Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 109(11): 2029-2048, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36243009

ABSTRACT

North Carolina macular dystrophy (NCMD) is a rare autosomal-dominant disease affecting macular development. The disease is caused by non-coding single-nucleotide variants (SNVs) in two hotspot regions near PRDM13 and by duplications in two distinct chromosomal loci, overlapping DNase I hypersensitive sites near either PRDM13 or IRX1. To unravel the mechanisms by which these variants cause disease, we first established a genome-wide multi-omics retinal database, RegRet. Integration of UMI-4C profiles we generated on adult human retina then allowed fine-mapping of the interactions of the PRDM13 and IRX1 promoters and the identification of eighteen candidate cis-regulatory elements (cCREs), the activity of which was investigated by luciferase and Xenopus enhancer assays. Next, luciferase assays showed that the non-coding SNVs located in the two hotspot regions of PRDM13 affect cCRE activity, including two NCMD-associated non-coding SNVs that we identified herein. Interestingly, the cCRE containing one of these SNVs was shown to interact with the PRDM13 promoter, demonstrated in vivo activity in Xenopus, and is active at the developmental stage when progenitor cells of the central retina exit mitosis, suggesting that this region is a PRDM13 enhancer. Finally, mining of single-cell transcriptional data of embryonic and adult retina revealed the highest expression of PRDM13 and IRX1 when amacrine cells start to synapse with retinal ganglion cells, supporting the hypothesis that altered PRDM13 or IRX1 expression impairs interactions between these cells during retinogenesis. Overall, this study provides insight into the cis-regulatory mechanisms of NCMD and supports that this condition is a retinal enhanceropathy.


Subject(s)
Corneal Dystrophies, Hereditary , Tomography, Optical Coherence , Adult , Animals , Humans , Pedigree , Retina/metabolism , Xenopus laevis/genetics
2.
Article in English | MEDLINE | ID: mdl-38847892

ABSTRACT

PURPOSE: Gyrate atrophy of the choroid and retina (GACR) is an autosomal recessive inherited metabolic disorder (IMD) characterised by progressive retinal degeneration, leading to severe visual impairment. The rapid developments in ophthalmic genetic therapies warrant knowledge on clinical phenotype of eligible diseases such as GACR to define future therapeutic parameters in clinical trials. METHODS: Retrospective chart analysis was performed in nineteen patients. Data were analysed using IBM SPSS Statistics version 28.0.1.1. RESULTS: Nineteen patients were included with a mean age of 32.6 years (range 8-58). Mean age at onset of ophthalmic symptoms was 7.9 years (range 3-16). Median logMAR of visual acuity at inclusion was 0.26 (range -0.18-3.00). Mean age at cataract surgery was 28.8 years (n = 11 patients). Mean spherical equivalent of the refractive error was -8.96 (range -20.87 to -2.25). Cystoid maculopathy was present in 68% of patients, with a loss of integrity of the foveal ellipsoid zone (EZ) in 24/38 eyes. Of the 14 patients treated with dietary protein restriction, the four patients who started the diet before age 10 showed most benefit. CONCLUSION: This study demonstrates the severe ophthalmic disease course associated with GACR, as well as possible benefit of early dietary treatment. In addition to visual loss, patients experience severe myopia, early-onset cataract, and CME. There is a loss of foveal EZ integrity at a young age, emphasising the need for early diagnosis enabling current and future therapeutic interventions.

3.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338722

ABSTRACT

Within the last decade, a wide variety of protocols have emerged for the generation of retinal organoids. A subset of studies have compared protocols based on stem cell source, the physical features of the microenvironment, and both internal and external signals, all features that influence embryoid body and retinal organoid formation. Most of these comparisons have focused on the effect of signaling pathways on retinal organoid development. In this study, our aim is to understand whether starting cell conditions, specifically those involved in embryoid body formation, affect the development of retinal organoids in terms of differentiation capacity and reproducibility. To investigate this, we used the popular 3D floating culture method to generate retinal organoids from stem cells. This method starts with either small clumps of stem cells generated from larger clones (clumps protocol, CP) or with an aggregation of single cells (single cells protocol, SCP). Using histological analysis and gene-expression comparison, we found a retention of the pluripotency capacity on embryoid bodies generated through the SCP compared to the CP. Nonetheless, these early developmental differences seem not to impact the final retinal organoid formation, suggesting a potential compensatory mechanism during the neurosphere stage. This study not only facilitates an in-depth exploration of embryoid body development but also provides valuable insights for the selection of the most suitable protocol in order to study retinal development and to model inherited retinal disorders in vitro.


