
6.
Proc Natl Acad Sci U S A ; 116(46): 23083-23090, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31666324

ABSTRACT

Tc toxins are modular toxin systems of insect and human pathogenic bacteria. They are composed of a 1.4-MDa pentameric membrane translocator (TcA) and a 250-kDa cocoon (TcB and TcC) encapsulating the 30-kDa toxic enzyme (C terminus of TcC). Binding of Tc toxins to target cells and a pH shift trigger the conformational transition from the soluble prepore state to the membrane-embedded pore. Subsequently, the toxic enzyme is translocated and released into the cytoplasm. A high-resolution structure of a holotoxin embedded in membranes is missing, leaving open the question of whether TcB-TcC has an influence on the conformational transition of TcA. Here we show in atomic detail a fully assembled 1.7-MDa Tc holotoxin complex from Photorhabdus luminescens in the membrane. We find that the 5 TcA protomers conformationally adapt to fit around the cocoon during the prepore-to-pore transition. The architecture of the Tc toxin complex allows TcB-TcC to bind to an already membrane-embedded TcA pore to form a holotoxin. Importantly, assembly of the holotoxin at the membrane results in spontaneous translocation of the toxic enzyme, indicating that this process is not driven by a proton gradient or other energy source. Mammalian lipids with zwitterionic head groups are preferred over other lipids for the integration of Tc toxins. In a nontoxic Tc toxin variant, we can visualize part of the translocating toxic enzyme, which transiently interacts with alternating negative charges and hydrophobic stretches of the translocation channel, providing insights into the mechanism of action of Tc toxins.


Subject(s)
Bacterial Toxins/chemistry , Photorhabdus/chemistry , ADP Ribose Transferases/metabolism , Bacterial Toxins/metabolism , Cryoelectron Microscopy , Photorhabdus/metabolism , Protein Structure, Quaternary
7.
FASEB J ; 34(5): 6244-6261, 2020 05.
Article in English | MEDLINE | ID: mdl-32190927

ABSTRACT

The human pathogenic bacterium Clostridioides difficile produces two exotoxins TcdA and TcdB, which inactivate Rho GTPases thereby causing C. difficile-associated diseases (CDAD) including life-threatening pseudomembranous colitis. Hypervirulent strains produce additionally the binary actin ADP-ribosylating toxin CDT. These strains are hallmarked by more severe forms of CDAD and increased frequency and severity. Once in the cytosol, the toxins act as enzymes resulting in the typical clinical symptoms. Therefore, targeting and inactivation of the released toxins are of peculiar interest. Prompted by earlier findings that human α-defensin-1 neutralizes TcdB, we investigated the effects of the defensin on all three C. difficile toxins. Inhibition of TcdA, TcdB, and CDT was demonstrated by analyzing toxin-induced changes in cell morphology, substrate modification, and decrease in transepithelial electrical resistance. Application of α-defensin-1 protected cells and human intestinal organoids from the cytotoxic effects of TcdA, TcdB, CDT, and their combination which is attributed to a direct interaction between the toxins and α-defensin-1. In mice, the application of α-defensin-1 reduced the TcdA-induced damage of intestinal loops in vivo. In conclusion, human α-defensin-1 is a specific and potent inhibitor of the C. difficile toxins and a promising agent to develop novel therapeutic options against C. difficile infections.


Subject(s)
ADP Ribose Transferases/toxicity , Anti-Infective Agents/metabolism , Bacterial Proteins/toxicity , Bacterial Toxins/toxicity , Enterotoxins/toxicity , Intestinal Mucosa/drug effects , Organoids/drug effects , Peptide Fragments/metabolism , alpha-Defensins/metabolism , ADP Ribose Transferases/metabolism , Animals , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Enterotoxins/metabolism , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Mice , Organoids/metabolism , Organoids/pathology
8.
Cell Microbiol ; 22(1): e13109, 2020 01.
Article in English | MEDLINE | ID: mdl-31454143

