ABSTRACT
It is difficult to make a distinction between inflammation and infection. Therefore, new strategies are required to allow accurate detection of infection. Here, we hypothesize that we can distinguish infected from non-infected ICU patients based on dynamic features of serum cytokine concentrations and heart rate time series. Serum cytokine profiles and heart rate time series of 39 patients were available for this study. The serum concentration of ten cytokines were measured using blood sampled every 10 min between 2100 and 0600 hours. Heart rate was recorded every minute. Ten metrics were used to extract features from these time series to obtain an accurate classification of infected patients. The predictive power of the metrics derived from the heart rate time series was investigated using decision tree analysis. Finally, logistic regression methods were used to examine whether classification performance improved with inclusion of features derived from the cytokine time series. The AUC of a decision tree based on two heart rate features was 0.88. The model had good calibration with 0.09 Hosmer-Lemeshow p value. There was no significant additional value of adding static cytokine levels or cytokine time series information to the generated decision tree model. The results suggest that heart rate is a better marker for infection than information captured by cytokine time series when the exact stage of infection is not known. The predictive value of (expensive) biomarkers should always be weighed against the routinely monitored data, and such biomarkers have to demonstrate added value.
Subject(s)
Critical Illness , Cross Infection/diagnosis , Heart Rate , Adult , Aged , Aged, 80 and over , Area Under Curve , Biomarkers/blood , Calibration , Critical Care , Cytokines/blood , Decision Trees , Humans , Intensive Care Units , Male , Middle Aged , Monitoring, Physiologic , Predictive Value of Tests , Prospective Studies , Respiration, Artificial , Risk , Time Factors , Young AdultABSTRACT
Thermodynamic study of incubated eggs is an important component in the optimisation of incubation processes. However, research on the interaction of heat and moisture transfer mechanisms in eggs is rather limited and does not focus on the hatching stage of incubation. During hatch, both the recently hatched chick and the broken eggshell add extra heat and moisture contents to the hatcher environment. In this study, we have proposed a novel way to estimate thermodynamically the amount of water evaporated from a broken eggshell during hatch. The hypothesis of this study considers that previously reported drops in eggshell temperature during hatching of chicks is the result remaining water content evaporating from the eggshell, released on the inner membrane by the recently hatched wet chick, just before hatch. To reproduce this process, water was sprayed on eggshells to mimic the water-fluid from the wet body of a chick. For each sample of eggshell, the shell geometry and weight, surface area and eggshell temperature were measured. Water evaporation losses and convection coefficient were calculated using a novel model approach considering the simultaneous heat and mass transfer profiles in an eggshell. The calculated average convective coefficient was 23.9 ± 7.5 W/m(2) °C, similar to previously reported coefficients in literature as a function of 0.5-1m/s air speed range. Comparison between measured and calculated values for the water evaporation showed 68% probability accuracy, associated to the use of an experimentally derived single heat transfer coefficient. The results support our proposed modelling approach of heat and mass transfer mechanisms. Furthermore, by estimating the amount of evaporated water in an eggshell post-hatch, air humidity levels inside the hatcher can be optimised to ensure wet chicks dry properly while not dehydrating early hatching chicks.
Subject(s)
Animals, Newborn/physiology , Chickens/physiology , Models, Theoretical , Animals , Eggs , Hot Temperature , Humidity , Temperature , Thermodynamics , WaterABSTRACT
1. Previous research has reported that chicken embryos develop a functionary auditory system during incubation and that prenatal sound may play an important role in embryo development and alter the hatch time. In this study the effects of prenatal auditory stimulation on hatch process, hatch performance, the development of embryo and blood parameters were investigated. 2. Four batches of Ross 308 broiler breeder eggs were incubated either in control or in sound-stimulated groups. The sound-stimulated embryos were exposed to a discontinuous sound of species-specific calls by means of a speaker at 72 dB for 16 h a day: maternal calls from d 10 to d 19 of incubation time and embryo/chick calls from d 19 until hatching. The species-specific sound was excluded from the control group. 3. The onset of hatch was delayed in the sound-stimulated group compared to the controls. This was also supported by comparison of the exact hatching time of individual focal chicks within the two groups. However, the sound-stimulated embryos had a lower hatchability than the control group, mainly due to significantly increased numbers of late deaths. 4. The embryos exhibited a similar growth pattern between the sound-stimulated group and the control group. Although sound exposure decreased body weight at d 16, no consistent effect of sound on body weight at incubation stage was observed. Species-specific sound stimulation also had no impact on chick quality, blood values and plasma corticosterone concentrations during hatch.