Subject(s)
Embryoid Bodies , Retina , Reproducibility of Results , Retina/metabolism , Organoids , Cell Differentiation
4.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279267

ABSTRACT

X-linked juvenile retinoschisis (XLRS) is an early-onset progressive inherited retinopathy affecting males. It is characterized by abnormalities in the macula, with formation of cystoid retinal cavities, frequently accompanied by splitting of the retinal layers, impaired synaptic transmission of visual signals, and associated loss of visual acuity. XLRS is caused by loss-of-function mutations in the retinoschisin gene located on the X chromosome (RS1, MIM 30083). While proof-of-concept studies for gene augmentation therapy have been promising in in vitro and rodent models, clinical trials in XLRS patients have not been successful thus far. We performed a systematic literature investigation using search strings related to XLRS and gene therapy in in vivo and in vitro models. Three rounds of screening (title/abstract, full text and qualitative) were performed by two independent reviewers until consensus was reached. Characteristics related to study design and intervention were extracted from all studies. Results were divided into studies using (1) viral and (2) non-viral therapies. All in vivo rodent studies that used viral vectors were assessed for quality and risk of bias using the SYRCLE's risk-of-bias tool. Studies using alternative and non-viral delivery techniques, either in vivo or in vitro, were extracted and reviewed qualitatively, given the diverse and dispersed nature of the information. For in-depth analysis of in vivo studies using viral vectors, outcome data for optical coherence tomography (OCT), immunohistopathology and electroretinography (ERG) were extracted. Meta-analyses were performed on the effect of recombinant adeno-associated viral vector (AAV)-mediated gene augmentation therapies on a- and b-wave amplitude as well as the ratio between b- and a-wave amplitudes (b/a-ratio) extracted from ERG data. Subgroup analyses and meta-regression were performed for model, dose, age at injection, follow-up time point and delivery method. Between-study heterogeneity was assessed with a Chi-square test of homogeneity (I2). We identified 25 studies that target RS1 and met our search string. A total of 19 of these studies reported rodent viral methods in vivo. Six of the 25 studies used non-viral or alternative delivery methods, either in vitro or in vivo. Of these, five studies described non-viral methods and one study described an alternative delivery method. The 19 aforementioned in vivo studies were assessed for risk of bias and quality assessments and showed inconsistency in reporting. This resulted in an unclear risk of bias in most included studies. All 19 studies used AAVs to deliver intact human or murine RS1 in rodent models for XLRS. Meta-analyses of a-wave amplitude, b-wave amplitude, and b/a-ratio showed that, overall, AAV-mediated gene augmentation therapy significantly ameliorated the disease phenotype on these parameters. Subgroup analyses and meta-regression showed significant correlations between b-wave amplitude effect size and dose, although between-study heterogeneity was high. This systematic review reiterates the high potential for gene therapy in XLRS, while highlighting the importance of careful preclinical study design and reporting. The establishment of a systematic approach in these studies is essential to effectively translate this knowledge into novel and improved treatment alternatives.


Subject(s)
Retinoschisis , Male , Humans , Animals , Mice , Retinoschisis/genetics , Retinoschisis/therapy , Retinoschisis/diagnosis , Retina/pathology , Electroretinography , Genetic Therapy , Mutation , Eye Proteins/genetics
5.
Dev Biol ; 484: 40-56, 2022 04.
Article in English | MEDLINE | ID: mdl-35123983

ABSTRACT

Circadian clocks are cell-autonomous, molecular pacemakers regulating a wide variety of behavioural and physiological processes in accordance with the 24 â€‹h light/dark cycle. The retina contains a complex network of cell-specific clocks orchestrating many biochemical and cellular parameters to adapt retinal biology and visual function to daily changes in light intensity. The gene regulatory networks controlling proliferation, specification and differentiation of retinal precursors into the diverse retinal cell types are evolutionary conserved among vertebrates. However, how these mechanisms are interconnected with circadian clocks is not well-characterized. Here we explore the existing evidence for the regulation of retinal development by circadian clock-related pathways, throughout vertebrates. We provide evidence for the influence of clock genes, from early to final differentiation steps. In addition, we report that the clock, integrating environmental cues, modulates a number of pathological processes. We highlight its potential role in retinal diseases and its instructive function on eye growth and related disorders.


Subject(s)
Circadian Clocks , Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Retina/metabolism , Vertebrates , Vision, Ocular
6.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108642

ABSTRACT

Retinitis pigmentosa (RP) comprises a group of inherited retinal dystrophies characterized by the degeneration of rod photoreceptors, followed by the degeneration of cone photoreceptors. As a result of photoreceptor degeneration, affected individuals experience gradual loss of visual function, with primary symptoms of progressive nyctalopia, constricted visual fields and, ultimately, central vision loss. The onset, severity and clinical course of RP shows great variability and unpredictability, with most patients already experiencing some degree of visual disability in childhood. While RP is currently untreatable for the majority of patients, significant efforts have been made in the development of genetic therapies, which offer new hope for treatment for patients affected by inherited retinal dystrophies. In this exciting era of emerging gene therapies, it remains imperative to continue supporting patients with RP using all available options to manage their condition. Patients with RP experience a wide variety of physical, mental and social-emotional difficulties during their lifetime, of which some require timely intervention. This review aims to familiarize readers with clinical management options that are currently available for patients with RP.