ABSTRACT

Apoptosis-inducing protein of 56 kDa (AIP56) is a major virulence factor of Photobacterium damselae subsp. piscicida, a gram-negative pathogen that infects warm water fish species worldwide and causes serious economic losses in aquacultures. AIP56 is a single-chain AB toxin composed by two domains connected by an unstructured linker peptide flanked by two cysteine residues that form a disulphide bond. The A domain comprises a zinc-metalloprotease moiety that cleaves the NF-kB p65, and the B domain is involved in binding and internalisation of the toxin into susceptible cells. Previous experiments suggested that disruption of AIP56 disulphide bond partially compromised toxicity, but conclusive evidences supporting the importance of that bond in intoxication were lacking. Here, we show that although the disulphide bond of AIP56 is dispensable for receptor recognition, endocytosis, and membrane interaction, it needs to be intact for efficient translocation of the toxin into the cytosol. We also show that the host cell thioredoxin reductase-thioredoxin system is involved in AIP56 intoxication by reducing the disulphide bond of the toxin at the cytosol. The present study contributes to a better understanding of the molecular mechanisms operating during AIP56 intoxication and reveals common features shared with other AB toxins.


Subject(s)
Apoptosis Regulatory Proteins/chemistry , Bacterial Toxins/metabolism , Cytosol/metabolism , Disulfides , Oxidation-Reduction , Photobacterium/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Cells, Cultured , Endocytosis , Fishes/microbiology , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , Photobacterium/pathogenicity , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Thioredoxin-Disulfide Reductase/metabolism , Virulence Factors/metabolism
9.
FASEB J ; 33(4): 5755-5771, 2019 04.
Article in English | MEDLINE | ID: mdl-30699302

ABSTRACT

The antibiotic bacitracin (Bac) inhibits cell wall synthesis of gram-positive bacteria. Here, we discovered a totally different activity of Bac: the neutralization of bacterial exotoxins. Bac prevented intoxication of mammalian cells with the binary enterotoxins Clostridium botulinum C2, C. perfringens ι, C. difficile transferase (CDT), and Bacillus anthracis lethal toxin. The transport (B) subunits of these toxins deliver their respective enzyme (A) subunits into cells. Following endocytosis, the B subunits form pores in membranes of endosomes, which mediate translocation of the A subunits into the cytosol. Bac inhibited formation of such B pores in lipid bilayers in vitro and in living cells, thereby preventing translocation of the A subunit into the cytosol. Bac preserved the epithelial integrity of toxin-treated CaCo-2 monolayers, a model for the human gut epithelium. In conclusion, Bac should be discussed as a therapeutic option against infections with medically relevant toxin-producing bacteria, including C. difficile and B. anthracis, because it inhibits bacterial growth and neutralizes the secreted toxins.-Schnell, L., Felix, I., Müller, B., Sadi, M., von Bank, F., Papatheodorou, P., Popoff, M. R., Aktories, K., Waltenberger, E., Benz, R., Weichbrodt, C., Fauler, M., Frick, M., Barth, H. Revisiting an old antibiotic: bacitracin neutralizes binary bacterial toxins and protects cells from intoxication.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacitracin/pharmacology , Bacterial Toxins/metabolism , Protective Agents/pharmacology , Animals , Antigens, Bacterial/metabolism , Bacillus anthracis/drug effects , Biological Transport/drug effects , Caco-2 Cells , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Chlorocebus aethiops , Clostridioides difficile/drug effects , Cytosol/drug effects , Cytosol/metabolism , Endocytosis/drug effects , Endosomes/drug effects , Endosomes/metabolism , Exotoxins/metabolism , HeLa Cells , Humans , Lipid Bilayers/metabolism , Protein Transport/drug effects , Vero Cells
10.
Nature ; 495(7442): 520-3, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23515159