Subject(s)
Acoustic Stimulation/veterinary , Animal Husbandry/methods , Chick Embryo/physiology , Chickens/physiology , Reproduction , Vocalization, Animal , Animals , Blood Chemical Analysis/veterinary , Body Weight , Chick Embryo/growth & development , Chickens/growth & development , Corticosterone , Female , Organ Size , Reproducibility of Results , Species SpecificityABSTRACT
1. It has been reported that the increasing CO2 tension triggers the embryo to pip the air cell and emerge from the egg. However, the mechanism by which higher CO2 concentrations during the last few days of incubation affect chick physiology and the hatching process is unclear. This study investigated the effect of CO2 concentrations up to 1% during pipping, on the onset and length of the hatch window (HW) and chick quality. 2. Four batches of Ross 308 broiler eggs (600 eggs per batch) were incubated in two small-scale custom-built incubators (Petersime NV). During the final 3 d of incubation, control eggs were exposed to a lower CO2 concentration (0.3%), while the test eggs experienced a higher CO2 concentration programme (peak of 1%). 3. There were no significant differences in blood values, organ weight and body weight. There was also no difference in hatchability between control and test groups. However, a small increase in the chick weight and the percentage of first class chicks was found in the test groups. Furthermore, plasma corticosterone profiles during hatching were altered in embryos exposed to higher CO2; however, they dropped to normal levels at d 21 of incubation. Importantly, the hatching process was delayed and synchronised in the test group, resulting in a narrowed HW which was 2.7 h shorter and 5.3 h later than the control group. 4. These results showed that exposing chicks to 1% CO2 concentration during pipping did not have negative impacts on physiological status of newly hatched chicks. In addition, it may have a significant impact on the physiological mechanisms controlling hatching and have benefits for the health and welfare of chickens by reducing the waiting time after hatching.
Subject(s)
Carbon Dioxide/metabolism , Chick Embryo/physiology , Chickens/physiology , Animals , Blood Chemical Analysis/veterinary , Body Weight , Corticosterone/blood , Organ SizeABSTRACT
The objective of this study was to quantify the effect of hoof trimming on cow behavior (ruminating time, activity, and locomotion score) and performance (milk yield) over time. Data were gathered from a commercial dairy farm in Israel where routine hoof trimming is done by a trained hoof trimmer twice per year on the entire herd. In total, 288 cows spread over 6 groups with varying production levels were used for the analysis. Cow behavior was measured continuously with a commercial neck activity logger and a ruminating time logger (HR-Tag, SCR Engineers Ltd., Netanya, Israel). Milk yield was recorded during each milking session with a commercial milk flow sensor (Free Flow, SCR Engineers Ltd.). A trained observer assigned on the spot 5-point locomotion scores during 19 nighttime milking occasions between 22 October 2012 and 4 February 2013. Behavioral and performance data were gathered from 1wk before hoof trimming until 1wk after hoof trimming. A generalized linear mixed model was used to statistically test all main and interactive effects of hoof trimming, parity, lactation stage, and hoof lesion presence on ruminating time, neck activity, milk yield, and locomotion score. The results on locomotion scores show that the proportional distribution of cows in the different locomotion score classes changes significantly after trimming. The proportion of cows with a locomotion score ≥3 increases from 14% before to 34% directly after the hoof trimming. Two months after the trimming, the number of cows with a locomotion score ≥3 reduced to 20%, which was still higher than the baseline values 2wk before the trimming. The neck activity level was significantly reduced 1d after trimming (380±6 bits/d) compared with before trimming (389±6 bits/d). Each one-unit increase in locomotion score reduced cow activity level by 4.488 bits/d. The effect of hoof trimming on ruminating time was affected by an interaction effect with parity. The effect of hoof trimming on locomotion scores was affected by an interaction effect with lactation stage and tended to be affected by interaction effects with hoof lesion presence, indicating that cows with a lesion reacted different to the trimming than cows without a lesion did. The results show that the routine hoof trimming affected dairy cow behavior and performance in this farm.