Subject(s)
Night Blindness , Retinal Dystrophies , Retinitis Pigmentosa , Humans , Retinitis Pigmentosa/genetics , Retinal Cone Photoreceptor Cells , Retinal Rod Photoreceptor Cells
7.
Ophthalmology ; 129(2): 191-202, 2022 02.
Article in English | MEDLINE | ID: mdl-34624300

ABSTRACT

PURPOSE: To describe the natural course, phenotype, and genotype of patients with X-linked retinoschisis (XLRS). DESIGN: Retrospective cohort study. PARTICIPANTS: Three hundred forty patients with XLRS from 178 presumably unrelated families. METHODS: This multicenter, retrospective cohort study reviewed medical records of patients with XLRS for medical history, symptoms, visual acuity (VA), ophthalmoscopy, full-field electroretinography, and retinal imaging (fundus photography, spectral-domain [SD] OCT, fundus autofluorescence). MAIN OUTCOME MEASURES: Age at onset, age at diagnosis, severity of visual impairment, annual visual decline, and electroretinography and imaging findings. RESULTS: Three hundred forty patients were included with a mean follow-up time of 13.2 years (range, 0.1-50.1 years). The median ages to reach mild visual impairment and low vision were 12 and 25 years, respectively. Severe visual impairment and blindness were observed predominantly in patients older than 40 years, with a predicted prevalence of 35% and 25%, respectively, at 60 years of age. The VA increased slightly during the first 2 decades of life and subsequently transitioned into an average annual decline of 0.44% (P < 0.001). No significant difference was found in decline of VA between variants that were predicted to be severe and mild (P = 0.239). The integrity of the ellipsoid zone (EZ) as well as the photoreceptor outer segment (PROS) length in the fovea on SD OCT correlated significantly with VA (Spearman's ρ = -0.759 [P < 0.001] and -0.592 [P = 0.012], respectively). Fifty-three different RS1 variants were found. The most common variants were the founder variant c.214G→A (p.(Glu72Lys)) (101 patients [38.7%]) and a deletion of exon 3 (38 patients [14.6%]). CONCLUSIONS: Large variabilities in phenotype and natural course of XLRS were seen in this study. In most patients, XLRS showed a slow deterioration starting in the second decade of life, suggesting an optimal window of opportunity for treatment within the first 3 decades of life. The integrity of EZ as well as the PROS length on SD OCT may be important in choosing optimal candidates for treatment and as potential structural end points in future therapeutic studies. No clear genotype-phenotype correlation was found.


Subject(s)
Eye Proteins/genetics , Retinoschisis/diagnosis , Retinoschisis/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Blindness/diagnosis , Blindness/physiopathology , Child , Child, Preschool , Electroretinography , Female , Follow-Up Studies , Genetic Association Studies , Humans , Infant , Male , Middle Aged , Ophthalmoscopy , Optical Imaging , Retina/diagnostic imaging , Retina/physiopathology , Retinal Photoreceptor Cell Outer Segment/pathology , Retinoschisis/physiopathology , Retrospective Studies , Tomography, Optical Coherence , Vision, Low/diagnosis , Vision, Low/physiopathology , Visual Acuity/physiology
8.
FASEB J ; 35(7): e21722, 2021 07.
Article in English | MEDLINE | ID: mdl-34160105

ABSTRACT

Retinal photoreceptors undergo daily renewal of their distal outer segments, a process indispensable for maintaining retinal health. Photoreceptor outer segment (POS) phagocytosis occurs as a daily peak, roughly about 1 hour after light onset. However, the underlying cellular and molecular mechanisms which initiate this process are still unknown. Here we show that, under constant darkness, mice deficient for core circadian clock genes (Per1 and Per2) lack a daily peak in POS phagocytosis. By qPCR analysis, we found that core clock genes were rhythmic over 24 hours in both WT and Per1, Per2 double mutant whole retinas. More precise transcriptomics analysis of laser capture microdissected WT photoreceptors revealed no differentially expressed genes between time points preceding and during the peak of POS phagocytosis. In contrast, we found that microdissected WT retinal pigment epithelium (RPE) had a number of genes that were differentially expressed at the peak phagocytic time point compared to adjacent ones. We also found a number of differentially expressed genes in Per1, Per2 double mutant RPE compared to WT ones at the peak phagocytic time point. Finally, based on STRING analysis, we found a group of interacting genes that potentially drive POS phagocytosis in the RPE. This potential pathway consists of genes such as: Pacsin1, Syp, Camk2b, and Camk2d among others. Our findings indicate that Per1 and Per2 are necessary clock components for driving POS phagocytosis and suggest that this process is transcriptionally driven by the RPE.


Subject(s)
Circadian Clocks/genetics , Circadian Rhythm/genetics , Period Circadian Proteins/genetics , Phagocytosis/genetics , Photoreceptor Cells, Vertebrate/physiology , Retina/physiology , Animals , Circadian Clocks/physiology , Circadian Rhythm/physiology , Female , Male , Mice , Mice, Inbred C57BL , Phagocytosis/physiology , Photoreceptor Cells/physiology , Retinal Pigment Epithelium/physiology , Transcription, Genetic/genetics , Transcription, Genetic/physiology
9.
Int J Mol Sci ; 23(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35328338