ABSTRACT

Photorhabdus luminescens is an insect pathogenic bacterium that is symbiotic with entomopathogenic nematodes. On invasion of insect larvae, P. luminescens is released from the nematodes and kills the insect through the action of a variety of virulence factors including large tripartite ABC-type toxin complexes (Tcs). Tcs are typically composed of TcA, TcB and TcC proteins and are biologically active only when complete. Functioning as ADP-ribosyltransferases, TcC proteins were identified as the actual functional components that induce actin-clustering, defects in phagocytosis and cell death. However, little is known about the translocation of TcC into the cell by the TcA and TcB components. Here we show that TcA in P. luminescens (TcdA1) forms a transmembrane pore and report its structure in the prepore and pore state determined by cryoelectron microscopy. We find that the TcdA1 prepore assembles as a pentamer forming an α-helical, vuvuzela-shaped channel less than 1.5 nanometres in diameter surrounded by a large outer shell. Membrane insertion is triggered not only at low pH as expected, but also at high pH, explaining Tc action directly through the midgut of insects. Comparisons with structures of the TcdA1 pore inserted into a membrane and in complex with TcdB2 and TccC3 reveal large conformational changes during membrane insertion, suggesting a novel syringe-like mechanism of protein translocation. Our results demonstrate how ABC-type toxin complexes bridge a membrane to insert their lethal components into the cytoplasm of the host cell. We believe that the proposed mechanism is characteristic of the whole ABC-type toxin family. This explanation of toxin translocation is a step towards understanding the host-pathogen interaction and the complex life cycle of P. luminescens and other pathogens, including human pathogenic bacteria, and serves as a strong foundation for the development of biopesticides.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Photorhabdus/metabolism , Pore Forming Cytotoxic Proteins/metabolism , ADP Ribose Transferases/chemistry , ADP Ribose Transferases/metabolism , ADP Ribose Transferases/ultrastructure , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Bacterial Toxins/chemistry , Cell Membrane/metabolism , Cryoelectron Microscopy , Cytoplasm/metabolism , Host-Pathogen Interactions , Insecta/cytology , Insecta/metabolism , Insecta/microbiology , Models, Biological , Models, Molecular , Photorhabdus/pathogenicity , Photorhabdus/ultrastructure , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/ultrastructure , Protein Conformation , Protein Transport
11.
Biochim Biophys Acta Biomembr ; 1860(8): 1544-1553, 2018 08.
Article in English | MEDLINE | ID: mdl-29787733

ABSTRACT

Legionella pneumophila is an aerobic and nonspore-forming pathogenic Gram-negative bacterium of the genus Legionella. It is the causative agent of Legionnaires' disease, also known as Legionellosis. The hosts of this organism are diverse, ranging from simple water borne protozoans such as amoebae to more complex hosts such as macrophages in humans. Genome analyses have shown the presence of genes coding for eukaryotic like proteins in several Legionella species. The presence of these proteins may assist L. pneumophila in its adaptation to the eukaryotic host. We studied the characteristics of a protein (Lpg1974) of L. pneumophila that shows remarkable homologies in length of the primary sequence and for the identity/homology of many amino acids to the voltage dependent anion channel (human VDAC1, Porin 31HL) of human mitochondria. Two different forms of Lpg1974 were overexpressed in Escherichia coli and purified to homogeneity: the one containing a putative N-terminal signal sequence and one without it. Reconstituted protein containing the signal sequence formed ion-permeable pores in lipid bilayer membranes with a conductance of approximately 5.4 nS in 1 M KCl. When the predicted N-terminal signal peptide of Lpg1974 comprising an α-helical structure similar to that at the N-terminus of hVDAC1 was removed, the channels formed in reconstitution experiments had a conductance of 7.6 nS in 1 M KCl. Both Lpg1974 proteins formed pores that were voltage-dependent and anion-selective similar to the pores formed by hVDAC1. These results suggest that Lpg1974 of L. pneumophila is indeed a structural and functional homologue to hVDAC1.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Legionella pneumophila/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Amino Acid Sequence , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/classification , Bacterial Outer Membrane Proteins/genetics , Escherichia coli/metabolism , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Phylogeny , Protein Structure, Secondary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Alignment , Voltage-Dependent Anion Channel 1/chemistry
12.
Biochim Biophys Acta Biomembr ; 1860(3): 767-776, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29288627