Subject(s)
Digestion , Hoof and Claw/metabolism , Locomotion , Milk/metabolism , Animals , Behavior, Animal/physiology , Cattle , Female , Israel , LactationABSTRACT
The worldwide demand for meat and animal products is expected to increase by at least 40% in the next 15 years. The first question is how to achieve high-quality, sustainable and safe meat production that can meet this demand. At the same time, livestock production is currently facing serious problems. Concerns about animal health in relation to food safety and human health are increasing. The European Union wants improved animal welfare and has made a significant investment in it. At the same time, the environmental impact of the livestock sector is a major issue. Finally, it is necessary to ask how the farmer, who is the central figure in this process, will make a living from more sustainable livestock production systems. One tool that might provide real opportunities is precision livestock farming (PLF). In contrast to previous approaches, PLF systems aim to offer a real-time monitoring and management system that focuses on improving the life of the animals by warning when problems arise so that the farmer may take immediate action. Continuous, fully automatic monitoring and improvement of animal health and welfare, product yields and environmental impacts should become possible. This paper presents examples of systems that have already been developed in order to demonstrate the potential benefits of this technology.
Subject(s)
Animal Husbandry/methods , Animal Welfare/standards , Housing, Animal/standards , Livestock , Animals , Behavior, Animal , Models, Biological , Video RecordingABSTRACT
The objective of this study was to develop and validate a mathematical model to detect clinical lameness based on existing sensor data that relate to the behavior and performance of cows in a commercial dairy farm. Identification of lame (44) and not lame (74) cows in the database was done based on the farm's daily herd health reports. All cows were equipped with a behavior sensor that measured neck activity and ruminating time. The cow's performance was measured with a milk yield meter in the milking parlor. In total, 38 model input variables were constructed from the sensor data comprising absolute values, relative values, daily standard deviations, slope coefficients, daytime and nighttime periods, variables related to individual temperament, and milk session-related variables. A lame group, cows recognized and treated for lameness, to not lame group comparison of daily data was done. Correlations between the dichotomous output variable (lame or not lame) and the model input variables were made. The highest correlation coefficient was obtained for the milk yield variable (rMY=0.45). In addition, a logistic regression model was developed based on the 7 highest correlated model input variables (the daily milk yield 4d before diagnosis; the slope coefficient of the daily milk yield 4d before diagnosis; the nighttime to daytime neck activity ratio 6d before diagnosis; the milk yield week difference ratio 4d before diagnosis; the milk yield week difference 4d before diagnosis; the neck activity level during the daytime 7d before diagnosis; the ruminating time during nighttime 6d before diagnosis). After a 10-fold cross-validation, the model obtained a sensitivity of 0.89 and a specificity of 0.85, with a correct classification rate of 0.86 when based on the averaged 10-fold model coefficients. This study demonstrates that existing farm data initially used for other purposes, such as heat detection, can be exploited for the automated detection of clinically lame animals on a daily basis as well.
Subject(s)
Behavior, Animal/physiology , Cattle Diseases/diagnosis , Dairying/instrumentation , Feeding Behavior/physiology , Lactation/physiology , Lameness, Animal/diagnosis , Milk , Neck , Animals , Cattle , Cattle Diseases/physiopathology , Dairying/methods , Female , Housing, Animal , Lameness, Animal/physiopathology , Logistic Models , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/veterinary , Multivariate AnalysisABSTRACT
Currently, diagnosis of lameness at an early stage in dairy cows relies on visual observation by the farmer, which is time consuming and often omitted. Many studies have tried to develop automatic cow lameness detection systems. However, those studies apply thresholds to the whole population to detect whether or not an individual cow is lame. Therefore, the objective of this study was to develop and test an individualized version of the body movement pattern score, which uses back posture to classify lameness into 3 classes, and to compare both the population and the individual approach under farm conditions. In a data set of 223 videos from 90 cows, 76% of cows were correctly classified, with an 83% true positive rate and 22% false positive rate when using the population approach. A new data set, containing 105 videos of 8 cows that had moved through all 3 lameness classes, was used for an ANOVA on the 3 different classes, showing that body movement pattern scores differed significantly among cows. Moreover, the classification accuracy and the true positive rate increased by 10 percentage units up to 91%, and the false positive rate decreased by 4 percentage units down to 6% when based on an individual threshold compared with a population threshold.