ABSTRACT

PURPOSE: The lack of suitable animal models for (dry) age-related macular degeneration (AMD) has hampered therapeutic research into the disease, so far. In this study, pigmented rats and mice were systematically injected with various doses of sodium iodate (SI). After injection, the retinal structure and visual function were non-invasively characterized over time to obtain in-depth data on the suitability of these models for studying experimental therapies for retinal degenerative diseases, such as dry AMD. METHODS: SI was injected into the tail vein (i.v.) using a series of doses (0-70 mg/kg) in adolescent C57BL/6J mice and Brown Norway rats. The retinal structure and function were assessed non-invasively at baseline (day 1) and at several time points (1-3, 5, and 10-weeks) post-injection by scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT), and electroretinography (ERG). RESULTS: After the SI injection, retinal degeneration in mice and rats yielded similar results. The lowest dose (10 mg/kg) resulted in non-detectable structural or functional effects. An injection with 20 mg/kg SI did not result in an evident retinal degeneration as judged from the OCT data. In contrast, the ERG responses were temporarily decreased but returned to baseline within two-weeks. Higher doses (30, 40, 50, and 70 mg/kg) resulted in moderate to severe structural RPE and retinal injury and decreased the ERG amplitudes, indicating visual impairment in both mice and rat strains. CONCLUSIONS: After the SI injections, we observed dose-dependent structural and functional pathological effects on the retinal pigment epithelium (RPE) and retina in the pigmented mouse and rat strains that were used in this study. Similar effects were observed in both species. In particular, a dose of 30 mg/kg seems to be suitable for future studies on developing experimental therapies. These relatively easily induced non-inherited models may serve as useful tools for evaluating novel therapies for RPE-related retinal degenerations, such as AMD.


Subject(s)
Macular Degeneration , Retinal Degeneration , Animals , Disease Models, Animal , Electroretinography , Follow-Up Studies , Iodates , Macular Degeneration/diagnostic imaging , Macular Degeneration/drug therapy , Macular Degeneration/pathology , Mice , Mice, Inbred C57BL , Rats , Retina/pathology , Retinal Degeneration/diagnostic imaging , Retinal Degeneration/drug therapy , Retinal Degeneration/pathology , Retinal Pigment Epithelium/pathology , Sodium/pharmacology , Tomography, Optical Coherence
10.
BMC Genomics ; 22(1): 590, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34348663

ABSTRACT

BACKGROUND: To investigate whether copy number variations (CNVs) are implicated in molecular mechanisms underlying primary open-angle glaucoma (POAG), we used genotype data of POAG individuals and healthy controls from two case-control studies, AGS (n = 278) and GLGS-UGLI (n = 1292). PennCNV, QuantiSNP, and cnvPartition programs were used to detect CNV. Stringent quality controls at both sample and marker levels were applied. The identified CNVs were intersected in CNV region (CNVR). After, we performed burden analysis, CNV-genome-wide association analysis, gene set overrepresentation and pathway analysis. In addition, in human eye tissues we assessed the expression of the genes lying within significant CNVRs. RESULTS: We reported a statistically significant greater burden of CNVs in POAG cases compared to controls (p-value = 0,007). In common between the two cohorts, CNV-association analysis identified statistically significant CNVRs associated with POAG that span 11 genes (APC, BRCA2, COL3A1, HLA-DRB1, HLA-DRB5, HLA-DRB6, MFSD8, NIPBL, SCN1A, SDHB, and ZDHHC11). Functional annotation and pathway analysis suggested the involvement of cadherin, Wnt signalling, and p53 pathways. CONCLUSIONS: Our data suggest that CNVs may have a role in the susceptibility of POAG and they can reveal more information on the mechanism behind this disease. Additional genetic and functional studies are warranted to ascertain the contribution of CNVs in POAG.


Subject(s)
DNA Copy Number Variations , Glaucoma, Open-Angle , Cadherins/genetics , Cell Cycle Proteins , Genome-Wide Association Study , Glaucoma, Open-Angle/genetics , Humans , Membrane Transport Proteins , Polymorphism, Single Nucleotide , Tumor Suppressor Protein p53/genetics
11.
Mol Genet Metab ; 134(1-2): 96-116, 2021.
Article in English | MEDLINE | ID: mdl-34340878

ABSTRACT

Gyrate atrophy of the choroid and retina (GACR) is a rare inborn error of amino acid metabolism caused by bi-allelic variations in OAT. GACR is characterised by vision decline in early life eventually leading to complete blindness, and high plasma ornithine levels. There is no curative treatment for GACR, although several therapeutic modalities aim to slow progression of the disease by targeting different steps within the ornithine pathway. No international treatment protocol is available. We systematically collected all international literature on therapeutic interventions in GACR to provide an overview of published treatment effects. METHODS: Following the PRISMA guidelines, we conducted a systematic review of the English literature until December 22nd 2020. PubMed and Embase databases were searched for studies related to therapeutic interventions in patients with GACR. RESULTS: A total of 33 studies (n = 107 patients) met the inclusion criteria. Most studies were designed as case reports (n = 27) or case series (n = 4). No randomised controlled trials or large cohort studies were found. Treatments applied were protein-restricted diets, pyridoxine supplementation, creatine or creatine precursor supplementation, l-lysine supplementation, and proline supplementation. Protein-restricted diets lowered ornithine levels ranging from 16.0-91.2%. Pyridoxine responsiveness was reported in 30% of included mutations. Lysine supplementation decreased ornithine levels with 21-34%. Quality assessment showed low to moderate quality of the articles. CONCLUSIONS: Based primarily on case reports ornithine levels can be reduced by using a protein restricted diet, pyridoxine supplementation (variation-dependent) and/or lysine supplementation. The lack of pre-defined clinical outcome measures and structural follow-up in all included studies impeded conclusions on clinical effectiveness. Future research should be aimed at 1) Unravelling the OAT biochemical pathway to identify other possible pathologic metabolites besides ornithine, 2) Pre-defining GACR specific clinical outcome measures, and 3) Establishing an international historical cohort.


Subject(s)
Choroid/drug effects , Gyrate Atrophy/drug therapy , Metabolism, Inborn Errors/drug therapy , Retina/drug effects , Choroid/pathology , Humans , Mutation , Retina/pathology
12.
Exp Eye Res ; 213: 108807, 2021 12.
Article in English | MEDLINE | ID: mdl-34695438

ABSTRACT

The retinal circadian system consists of a network of clocks located virtually in every retinal cell-type. Although it is established that the circadian clock regulates many rhythmic processes in the retina, the links between retinal cell-specific clocks and visual function remain to be elucidated. Bmal1 is a principal, non-redundant component of the circadian clock in mammals and is required to keep 24 h rhythms in the retinal transcriptome and in visual processing under photopic light condition. In the current study, we investigated the retinal function in mice with a rod-specific knockout of Bmal1. For this purpose, we measured whole retina PER2::Luciferase bioluminescence and the dark-adapted electroretinogram (ERG). We observed circadian day-night differences in ERG a- and b-waves in control mice carrying one allele of Bmal1 in rods, with higher amplitudes during the subjective night. These differences were abolished in rod-specific Bmal1 knockout mice, whose ERG light-responses remained constitutively low (day-like). Overall, PER2::Luciferase rhythmicity in whole retinas was not defective in these mice but was characterized by longer period and higher rhythmic power compared to retinas with wild type Bmal1 gene. Taken together, these data suggest that a circadian clock located in rods regulates visual processing in a cell autonomous manner.


Subject(s)
Circadian Clocks/physiology , Dark Adaptation/physiology , Retinal Rod Photoreceptor Cells/metabolism , ARNTL Transcription Factors/genetics , Animals , Electroretinography , Female , Gene Expression Regulation/physiology , Luciferases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Night Vision/physiology , Period Circadian Proteins/metabolism , Photic Stimulation , Real-Time Polymerase Chain Reaction , Retinal Rod Photoreceptor Cells/radiation effects , Rhodopsin/genetics , Synaptophysin/genetics
13.
Retina ; 41(1): 213-223, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32301896

ABSTRACT

PURPOSE: To investigate the natural history of RHO-associated retinitis pigmentosa (RP). METHODS: A multicenter, medical chart review of 100 patients with autosomal dominant RHO-associated RP. RESULTS: Based on visual fields, time-to-event analysis revealed median ages of 52 and 79 years to reach low vision (central visual field <20°) and blindness (central visual field <10°), respectively. For the best-corrected visual acuity (BCVA), the median age to reach mild impairment (20/67 ≤ BCVA < 20/40) was 72 years, whereas this could not be computed for lower acuities. Disease progression was significantly faster in patients with a generalized RP phenotype (n = 75; 75%) than that in patients with a sector RP phenotype (n = 25; 25%), in terms of decline rates of the BCVA (P < 0.001) and V4e retinal seeing areas (P < 0.005). The foveal thickness of the photoreceptor-retinal pigment epithelium (PR + RPE) complex correlated significantly with BCVA (Spearman's ρ = 0.733; P < 0.001). CONCLUSION: Based on central visual fields, the optimal window of intervention for RHO-associated RP is before the 5th decade of life. Significant differences in disease progression are present between generalized and sector RP phenotypes. Our findings suggest that the PR + RPE complex is a potential surrogate endpoint for the BCVA in future studies.


Subject(s)
Acute-Phase Proteins/genetics , Forecasting , Retinal Pigment Epithelium/pathology , Retinitis Pigmentosa/diagnosis , Visual Acuity , Visual Fields/physiology , Acute-Phase Proteins/metabolism , Aged , Electroretinography , Female , Follow-Up Studies , Humans , Male , Middle Aged , Phenotype , Retinitis Pigmentosa/blood , Retinitis Pigmentosa/genetics , Retrospective Studies , Tomography, Optical Coherence/methods
14.
Int J Mol Sci ; 22(13)2021 06 30.
Article in English | MEDLINE | ID: mdl-34209272

ABSTRACT

Early in vivo embryonic retinal development is a well-documented and evolutionary conserved process. The specification towards eye development is temporally controlled by consecutive activation or inhibition of multiple key signaling pathways, such as the Wnt and hedgehog signaling pathways. Recently, with the use of retinal organoids, researchers aim to manipulate these pathways to achieve better human representative models for retinal development and disease. To achieve this, a plethora of different small molecules and signaling factors have been used at various time points and concentrations in retinal organoid differentiations, with varying success. Additions differ from protocol to protocol, but their usefulness or efficiency has not yet been systematically reviewed. Interestingly, many of these small molecules affect the same and/or multiple pathways, leading to reduced reproducibility and high variability between studies. In this review, we make an inventory of the key signaling pathways involved in early retinogenesis and their effect on the development of the early retina in vitro. Further, we provide a comprehensive overview of the small molecules and signaling factors that are added to retinal organoid differentiation protocols, documenting the molecular and functional effects of these additions. Lastly, we comparatively evaluate several of these factors using our established retinal organoid methodology.


Subject(s)
Cell Differentiation , Organoids/embryology , Retina/embryology , Humans
15.
Int J Mol Sci ; 22(13)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34281288

ABSTRACT

PURPOSE: We developed and phenotyped a pigmented knockout rat model for lecithin retinol acyltransferase (LRAT) using CRISPR/Cas9. The introduced mutation (c.12delA) is based on a patient group harboring a homologous homozygous frameshift mutation in the LRAT gene (c.12delC), causing a dysfunctional visual (retinoid) cycle. METHODS: The introduced mutation was confirmed by DNA and RNA sequencing. The expression of Lrat was determined on both the RNA and protein level in wildtype and knockout animals using RT-PCR and immunohistochemistry. The retinal structure and function, as well as the visual behavior of the Lrat-/- and control rats, were characterized using scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT), electroretinography (ERG) and vision-based behavioral assays. RESULTS: Wildtype animals had high Lrat mRNA expression in multiple tissues, including the eye and liver. In contrast, hardly any expression was detected in Lrat-/- animals. LRAT protein was abundantly present in wildtype animals and absent in Lrat-/- animals. Lrat-/- animals showed progressively reduced ERG potentials compared to wildtype controls from two weeks of age onwards. Vison-based behavioral assays confirmed reduced vision. Structural abnormalities, such as overall retinal thinning, were observed in Lrat-/- animals. The retinal thickness in knockout rats was decreased to roughly 80% by four months of age. No functional or structural differences were observed between wildtype and heterozygote animals. CONCLUSIONS: Our Lrat-/- rat is a new animal model for retinal dystrophy, especially for the LRAT-subtype of early-onset retinal dystrophies. This model has advantages over the existing mouse models and the RCS rat strain and can be used for translational studies of retinal dystrophies.


Subject(s)
Acyltransferases/deficiency , Acyltransferases/genetics , Retinitis Pigmentosa/genetics , Animals , Behavior, Animal , CRISPR-Cas Systems , Disease Models, Animal , Electroretinography , Female , Gene Knockout Techniques , Humans , Male , Mice , Ophthalmoscopy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Transgenic , Retinitis Pigmentosa/diagnostic imaging , Retinitis Pigmentosa/physiopathology , Sequence Deletion , Tomography, Optical Coherence , Vision, Ocular
16.
Int J Mol Sci ; 22(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203967

ABSTRACT

A substantial proportion of subjects with autosomal recessive retinitis pigmentosa (arRP) or Usher syndrome type II (USH2) lacks a genetic diagnosis due to incomplete USH2A screening in the early days of genetic testing. These cases lack eligibility for optimal genetic counseling and future therapy. USH2A defects are the most frequent cause of USH2 and are also causative in individuals with arRP. Therefore, USH2A is an important target for genetic screening. The aim of this study was to assess unscreened or incompletely screened and unexplained USH2 and arRP cases for (likely) pathogenic USH2A variants. Molecular inversion probe (MIP)-based sequencing was performed for the USH2A exons and their flanking regions, as well as published deep-intronic variants. This was done to identify single nucleotide variants (SNVs) and copy number variants (CNVs) in 29 unscreened or partially pre-screened USH2 and 11 partially pre-screened arRP subjects. In 29 out of these 40 cases, two (likely) pathogenic variants were successfully identified. Four of the identified SNVs and one CNV were novel. One previously identified synonymous variant was demonstrated to affect pre-mRNA splicing. In conclusion, genetic diagnoses were obtained for a majority of cases, which confirms that MIP-based sequencing is an effective screening tool for USH2A. Seven unexplained cases were selected for future analysis with whole genome sequencing.


Subject(s)
Cost-Benefit Analysis , Exons/genetics , Extracellular Matrix Proteins/genetics , Molecular Probes/metabolism , RNA Splice Sites/genetics , Retinitis Pigmentosa/genetics , Sequence Analysis, DNA , Usher Syndromes/genetics , Base Sequence , DNA Copy Number Variations/genetics , Gene Deletion , Humans , Polymorphism, Single Nucleotide/genetics , Retinitis Pigmentosa/economics , Usher Syndromes/economics
17.
Exp Eye Res ; 190: 107861, 2020 01.
Article in English | MEDLINE | ID: mdl-31678436

ABSTRACT

Multiple retinal cells harbor a circadian oscillator, including retinal pigment epithelial cells (RPE). However, little is known about the functions that are regulated by the RPE clock. The aim of this study was to investigate whether the circadian clock in the RPE regulates the transport of glucose and its glycolytic metabolic by-product - lactate. To that end, we first characterized the mRNA expression profile of glucose and monocarboxylate transporters in ARPE-19 cells. We found that SLC2A1 and SLC16A1 were, respectively, the most abundantly expressed glucose and lactate (monocarboxylate) transporters. We further observed that the protein products of SLC2A1 (encoding GLUT1) and SLC16A1 (encoding MCT1) localize on the apical membrane of ARPE-19 monolayers. In a subsequent time-course experiment, we found that SLC2A1 and SLC16A1 mRNA oscillated in ARPE-19 monolayers, but not in dispersed cells, suggesting that monolayer cellular organization is necessary for rhythmic regulation of these transporters. In these monolayers, we found that MCT1 proteins varied over time, in contrast to GLUT1 proteins which did not vary over time. Spectrophotometric measurements of supernatants sampled from ARPE-19 monolayer cultures revealed that glucose concentrations did not significantly differ between apical (Api) supernatants and basolateral (BL) ones. In addition, we did not find rhythms in Api or BL glucose concentrations. Conversely, we found higher lactate concentrations in Api supernatants than BL ones. Further, we found that Api lactate concentrations were rhythmic. Pearson's r revealed that the concentration gradients (Api - BL) of glucose and lactate correlated with the gene expression of respective SLC2A1 and SLC16A1 transporters. Incubation with photoreceptor outer segments (POS) affected the mRNA expression of SLC16A1 and SLC2A1 in ARPE-19 monolayers in a time-dependent manner, thus suggesting that the retina might modulate the RPE clock-controlled expression of transporters via interactions with POS. In conclusion, this work provides evidence that the transport of lactate is regulated by the circadian clock in the RPE.


Subject(s)
Circadian Clocks/physiology , Glucose Transporter Type 1/genetics , Glucose/metabolism , Lactic Acid/metabolism , Monocarboxylic Acid Transporters/genetics , Retinal Pigment Epithelium/metabolism , Symporters/genetics , Transcriptome/physiology , Animals , Blotting, Western , Cattle , Cell Line , Cell Membrane/metabolism , Electric Impedance , Humans , Immunohistochemistry , Microscopy, Confocal , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Retinal Photoreceptor Cell Outer Segment/metabolism
18.
Int J Mol Sci ; 21(8)2020 04 14.
Article in English | MEDLINE | ID: mdl-32295315

ABSTRACT

The retinal pigment epithelium (RPE) and the adjacent light-sensitive photoreceptors form a single functional unit lining the back of the eye. Both cell layers are essential for normal vision. RPE degeneration is usually followed by photoreceptor degeneration and vice versa. There are currently almost no effective therapies available for RPE disorders such as Stargardt disease, specific types of retinitis pigmentosa, and age-related macular degeneration. RPE replacement for these disorders, especially in later stages of the disease, may be one of the most promising future therapies. There is, however, no consensus regarding the optimal RPE source, delivery strategy, or the optimal experimental host in which to test RPE replacement therapy. Multiple RPE sources, delivery methods, and recipient animal models have been investigated, with variable results. So far, a systematic evaluation of the (variables influencing) efficacy of experimental RPE replacement parameters is lacking. Here we investigate the effect of RPE transplantation on vision and vision-based behavior in animal models of retinal degenerated diseases. In addition, we aim to explore the effect of RPE source used for transplantation, the method of intervention, and the animal model which is used. METHODS: In this study, we systematically identified all publications concerning transplantation of RPE in experimental animal models targeting the improvement of vision (e.g., outcome measurements related to the morphology or function of the eye). A variety of characteristics, such as species, gender, and age of the animals but also cell type, number of cells, and other intervention characteristics were extracted from all studies. A risk of bias analysis was performed as well. Subsequently, all references describing one of the following outcomes were analyzed in depth in this systematic review: a-, b-, and c-wave amplitudes, vision-based, thickness analyses based on optical coherence tomography (OCT) data, and transplant survival based on scanning laser ophthalmoscopy (SLO) data. Meta-analyses were performed on the a- and b-wave amplitudes from electroretinography (ERG) data as well as data from vision-based behavioral assays. RESULTS: original research articles met the inclusion criteria after two screening rounds. Overall, most studies were categorized as unclear regarding the risk of bias, because many experimental details were poorly reported. Twenty-three studies reporting one or more of the outcome measures of interest were eligible for either descriptive (thickness analyses based on OCT data; n = 2) or meta-analyses. RPE transplantation significantly increased ERG a-wave (Hedges' g 1.181 (0.471-1.892), n = 6) and b-wave (Hedges' g 1.734 (1.295-2.172), n = 42) amplitudes and improved vision-based behavior (Hedges' g 1.018 (0.826-1.209), n = 96). Subgroup analyses revealed a significantly increased effect of the use of young and adolescent animals compared to adult animals. Moreover, transplanting more cells (in the range of 105 versus in the range of 104) resulted in a significantly increased effect on vision-based behavior as well. The origin of cells mattered as well. A significantly increased effect was found on vision-based behavior when using ARPE-19 and OpRegen® RPE. CONCLUSIONS: This systematic review shows that RPE transplantation in animal models for retinal degeneration significantly increases a- and b- wave amplitudes and improves vision-related behavior. These effects appear to be more pronounced in young animals, when the number of transplanted cells is larger and when ARPE-19 and OpRegen® RPE cells are used. We further emphasize that there is an urgent need for improving the reporting and methodological quality of animal experiments, to make such studies more comparable.