ABSTRACT

Planctomycetes are a bacterial phylum known for their complex intracellular compartmentalization. While most Planctomycetes have two compartments, the anaerobic ammonium oxidizing (anammox) bacteria contain three membrane-enclosed compartments. In contrast to a long-standing consensus, recent insights suggested the outermost Planctomycete membrane to be similar to a Gram-negative outer membrane (OM). One characteristic component that differentiates OMs from cytoplasmic membranes (CMs) is the presence of outer membrane proteins (OMPs) featuring a ß-barrel structure that facilitates passage of molecules through the OM. Although proteomic and genomic evidence suggested the presence of OMPs in several Planctomycetes, no experimental verification existed of the pore-forming function and localization of these proteins in the outermost membrane of these exceptional microorganisms. Here, we show via lipid bilayer assays that at least two typical OMP-like channel-forming proteins are present in membrane preparations of the anammox bacterium Kuenenia stuttgartiensis. One of these channel-forming proteins, the highly abundant putative OMP Kustd1878, was purified to homogeneity. Analysis of the channel characteristics via lipid bilayer assays showed that Kustd1878 forms a moderately cation-selective channel with a high current noise and an average single-channel conductance of about 170-190pS in 1M KCl. Antibodies were raised against the purified protein and immunogold localization indicated Kustd1878 to be present in the outermost membrane. Therefore, this work clearly demonstrates the presence of OMPs in anammox Planctomycetes and thus firmly adds to the emerging view that Planctomycetes have a Gram-negative cell envelope.


Subject(s)
Bacterial Outer Membrane Proteins/isolation & purification , Cations/metabolism , Ion Channels/isolation & purification , Planctomycetales/chemistry , Ammonium Compounds/metabolism , Bacterial Outer Membrane Proteins/metabolism , Cell Membrane/ultrastructure , Cell Wall/ultrastructure , Gram-Negative Bacteria/ultrastructure , Immunohistochemistry , Ion Channels/metabolism , Ion Transport , Lipid Bilayers , Planctomycetales/metabolism , Planctomycetales/ultrastructure , Potassium/metabolism , Potassium Channels/isolation & purification , Potassium Channels/metabolism
13.
Curr Top Microbiol Immunol ; 406: 229-256, 2017.
Article in English | MEDLINE | ID: mdl-28674946

ABSTRACT

A-B types of toxins are among the most potent bacterial protein toxins produced by gram-positive bacteria. Prominent examples are the tripartite anthrax toxin of Bacillus anthracis and the different A-B type clostridial toxins that are the causative agents of severe human and animal diseases and could serve as biological weapons. The components of all these toxins comprise one binding/transport (B) subunit and one or two separate, non-linked enzymatically active (A) subunits. The A and B subunits are separately produced and secreted by the pathogenic gram-positive bacteria and must assemble on the surface of eukaryotic target cells to form biologically active toxin complexes. The B components are cleaved by proteases to generate the biologically active species that binds to receptors on the surface of the target cells and form there oligomers which bind the A subunits. The AB complexes are internalized by receptor-mediated endocytosis and reach early or late endosomes that become acidified. Subsequently, the B components form channels in endosomal membranes that are indispensable for the transport of the enzymatic subunits across these membranes into the cytosol of target cells via the trans-membrane channels. In addition to the channels formed by the B components, host cell factors including chaperones and further folding helper enzymes are involved in the import of the enzymatic subunits into the cytosol of eukaryotic cells. Positively charged heterocyclic molecules, such as chloroquine and related aminoquinolinium and azolopyridinium salts have been shown in recent years to bind with high affinity to the channels formed by the B components of binary toxins. Since binding to the B components is also a prerequisite for transport of the A components across the endosomal membranes the channel blockers also prevent transport of the A subunits into the host cell cytosol. The inhibition of toxin uptake into cells by such pharmacological compounds should also be of clinically interest because the toxins are the major virulence factors causing anthrax on the one hand and severe enteric disease on the other hand. Therefore, the novel toxin inhibitors should be attractive compounds for an application in combination with antibiotics to prevent or treat the diseases associated with binary toxins. Here the different processes involved in channel block in vitro and inhibition of intoxication of living target cells are reviewed in some detail.