Subject(s)
Cattle Diseases/classification , Lameness, Animal/classification , Animals , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/physiopathology , Female , Lameness, Animal/diagnosis , Lameness, Animal/physiopathology , Movement/physiology , Posture/physiology , Reproducibility of Results , Video RecordingABSTRACT
Embryonic growth and development is influenced by both endogenous and exogenous factors. The purpose of this review is to discuss the critical stages of chick embryonic development in relation to functional maturation of numerous organ systems, the acquisition of thermoregulation, and the hatching process. In addition, the mechanism of hatching, including sound synchronization and hormonal and environmental stimulation, will be discussed. Finally, the importance of effective hatching synchronization mechanisms will also be highlighted.
Subject(s)
Chick Embryo/growth & development , Chickens/physiology , Animals , Time FactorsABSTRACT
This experiment studied the effect of transportation duration of 1-d-old chicks on dehydration, mortality, production performance, and pododermatitis during the growout period. Eggs from the same breeder flock (Ross PM3) were collected at 35, 45, and 56 wk of age, for 3 successive identical experiments. In each experiment, newly hatched chicks received 1 of 3 transportation duration treatments from the hatchery before placement in the on-site rearing facility: no transportation corresponding to direct placement in less than 5 min (T00), or 4 (T04) or 10 h (T10) of transportation. The chicks were housed in 35-m(2) pens (650 birds each) and reared until 35 d old. Hematocrit and chick BW were measured on sample chicks before and after transportation. During the growout period, bird weight, feed uptake, and feed conversion ratio were measured weekly until slaughter. Transportation duration affected BW; T00 groups had a significantly higher BW than T04 and T10 transported birds but this effect lasted only until d 21. No clear effect on hematocrit, feed uptake, feed conversion ratio, or mortality was observed for birds transported up to 10 h. The decrease in weight in T10 birds was associated with less severe pododermatitis. Increasing age of the breeder flock was correlated with reduced egg fertility and hatchability, and also with higher quality and BW of hatched chicks. Chicks from older breeders also exhibited reduced mortality during the growout period.
Subject(s)
Animal Nutritional Physiological Phenomena , Chickens , Dermatitis/veterinary , Poultry Diseases/epidemiology , Transportation , Animal Husbandry , Animals , Body Weight , Chickens/physiology , Dermatitis/epidemiology , Dermatitis/etiology , Feeding Behavior , France/epidemiology , Hematocrit/veterinary , Longevity , Poultry Diseases/etiology , Time FactorsABSTRACT
This study investigated variations in eggshell temperature (T(egg)) during the hatching process of broiler eggs. Temperature sensors monitored embryo temperature by registering T(egg) every minute. Measurements carried out on a sample of 40 focal eggs revealed temperature drops between 2 to 6°C during the last 3 d of incubation. Video cameras recorded the hatching process and served as the gold standard reference for manually labeling the hatch times of chicks. Comparison between T(egg) drops and the hatch time of individuals revealed a time synchronization with 99% correlation coefficient and an absolute average time difference up to 25 min. Our findings suggest that attaching temperature sensors to eggshells is a precise tool for monitoring the hatch time of individual chicks. Individual hatch monitoring registers the biological age of chicks and facilitates an accurate and reliable means to count hatching results and manage the hatch window.