Subject(s)
Retinal Degeneration , Retinal Pigment Epithelium/transplantation , Animals , Cell- and Tissue-Based Therapy , Humans , Models, Animal , Publication Bias , Treatment Outcome
19.
Int J Mol Sci ; 21(3)2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32012938

ABSTRACT

This study describes the clinical, genetic, and histopathological features in patients with RPGR-associated retinal dystrophies. Nine male patients from eight unrelated families underwent a comprehensive ophthalmic examination. Additionally, the histopathology of the right eye from a patient with an end-stage cone-rod-dystrophy (CRD)/sector retinitis pigmentosa (RP) phenotype was examined. All RPGR mutations causing a CRD phenotype were situated in exon ORF15. The mean best-corrected visual acuity (BCVA, decimals) was 0.58 (standard deviation (SD)): 0.34; range: 0.05-1.13); and the mean spherical refractive error was -4.1 D (SD: 2.11; range: -1.38 to -8.19). Hyperautofluorescent rings were observed in six patients. Full-field electroretinography responses were absent in all patients. The visual field defects ranged from peripheral constriction to central islands. The mean macular sensitivity on microperimetry was 11.6 dB (SD: 7.8; range: 1.6-24.4) and correlated significantly with BCVA (r = 0.907; p = 0.001). A histological examination of the donor eye showed disruption of retinal topology and stratification, with a more severe loss found in the peripheral regions. Reactive gliosis was seen in the inner layers of all regions. Our study demonstrates the highly variable phenotype found in RPGR-associated retinal dystrophies. Therapies should be applied at the earliest signs of photoreceptor degeneration, prior to the remodeling of the inner retina.


Subject(s)
Cone-Rod Dystrophies/diagnosis , Eye Proteins/genetics , Mutation , Retinitis Pigmentosa/diagnosis , Adolescent , Adult , Age of Onset , Cone-Rod Dystrophies/genetics , Electroretinography , Exons , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Pedigree , Retinitis Pigmentosa/genetics , Visual Acuity , Visual Field Tests , Young Adult
20.
Lipids Health Dis ; 18(1): 2, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30611276

ABSTRACT

BACKGROUND: ATP-binding cassette (ABC) transporters are involved in a huge range of physiological processes. Mutations in the ABCC6 gene cause pseudoxanthoma elasticum, a metabolic disease with progressive soft tissue calcification. METHODS: The aim of the present study was to analyze gene expression levels of selected ABC transporters associated with cholesterol homeostasis in metabolic active tissues, such as the liver, kidney and white adipose tissue (WAT) of Abcc6-/- mice from an early and late disease stage (six-month-old and 12-month-old mice). RESULTS: The strongest regulation of ABC transporter genes was observed in the liver tissue of six-month-old Abcc6-/- mice. Here, we found a significant increase of mRNA expression levels of phospholipid, bile salt and cholesterol/sterol transporters Abcb1b, Abcb11, Abcg1, Abcg5 and Abcg8. Abcd2 mRNA expression was increased by 3.2-fold in the liver tissue. We observed strong upregulation of Abca3 and Abca1 mRNA expression up to 3.3-fold in kidney and WAT, and a 2-fold increase of Abca9 mRNA in the WAT of six-month-old Abcc6 knockout mice. Gene expression levels of Abcb1b and Abcg1 remained increased in the liver tissue after an age-related disease progression, while we observed lower mRNA expression of Abca3 and Abca9 in the kidney and WAT of 12-month-old Abcc6-/- mice. CONCLUSIONS: These data support previous findings that Abcc6 deficiency leads to an altered gene expression of other ABC transporters depending on the status of disease progression. The increased expression of fatty acid, bile salt and cholesterol/sterol transporters may be linked to an altered cholesterol and lipoprotein metabolism due to a loss of Abcc6 function.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Adipose Tissue, White/metabolism , Kidney/metabolism , Liver/metabolism , Pseudoxanthoma Elasticum/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , ATP Binding Cassette Transporter, Subfamily D/genetics , ATP Binding Cassette Transporter, Subfamily D/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 8/metabolism , ATP-Binding Cassette Transporters/deficiency , ATP-Binding Cassette Transporters/metabolism , Adipose Tissue, White/pathology , Animals , Bile Acids and Salts/metabolism , Biological Transport , Cholesterol/metabolism , Disease Models, Animal , Disease Progression , Female , Gene Expression Regulation , Kidney/pathology , Lipoproteins/genetics , Lipoproteins/metabolism , Liver/pathology , Male , Mice , Mice, Knockout , Multidrug Resistance-Associated Proteins , Pseudoxanthoma Elasticum/metabolism , Pseudoxanthoma Elasticum/pathology
SELECTION OF CITATIONS
SEARCH DETAIL