Subject(s)
Bacterial Toxins/metabolism , Eukaryotic Cells/drug effects , Eukaryotic Cells/metabolism , Animals , Biological Transport/drug effects , Humans
14.
BMC Biochem ; 19(1): 3, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29743008

ABSTRACT

BACKGROUND: Corynebacterium urealyticum, a pathogenic, multidrug resistant member of the mycolata, is known as causative agent of urinary tract infections although it is a bacterium of the skin flora. This pathogenic bacterium shares with the mycolata the property of having an unusual cell envelope composition and architecture, typical for the genus Corynebacterium. The cell wall of members of the mycolata contains channel-forming proteins for the uptake of solutes. RESULTS: In this study, we provide novel information on the identification and characterization of a pore-forming protein in the cell wall of C. urealyticum DSM 7109. Detergent extracts of whole C. urealyticum cultures formed in lipid bilayer membranes slightly cation-selective pores with a single-channel conductance of 1.75 nS in 1 M KCl. Experiments with different salts and non-electrolytes suggested that the cell wall pore of C. urealyticum is wide and water-filled and has a diameter of about 1.8 nm. Molecular modelling and dynamics has been performed to obtain a model of the pore. For the search of the gene coding for the cell wall pore of C. urealyticum we looked in the known genome of C. urealyticum for a similar chromosomal localization of the porin gene to known porH and porA genes of other Corynebacterium strains. Three genes are located between the genes coding for GroEL2 and polyphosphate kinase (PKK2). Two of the genes (cur_1714 and cur_1715) were expressed in different constructs in C. glutamicum ΔporAΔporH and in porin-deficient BL21 DE3 Omp8 E. coli strains. The results suggested that the gene cur_1714 codes alone for the cell wall channel. The cell wall porin of C. urealyticum termed PorACur was purified to homogeneity using different biochemical methods and had an apparent molecular mass of about 4 kDa on tricine-containing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). CONCLUSIONS: Biophysical characterization of the purified protein (PorACur) suggested indeed that cur_1714 is the gene coding for the pore-forming protein in C. urealyticum because the protein formed in lipid bilayer experiments the same pores as the detergent extract of whole cells. The study is the first report of a cell wall channel in the pathogenic C. urealyticum.


Subject(s)
Bacterial Proteins/metabolism , Cell Wall/metabolism , Corynebacterium/metabolism , Porins/metabolism , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Corynebacterium/pathogenicity , Electrophoresis, Polyacrylamide Gel , Humans , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers , Molecular Dynamics Simulation , Porins/chemistry , Porins/genetics , Protein Structure, Secondary , Sequence Homology, Amino Acid , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology
15.
Biophys J ; 113(4): 829-834, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28834719

ABSTRACT

Under phosphate-limiting conditions, the channels OprP and OprO are induced and expressed in the outer membrane of Pseudomonas aeruginosa. Despite their large homology, the phosphate-specific OprP and the diphosphate-specific OprO pores show structural differences in their binding sites situated in the constriction region. Previously, it was shown that the mutation of amino acids in OprP (Y62F and Y114D) led to an exchange in substrate specificity similar to OprO. To support the role of these key amino acids in the substrate sorting of these specific channels, the reverse mutants for OprO (F62Y, D114Y, and F62Y/D114Y) were created in this study. The phosphate and diphosphate binding of the generated channels was studied in planar lipid bilayers. Our results show that mutations of key residues indeed reverse the substrate specificity of OprO to OprP and support the view that just a few strategically positioned amino acids are mainly responsible for its substrate specificity.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Ion Channel Gating , Porins/chemistry , Porins/metabolism , Pseudomonas aeruginosa/metabolism , Cell Membrane/metabolism , Molecular Dynamics Simulation , Protein Conformation , Protein Transport , Pseudomonas aeruginosa/cytology , Substrate Specificity
16.
Biochim Biophys Acta ; 1858(3): 526-37, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26523409