Subject(s)
Animal Husbandry/methods , Chickens/growth & development , Chickens/physiology , Animals , Chick Embryo/embryology , Chick Embryo/physiology , Egg Shell/physiology , Temperature , Thermometers/veterinary , Time Factors , Videotape RecordingABSTRACT
This paper describes a synchronized measurement system combining image and pressure data to automatically record the angle of the metacarpus and metatarsus bones of the cow with respect to a vertical line, which is useful for lameness detection in dairy cattle. A camera system was developed to record the posture and movement of the cow and the timing and position of hoof placement and release were recorded using a pressure sensitive mat. Experiments with the automatic system were performed continuously on a farm in Ghent (Belgium) for 5 wk in September and October 2009. In total, 2,219 measurements were performed on 75 individual lactating Holstein cows. As a reference for the analysis of the calculated variables, the locomotion of the cows was visually scored from recorded videos by a trained observer into 3 classes of lameness [53.5% were scored with gait score (GS)1, 33.3% were scored with GS2, and 9.3% were scored with GS3]. The contact data of the pressure mat and the camera images recorded by the system were synchronized and combined to measure different angles of the legs of the cows, together with the range of motion of the leg. Significant differences were found between the different gait scores in the release angles of the front hooves, in the range of motion of the front hooves, and in the touch angles of the hind hooves. The contact data of the pressure mat and the camera images recorded by the system were synchronized and combined to measure different angles of the legs of the cows, together with the range of motion of the leg. With respect to the classification of lameness, the range of motion of the front hooves (42.1 and 42.8%) and the release angle of the front hooves (41.7 and 42.0%) were important variables. In 83.3% of the cows, a change in GS led to an increase in within-cow variance for the range of motion or the release angle of the front hooves. In 76.2% of the cows, an increase in GS led to a decrease in range of motion or an increase in release angle of the front hooves.
Subject(s)
Cattle Diseases/diagnosis , Lameness, Animal/diagnosis , Animals , Cattle , Female , Locomotion , Metacarpal Bones , Metatarsal Bones , Posture , Pressure , Range of Motion, Articular , Video RecordingABSTRACT
The development of an embryo in an avian egg depends largely on its temperature. The embryo temperature is affected by its environment and the heat produced by the egg. In this paper, eggshell temperature and the heat transfer characteristics from one egg in a tray toward its environment are studied by means of computational fluid dynamics (CFD). Computational fluid dynamics simulations have the advantage of providing extensive 3-dimensional information on velocity and eggshell temperature distribution around an egg that otherwise is not possible to obtain by experiments. However, CFD results need to be validated against experimental data. The objectives were (1) to find out whether CFD can successfully simulate eggshell temperature from one egg in a tray by comparing to previously conducted experiments, (2) to visualize air flow and air temperature distribution around the egg in a detailed way, and (3) to perform sensitivity analysis on several variables affecting heat transfer. To this end, a CFD model was validated using 2 sets of temperature measurements yielding an effective model. From these simulations, it can be concluded that CFD can effectively be used to analyze heat transfer characteristics and eggshell temperature distribution around an egg. In addition, air flow and temperature distribution around the egg are visualized. It has been observed that temperature differences up to 2.6 degrees C are possible at high heat production (285 mW) and horizontal low flow rates (0.5 m/s). Sensitivity analysis indicates that average eggshell temperature is mainly affected by the inlet air velocity and temperature, flow direction, and the metabolic heat of the embryo and less by the thermal conductivity and emissivity of the egg and thermal emissivity of the tray.
Subject(s)
Egg Shell , Eggs/statistics & numerical data , Animals , Birds , Female , Hot Temperature , Poultry , Temperature , Thermodynamics , ThermogenesisABSTRACT
Lameness is an important economic problem in the dairy sector, resulting in production loss and reduced welfare of dairy cows. Given the modern-day expansion of dairy herds, a tool to automatically detect lameness in real-time can therefore create added value for the farmer. The challenge in developing camera-based tools is that one system has to work for all the animals on the farm despite each animal having its own individual lameness response. Individualising these systems based on animal-level historical data is a way to achieve accurate monitoring on farm scale. The goal of this study is to optimise a lameness monitoring algorithm based on back posture values derived from a camera for individual cows by tuning the deviation thresholds and the quantity of the historical data being used. Back posture values from a sample of 209 Holstein Friesian cows in a large herd of over 2000 cows were collected during 15 months on a commercial dairy farm in Sweden. A historical data set of back posture values was generated for each cow to calculate an individual healthy reference per cow. For a gold standard reference, manual scoring of lameness based on the Sprecher scale was carried out weekly by a single skilled observer during the final 6 weeks of data collection. Using an individual threshold, deviations from the healthy reference were identified with a specificity of 82.3%, a sensitivity of 79%, an accuracy of 82%, and a precision of 36.1% when the length of the healthy reference window was not limited. When the length of the healthy reference window was varied between 30 and 250 days, it was observed that algorithm performance was maximised with a reference window of 200 days. This paper presents a high-performing lameness detection system and demonstrates the importance of the historical window length for healthy reference calculation in order to ensure the use of meaningful historical data in deviation detection algorithms.
Subject(s)
Algorithms , Cattle Diseases/diagnosis , Dairying/methods , Lameness, Animal/diagnosis , Animals , Cattle , Farms , Female , Gait , Posture , Sensitivity and Specificity , SwedenABSTRACT
The objective of this research was to develop a non-invasive method to detect an emotional response of a horse to novelty during physical activity. Two horses performed 20 trials each, in which the horse's heart rate (HR) and physical activity were continuously measured. The relationship between the horse's physical activity and HR was described by a mathematical model allowing online decomposition of the horse's HR into a physical component and a component containing information about its emotional state. Exposure to the novel object resulted in an increase in the emotional component of HR, which allowed automatic detection of an emotional response of the horse in 33/40 trials. In the remaining seven trials no stable model could be built or data were missing. The results show that model-based decomposition of HR can be a useful tool for quantification of certain aspects of temperament.
Subject(s)
Computer Simulation , Emotions/physiology , Horses/psychology , Models, Biological , Motor Activity , Adaptation, Psychological , Animals , Behavior, Animal , Heart Rate , Horses/physiology , Photic StimulationABSTRACT
Economic pressures continue to mount on modern-day livestock farmers, forcing them to increase herds sizes in order to be commercially viable. The natural consequence of this is to drive the farmer and the animal further apart. However, closer attention to the animal not only positively impacts animal welfare and health but can also increase the capacity of the farmer to achieve a more sustainable production. State-of-the-art precision livestock farming (PLF) technology is one such means of bringing the animals closer to the farmer in the facing of expanding systems. Contrary to some current opinions, it can offer an alternative philosophy to 'farming by numbers'. This review addresses the key technology-oriented approaches to monitor animals and demonstrates how image and sound analyses can be used to build 'digital representations' of animals by giving an overview of some of the core concepts of PLF tool development and value discovery during PLF implementation. The key to developing such a representation is by measuring important behaviours and events in the livestock buildings. The application of image and sound can realise more advanced applications and has enormous potential in the industry. In the end, the importance lies in the accuracy of the developed PLF applications in the commercial farming system as this will also make the farmer embrace the technological development and ensure progress within the PLF field in favour of the livestock animals and their well-being.
Subject(s)
Animal Husbandry/methods , Farmers , Farms/economics , Livestock , Animal Husbandry/economics , Animal Welfare/standards , Animals , Farms/organization & administration , HumansABSTRACT
Applying altered trajectories in broiler growth control with early feed restriction and a consequent accelerated catch-up growth has been approved to result in a better feed conversion ratio and a reduction in mortality. The properties of the growth trajectory and the resulting time and duration of the feed restriction can be crucial for animal welfare and production performance. The objective of this work was to test broiler growth control strategy online in field conditions using different target trajectories. Several experiments were conducted, and the best target trajectory has been proven to result in an end weight of 2,616 g and feed conversion ratio of 1.54 for Ross-type birds and an end weight of 2,472 g and a feed conversion ratio of 1.67 for Cobb-type birds.
Subject(s)
Chickens/growth & development , Growth/physiology , Algorithms , Animal Husbandry/methods , Animals , Energy Intake , Energy Metabolism , Feeding Behavior , Female , Male , Weight GainABSTRACT
Thermal comfort is of great importance in chickens to preserve body temperature homeostasis during the growth period and during environmental thermal challenges. Because surface temperatures contribute much to thermal comfort, this research is aimed at studying spatial distribution of surface temperatures of broiler chickens. For this purpose, temperatures of 26 different parts on the chicken body surface were measured using thermography during the growth period of 6 wk. It was observed that there were significant differences in spatial distribution of broiler surface temperatures. The greatest temperatures were measured at the positions with little or no feathering (i.e., cheek, skull, and inner thigh). The least temperatures were observed on the places with thickest feather cover (i.e., wing and breast). The surface temperatures decreased as a function of age from approximately 36 to 28 degrees C. The spatial temperature range on the surface of the bird varied from 6 degrees C in wk 1 to 15 degrees C on wk 6. Temperature differences between the surface of the chicken and its surroundings were also studied, and it was found that in the range of 1 to 6 wk the age of the bird had significant effects on temperature difference (P < 0.0001). The temperature difference between the surface of the chicken and environment was at a maximum on wk 4 during the growth period of 6 wk.
Subject(s)
Body Temperature Regulation/physiology , Skin Temperature/physiology , Aging , Animals , Chickens , Environment , Housing, AnimalABSTRACT
For hatcheries, not only is it important to have a high level of hatchability, but the quality of the chicks provided also has to be good, because broiler farmers are looking for chicks with a high growth potential, resulting in a greater slaughter yield at the end of the rearing period. However, chick quality has proven to be a difficult and subjective matter to define. Therefore, the aim of this study was to investigate the predictive value of different chick quality measurements for BW at slaughter age. Body weight, chick length, shank length, and toe length measurements as well as Tona score determination were performed on 1-d-old chicks and were linked to posthatch performance parameters. Different breeder lines (Cobb and Ross) and breeder ages (39, 42, and 53 wk of age) were used to investigate line and age effects. In addition, variability between people and repeatability in time of these quality measurements were determined. Body weight at 7 d of age appeared to be the best predictor of BW at slaughter age among all the quality measurements performed. Body weight at 1 d of age had the second greatest predictive value, closely followed by the ratio between BW at 1 d of age and chick length squared. Chick length and shank length both had low to no predictive value whatsoever for posthatch performance. The lack of significant correlations between the Tona score and posthatch performance could be explained by the absence of day-old chicks with anomalies (and thus a suboptimal Tona score) because a distinction had already been made, as is done in practice, between top-grade and lower grade chicks.
Subject(s)
Chickens/growth & development , Incubators/standards , Animals , Animals, Newborn , Body Size , Body Weight , Breeding/standards , Chick Embryo/physiology , Reproducibility of ResultsABSTRACT
1. The objective was to investigate the effect of cage height on perch height preference and perching behaviour in laying hens. Twelve groups of two hens and 12 groups of 14 hens were tested in furnished cages equipped with two wooden perches. These stepwise perches were designed such that hens could choose between 7 different heights (6, 11, 16, 21, 26, 31 and 36 cm). Day- and night-time perching behaviour was observed on 4 consecutive days with a different cage height each day: 150, 55, 50 and 45 cm. 2. Given that a minimum perch-roof distance of 19 to 24 cm was available, hens preferred to roost on the highest perches at night. 3. Lowering cage height not only forced hens to use lower perches, but also reduced time spent on the perches during the day (two-hen and 14-hen test) and night (14-hen test). Moreover, it affected daytime behavioural activities (more standing and less preening) on the perches in the two-hen tests (but not in the 14-hen tests). 4. During the day lower perches were used more for standing and walking, higher perches more for sitting and sleeping. This behavioural differentiation was most pronounced in the highest cages. 5. Perch preference and perching behaviour depend on both the floor-perch distance and the perch-roof distance. Higher cages provide more opportunity for higher perches (which hens prefer), for better three-dimensional spacing (and consequently reduced density at floor level) and for behavioural differentiation according to perch height.