ABSTRACT

The pore-forming cytolysins of the RTX-toxin (Repeats in ToXin) family are a relatively small fraction of a steadily increasing family of proteins that contain several functionally important glycine-rich and aspartate containing nonapeptide repeats. These cytolysins produced by a variety of Gram-negative bacteria form ion-permeable channels in erythrocytes and other eukaryotic cells. Hemolytic and cytolytic RTX-toxins represent pathogenicity factors of the toxin-producing bacteria and are very often important key factors in pathogenesis of the bacteria. Channel formation by RTX-toxins lead to the dissipation of ionic gradients and membrane potential across the cytoplasmic membrane of target cells, which results in cell death. Here we discuss channel formation and channel properties of some of the best known RTX-toxins, such as α-hemolysin (HlyA) of Escherichia coli and the uropathogenic EHEC strains, the adenylate cyclase toxin (ACT, CyaA) of Bordetella pertussis and the RTX-toxins (ApxI, ApxII and ApxIII) produced by different strains of Actinobacillus pleuropneumoniae. The channels formed by these RTX-toxins in lipid bilayers share some common properties such as cation selectivity and voltage-dependence. Furthermore the channels are transient and show frequent switching between different ion-conducting states. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.


Subject(s)
Bacteria/metabolism , Bacterial Infections/metabolism , Bacterial Toxins/metabolism , Cell Membrane/metabolism , Ion Channels/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Animals , Humans , Ion Channel Gating , Lipid Bilayers/metabolism
17.
Arch Toxicol ; 91(3): 1431-1445, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27106023

ABSTRACT

The pathogenic bacteria Clostridium botulinum and Bacillus anthracis produce the binary protein toxins C2 and lethal toxin (LT), respectively. These toxins consist of a binding/transport (B7) component that delivers the separate enzyme (A) component into the cytosol of target cells where it modifies its specific substrate and causes cell death. The B7 components of C2 toxin and LT, C2IIa and PA63, respectively, are ring-shaped heptamers that bind to their cellular receptors and form complexes with their A components C2I and lethal factor (LF), respectively. After receptor-mediated endocytosis of the toxin complexes, C2IIa and PA63 insert into the membranes of acidified endosomes and form trans-membrane pores through which C2I and LF translocate across endosomal membranes into the cytosol. C2IIa and PA63 also form channels in planar bilayer membranes, and we used this approach earlier to identify chloroquine as a potent blocker of C2IIa and PA63 pores. Here, a series of chloroquine derivatives was investigated to identify more efficient toxin inhibitors with less toxic side effects. Chloroquine, primaquine, quinacrine, and fluphenazine blocked C2IIa and PA63 pores in planar lipid bilayers and in membranes of living epithelial cells and macrophages, thereby preventing the pH-dependent membrane transport of the A components into the cytosol and protecting cells from intoxication with C2 toxin and LT. These potent inhibitors of toxin entry underline the central role of the translocation pores for cellular uptake of binary bacterial toxins and as relevant drug targets, and might be lead compounds for novel pharmacological strategies against severe enteric diseases and anthrax.


Subject(s)
Bacterial Toxins/pharmacokinetics , Botulinum Toxins/pharmacokinetics , Chloroquine/pharmacology , Antigens, Bacterial , Biological Transport/drug effects , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Fluphenazine/pharmacology , HeLa Cells/drug effects , Humans , Lipid Bilayers , Primaquine/pharmacology , Quinacrine/pharmacology
18.
J Biol Chem ; 290(31): 19184-96, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26082491

ABSTRACT

VhChiP is a sugar-specific porin present in the outer membrane of the marine bacterium Vibrio harveyi. VhChiP is responsible for the uptake of chitin oligosaccharides, with particular selectivity for chitohexaose. In this study, we employed electrophysiological and biochemical approaches to demonstrate that Trp(136), located at the mouth of the VhChiP pore, plays an essential role in controlling the channel's ion conductivity, chitin affinity, and permeability. Kinetic analysis of sugar translocation obtained from single channel recordings indicated that the Trp(136) mutations W136A, W136D, W136R, and W136F considerably reduce the binding affinity of the protein channel for its best substrate, chitohexaose. Liposome swelling assays confirmed that the Trp(136) mutations decreased the rate of bulk chitohexaose permeation through the VhChiP channel. Notably, all of the mutants show increases in the off-rate for chitohexaose of up to 20-fold compared with that of the native channel. Furthermore, the cation/anion permeability ratio Pc/Pa is decreased in the W136R mutant and increased in the W136D mutant. This demonstrates that the negatively charged surface at the interior of the protein lumen preferentially attracts cationic species, leading to the cation selectivity of this trimeric channel.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Tryptophan/chemistry , Vibrio , Amino Acid Sequence , Amino Acid Substitution , Bacterial Outer Membrane Proteins/genetics , Binding Sites , Kinetics , Liposomes/chemistry , Membrane Potentials , Molecular Sequence Data , Oligosaccharides/chemistry , Permeability , Protein Binding , Tryptophan/genetics
19.
Biochim Biophys Acta ; 1848(2): 654-61, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25462168

ABSTRACT

The role of the outer-membrane channel from a mycolic acid containing Gram-positive bacteria Nocardia farcinica, which forms a hydrophilic pathway across the cell wall, was characterized. Single channel electrophysiology measurements and liposome swelling assays revealed the permeation of hydrophilic solutes including sugars, amino acids and antibiotics. The cation selective N. farcinica channel exhibited strong interaction with the positively charged antibiotics; amikacin and kanamycin, and surprisingly also with the negatively charged ertapenem. Voltage dependent kinetics of amikacin and kanamycin interactions were studied to distinguish binding from translocation. Moreover, the importance of charged residues inside the channel was investigated using mutational studies that revealed rate limiting interactions during the permeation.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Cell Membrane/chemistry , Liposomes/chemistry , Nocardia/chemistry , Porins/chemistry , Amikacin/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Cell Membrane/metabolism , Cell Wall/chemistry , Ertapenem , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hydrophobic and Hydrophilic Interactions , Kanamycin/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Mycolic Acids/chemistry , Nocardia/metabolism , Porins/genetics , Porins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Static Electricity , Structural Homology, Protein , beta-Lactams/chemistry
20.
Biochim Biophys Acta ; 1848(7): 1536-44, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25858109

ABSTRACT

Pediatric septic arthritis in patients under age of four is frequently caused by the oral Gram-negative bacterium Kingella kingae. This organism may be responsible for a severe form of infective endocarditis in otherwise healthy children and adults. A major virulence factor of K. kingae is RtxA, a toxin that belongs to the RTX (Repeats-in-ToXin) group of secreted pore forming toxins. To understand the RtxA effects on host cell membranes, the toxin activity was studied using planar lipid bilayers. K. kingae strain PYKK081 and its isogenic RtxA-deficient strain, KKNB100, were tested for their ability to form pores in artificial membranes of asolectin/n-decane. RtxA, purified from PYKK081, was able to rapidly form pores with an apparent diameter of 1.9nm as measured by the partition of nonelectrolytes in the pores. The RtxA channels are cation-selective and showed strong voltage-dependent gating. In contrast to supernatants of PYKK081, those of KKNB100 did not show any pore forming activity. We concluded that RtxA toxin is the only secreted protein from K. kingae forming large channels in host cell membranes where it induces cation flux leading to programmed cell death. Furthermore, our findings suggested that the planar lipid bilayer technique can effectively be used to test possible inhibitors of RTX toxin activity and to investigate the mechanism of the toxin binding to the membrane.


Subject(s)
Bacterial Toxins/metabolism , Cell Membrane/metabolism , Kingella kingae/metabolism , Lipid Bilayers/metabolism , Arthritis, Infectious/microbiology , Bacterial Toxins/genetics , Bacterial Toxins/toxicity , Cell Membrane/drug effects , Cell Membrane/microbiology , Cytotoxins/metabolism , Cytotoxins/toxicity , Electrophoresis, Polyacrylamide Gel , Host-Pathogen Interactions , Humans , Infant , Ion Channel Gating/drug effects , Kingella kingae/genetics , Kingella kingae/physiology , Male , Mutation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL