Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Cell ; 183(6): 1551-1561.e12, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33157039

ABSTRACT

Retrons are bacterial genetic elements comprised of a reverse transcriptase (RT) and a non-coding RNA (ncRNA). The RT uses the ncRNA as template, generating a chimeric RNA/DNA molecule in which the RNA and DNA components are covalently linked. Although retrons were discovered three decades ago, their function remained unknown. We report that retrons function as anti-phage defense systems. The defensive unit is composed of three components: the RT, the ncRNA, and an effector protein. We examined multiple retron systems and show that they confer defense against a broad range of phages via abortive infection. Focusing on retron Ec48, we show evidence that it "guards" RecBCD, a complex with central anti-phage functions in bacteria. Inhibition of RecBCD by phage proteins activates the retron, leading to abortive infection and cell death. Thus, the Ec48 retron forms a second line of defense that is triggered if the first lines of defense have collapsed.


Subject(s)
Bacteria/genetics , Bacteria/immunology , Bacteriophages/physiology , RNA, Untranslated/genetics , RNA-Directed DNA Polymerase/genetics , Bacteria/virology , CpG Islands/genetics , DNA/metabolism , Escherichia coli/genetics , Escherichia coli/immunology , Escherichia coli/virology , Escherichia coli Proteins/metabolism , Phylogeny
2.
Nature ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39111359

ABSTRACT

Viruses compete with each other for limited cellular resources, and some deliver defense mechanisms that protect the host from competing genetic parasites1. PARIS is a defense system, often encoded in viral genomes, that is composed of a 55 kDa ABC ATPase (AriA) and a 35 kDa TOPRIM nuclease (AriB)2. However, the mechanism by which AriA and AriB function in phage defense is unknown. Here we show that AriA and AriB assemble into a 425 kDa supramolecular immune complex. We use cryo-EM to determine the structure of this complex which explains how six molecules of AriA assemble into a propeller-shaped scaffold that coordinates three subunits of AriB. ATP-dependent detection of foreign proteins triggers the release of AriB, which assembles into a homodimeric nuclease that blocks infection by cleaving host tRNALys. Phage T5 subverts PARIS immunity through expression of a tRNALys variant that is not cleaved by PARIS, and thereby restores viral infection. Collectively, these data explain how AriA functions as an ATP-dependent sensor that detects viral proteins and activates the AriB toxin. PARIS is one of an emerging set of immune systems that form macromolecular complexes for the recognition of foreign proteins, rather than foreign nucleic acids3.

3.
Mol Cell ; 82(3): 616-628.e5, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35051352

ABSTRACT

Canonical CRISPR-Cas systems utilize RNA-guided nucleases for targeted cleavage of foreign nucleic acids, whereas some nuclease-deficient CRISPR-Cas complexes have been repurposed to direct the insertion of Tn7-like transposons. Here, we established a bioinformatic and experimental pipeline to comprehensively explore the diversity of Type I-F CRISPR-associated transposons. We report DNA integration for 20 systems and identify a highly active subset that exhibits complete orthogonality in transposon DNA mobilization. We reveal the modular nature of CRISPR-associated transposons by exploring the horizontal acquisition of targeting modules and by characterizing a system that encodes both a programmable, RNA-dependent pathway, and a fixed, RNA-independent pathway. Finally, we analyzed transposon-encoded cargo genes and found the striking presence of anti-phage defense systems, suggesting a role in transmitting innate immunity between bacteria. Collectively, this study substantially advances our biological understanding of CRISPR-associated transposon function and expands the suite of RNA-guided transposases for programmable, large-scale genome engineering.


Subject(s)
Bacterial Proteins/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Transposable Elements/genetics , DNA, Bacterial/genetics , Escherichia coli/genetics , Evolution, Molecular , Transposases/genetics , Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , Escherichia coli/immunology , Escherichia coli/metabolism , Gene Editing , Gene Expression Regulation, Bacterial , Genetic Variation , Immunity, Innate , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Transposases/metabolism
4.
PLoS Biol ; 22(7): e3002717, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39008452

ABSTRACT

Immune defence mechanisms exist across the tree of life in such diversity that prokaryotic antiviral responses have historically been considered unrelated to eukaryotic immunity. Mechanisms of defence in divergent eukaryotes were similarly believed to be largely clade specific. However, recent data indicate that a subset of modules (domains and proteins) from prokaryote defence systems are conserved in eukaryotes and populate many stages of innate immune pathways. In this Essay, we propose the notion of ancestral immunity, which corresponds to the set of immune modules conserved between prokaryotes and eukaryotes. After offering a typology of ancestral immunity, we speculate on the selective pressures that could have led to the differential conservation of specific immune modules across domains of life. The exploration of ancestral immunity is in its infancy and appears full of promises to illuminate immune evolution, and also to identify and decipher immune mechanisms of economic, ecological, and therapeutic importance.


Subject(s)
Immunity, Innate , Animals , Prokaryotic Cells/immunology , Phylogeny , Humans , Biological Evolution , Eukaryota/immunology , Evolution, Molecular
5.
Nature ; 589(7840): 120-124, 2021 01.
Article in English | MEDLINE | ID: mdl-32937646

ABSTRACT

Viperin is an interferon-induced cellular protein that is conserved in animals1. It has previously been shown to inhibit the replication of multiple viruses by producing the ribonucleotide 3'-deoxy-3',4'-didehydro (ddh)-cytidine triphosphate (ddhCTP), which acts as a chain terminator for viral RNA polymerase2. Here we show that eukaryotic viperin originated from a clade of bacterial and archaeal proteins that protect against phage infection. Prokaryotic viperins produce a set of modified ribonucleotides that include ddhCTP, ddh-guanosine triphosphate (ddhGTP) and ddh-uridine triphosphate (ddhUTP). We further show that prokaryotic viperins protect against T7 phage infection by inhibiting viral polymerase-dependent transcription, suggesting that it has an antiviral mechanism of action similar to that of animal viperin. Our results reveal a class of potential natural antiviral compounds produced by bacterial immune systems.


Subject(s)
Antiviral Agents/metabolism , Archaeal Proteins/metabolism , Bacterial Proteins/metabolism , Bacteriophage T7/immunology , Evolution, Molecular , Prokaryotic Cells/metabolism , Proteins/metabolism , Antiviral Agents/immunology , Archaeal Proteins/chemistry , Bacteria/immunology , Bacteria/metabolism , Bacteria/virology , Bacterial Proteins/chemistry , Bacteriophage T7/enzymology , Bacteriophage T7/physiology , DNA-Directed DNA Polymerase/metabolism , Humans , Oxidoreductases Acting on CH-CH Group Donors , Prokaryotic Cells/immunology , Prokaryotic Cells/virology , Proteins/chemistry , Proteins/genetics , Ribonucleotides/biosynthesis , Ribonucleotides/chemistry , Ribonucleotides/metabolism , Transcription, Genetic/drug effects
6.
PLoS Comput Biol ; 17(10): e1009475, 2021 10.
Article in English | MEDLINE | ID: mdl-34624014

ABSTRACT

Evolution is often an obstacle to the engineering of stable biological systems due to the selection of mutations inactivating costly gene circuits. Gene overlaps induce important constraints on sequences and their evolution. We show that these constraints can be harnessed to increase the stability of costly genes by purging loss-of-function mutations. We combine computational and synthetic biology approaches to rationally design an overlapping reading frame expressing an essential gene within an existing gene to protect. Our algorithm succeeded in creating overlapping reading frames in 80% of E. coli genes. Experimentally, scoring mutations in both genes of such overlapping construct, we found that a significant fraction of mutations impacting the gene to protect have a deleterious effect on the essential gene. Such an overlap thus protects a costly gene from removal by natural selection by associating the benefit of this removal with a larger or even lethal cost. In our synthetic constructs, the overlap converts many of the possible mutants into evolutionary dead-ends, reducing the evolutionary potential of the system and thus increasing its stability over time.


Subject(s)
Genes, Essential/genetics , Genetic Engineering/methods , Mutation/genetics , Synthetic Biology/methods , Algorithms , Escherichia coli/genetics , Evolution, Molecular , Genomics , Reading Frames/genetics , Sequence Analysis, DNA
7.
Nucleic Acids Res ; 48(2): 748-760, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31745554

ABSTRACT

Prokaryotes use CRISPR-Cas systems for adaptive immunity, but the reasons for the frequent existence of multiple CRISPRs and cas clusters remain poorly understood. Here, we analysed the joint distribution of CRISPR and cas genes in a large set of fully sequenced bacterial genomes and their mobile genetic elements. Our analysis suggests few negative and many positive epistatic interactions between Cas subtypes. The latter often result in complex genetic organizations, where a locus has a single adaptation module and diverse interference mechanisms that might provide more effective immunity. We typed CRISPRs that could not be unambiguously associated with a cas cluster and found that such complex loci tend to have unique type I repeats in multiple CRISPRs. Many chromosomal CRISPRs lack a neighboring Cas system and they often have repeats compatible with the Cas systems encoded in trans. Phages and 25 000 prophages were almost devoid of CRISPR-Cas systems, whereas 3% of plasmids had CRISPR-Cas systems or isolated CRISPRs. The latter were often compatible with the chromosomal cas clusters, suggesting that plasmids can co-opt the latter. These results highlight the importance of interactions between CRISPRs and cas present in multiple copies and in distinct genomic locations in the function and evolution of bacterial immunity.


Subject(s)
Adaptive Immunity/genetics , CRISPR-Cas Systems/genetics , Genome, Bacterial/immunology , Interspersed Repetitive Sequences/genetics , Bacteriophages/genetics , CRISPR-Cas Systems/immunology , Genome, Bacterial/genetics , Genomics , Interspersed Repetitive Sequences/immunology , Plasmids/genetics , Prokaryotic Cells/immunology , Prophages/genetics
8.
PLoS Genet ; 14(12): e1007862, 2018 12.
Article in English | MEDLINE | ID: mdl-30576310

ABSTRACT

Capsules allow bacteria to colonize novel environments, to withstand numerous stresses, and to resist antibiotics. Yet, even though genetic exchanges with other cells should be adaptive under such circumstances, it has been suggested that capsules lower the rates of homologous recombination and horizontal gene transfer. We analysed over one hundred pan-genomes and thousands of bacterial genomes for the evidence of an association between genetic exchanges (or lack thereof) and the presence of a capsule system. We found that bacteria encoding capsules have larger pan-genomes, higher rates of horizontal gene transfer, and higher rates of homologous recombination in their core genomes. Accordingly, genomes encoding capsules have more plasmids, conjugative elements, transposases, prophages, and integrons. Furthermore, capsular loci are frequent in plasmids, and can be found in prophages. These results are valid for Bacteria, independently of their ability to be naturally transformable. Since we have shown previously that capsules are commonly present in nosocomial pathogens, we analysed their co-occurrence with antibiotic resistance genes. Genomes encoding capsules have more antibiotic resistance genes, especially those encoding efflux pumps, and they constitute the majority of the most worrisome nosocomial bacteria. We conclude that bacteria with capsule systems are more genetically diverse and have fast-evolving gene repertoires, which may further contribute to their success in colonizing novel niches such as humans under antibiotic therapy.


Subject(s)
Bacteria/genetics , Bacterial Capsules/genetics , Genome, Bacterial , Bacteria/classification , DNA Restriction-Modification Enzymes/genetics , Drug Resistance, Bacterial/genetics , Gene Transfer, Horizontal , Homologous Recombination , Interspersed Repetitive Sequences , Phylogeny , Species Specificity
9.
Nucleic Acids Res ; 46(W1): W246-W251, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29790974

ABSTRACT

CRISPR (clustered regularly interspaced short palindromic repeats) arrays and their associated (Cas) proteins confer bacteria and archaea adaptive immunity against exogenous mobile genetic elements, such as phages or plasmids. CRISPRCasFinder allows the identification of both CRISPR arrays and Cas proteins. The program includes: (i) an improved CRISPR array detection tool facilitating expert validation based on a rating system, (ii) prediction of CRISPR orientation and (iii) a Cas protein detection and typing tool updated to match the latest classification scheme of these systems. CRISPRCasFinder can either be used online or as a standalone tool compatible with Linux operating system. All third-party software packages employed by the program are freely available. CRISPRCasFinder is available at https://crisprcas.i2bc.paris-saclay.fr.


Subject(s)
CRISPR-Associated Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Software , CRISPR-Associated Proteins/chemistry , CRISPR-Cas Systems , Internet
12.
bioRxiv ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38948817

ABSTRACT

Transposase genes are ubiquitous in all domains of life and provide a rich reservoir for the evolution of novel protein functions. Here we report deep evolutionary links between bacterial IS110 transposases, which catalyze RNA-guided DNA recombination using bridge RNAs, and archaeal/eukaryotic Nop5-family proteins, which promote RNA-guided RNA 2'-O-methylation using C/D-box snoRNAs. Based on conservation in the protein primary sequence, domain architecture, and three-dimensional structure, as well as common architectural features of the non-coding RNA components, we propose that programmable RNA modification emerged via exaptation of components derived from IS110-like transposons. Alongside recent studies highlighting the origins of CRISPR-Cas9 and Cas12 in IS605-family transposons, these findings underscore how recurrent domestication events of transposable elements gave rise to complex RNA-guided biological mechanisms.

13.
Nat Ecol Evol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965412

ABSTRACT

Evolutionary arms races between cells and viruses drive the rapid diversification of antiviral genes in diverse life forms. Recent discoveries have revealed the existence of immune genes that are shared between prokaryotes and eukaryotes and show molecular and mechanistic similarities in their response to viruses. However, the evolutionary dynamics underlying the conservation and adaptation of these antiviral genes remain mostly unexplored. Here, we show that viperins constitute a highly conserved family of immune genes across diverse prokaryotes and eukaryotes and identify mechanisms by which they diversified in eukaryotes. Our findings indicate that viperins are enriched in Asgard archaea and widely distributed in all major eukaryotic clades, suggesting their presence in the last eukaryotic common ancestor and their acquisition in eukaryotes from an archaeal lineage. We show that viperins maintain their immune function by producing antiviral nucleotide analogues and demonstrate that eukaryotic viperins diversified through serial innovations on the viperin gene, such as the emergence and selection of substrate specificity towards pyrimidine nucleotides, and through partnerships with genes maintained through genetic linkage, notably with nucleotide kinases. These findings unveil biochemical and genomic transitions underlying the adaptation of immune genes shared by prokaryotes and eukaryotes. Our study paves the way for further understanding of the conservation of immunity across domains of life.

14.
bioRxiv ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39229129

ABSTRACT

The co-evolution of prokaryotes, phages, and mobile genetic elements (MGEs) over the past billions of years has driven the emergence and diversification of defense and anti-defense systems alike. Anti-defense proteins have diverse functional domains, sequences, and are typically small, creating a challenge to detect anti-defense homologs across the prokaryotic genomes. To date, no tools comprehensively annotate anti-defense proteins within a desired genome or MGE. Here, we developed "AntiDefenseFinder" - a free open-source tool and web service that detects 156 anti-defense systems (of one or more proteins) in any genomic sequence. Using this dataset, we identified 47,981 anti-defense systems distributed across prokaryotes, phage, and MGEs. We found that some genes co-localize in "anti-defense islands", including E. coli T4 and Lambda phages, although many are standalone. Out of the 112 systems detected in bacteria, 100 systems localize only or preferentially in prophages, plasmids, phage satellites, integrons, and integrative and conjugative elements. However, over 80% of anti-Pycsar protein 1 (Apyc1) resides in non-mobile regions of bacteria. Evolutionary and functional analyses revealed that Apyc1 likely originated in bacteria to regulate cNMP signaling, but was co-opted multiple times by phages to overcome cNMP-utilizing defenses. With the AntiDefenseFinder tool, we hope to facilitate the identification of the full repertoire of anti-defense systems in MGEs, the discovery of new protein functions, and a deeper understanding of host-pathogen arms race.

15.
Cell Host Microbe ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39208803

ABSTRACT

Deciphering the immune organization of eukaryotes is important for human health and for understanding ecosystems. The recent discovery of antiphage systems revealed that various eukaryotic immune proteins originate from prokaryotic antiphage systems. However, whether bacterial antiphage proteins can illuminate immune organization in eukaryotes remains unexplored. Here, we use a phylogeny-driven approach to uncover eukaryotic immune proteins by searching for homologs of bacterial antiphage systems. We demonstrate that proteins displaying sequence similarity with recently discovered antiphage systems are widespread in eukaryotes and maintain a role in human immunity. Two eukaryotic proteins of the anti-transposon piRNA pathway are evolutionarily linked to the antiphage system Mokosh. Additionally, human GTPases of immunity-associated proteins (GIMAPs) as well as two genes encoded in microsynteny, FHAD1 and CTRC, are respectively related to the Eleos and Lamassu prokaryotic systems and exhibit antiviral activity. Our work illustrates how comparative genomics of immune mechanisms can uncover defense genes in eukaryotes.

16.
bioRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260645

ABSTRACT

Viruses compete with each other for limited cellular resources, and some viruses deliver defense mechanisms that protect the host from competing genetic parasites. PARIS is a defense system, often encoded in viral genomes, that is composed of a 53 kDa ABC ATPase (AriA) and a 35 kDa TOPRIM nuclease (AriB). Here we show that AriA and AriB assemble into a 425 kDa supramolecular immune complex. We use cryo-EM to determine the structure of this complex which explains how six molecules of AriA assemble into a propeller-shaped scaffold that coordinates three subunits of AriB. ATP-dependent detection of foreign proteins triggers the release of AriB, which assembles into a homodimeric nuclease that blocks infection by cleaving the host tRNALys. Phage T5 subverts PARIS immunity through expression of a tRNALys variant that prevents PARIS-mediated cleavage, and thereby restores viral infection. Collectively, these data explain how AriA functions as an ATP-dependent sensor that detects viral proteins and activates the AriB toxin. PARIS is one of an emerging set of immune systems that form macromolecular complexes for the recognition of foreign proteins, rather than foreign nucleic acids.

17.
Nat Rev Microbiol ; 21(10): 686-700, 2023 10.
Article in English | MEDLINE | ID: mdl-37460672

ABSTRACT

Bacteria and their viruses have coevolved for billions of years. This ancient and still ongoing arms race has led bacteria to develop a vast antiphage arsenal. The development of high-throughput screening methods expanded our knowledge of defence systems from a handful to more than a hundred systems, unveiling many different molecular mechanisms. These findings reveal that bacterial immunity is much more complex than previously thought. In this Review, we explore recently discovered bacterial antiphage defence systems, with a particular focus on their molecular diversity, and discuss the ecological and evolutionary drivers and implications of the existing diversity of antiphage defence mechanisms.


Subject(s)
Bacteriophages , Bacteriophages/genetics , Bacteria , Biological Evolution
18.
Curr Opin Microbiol ; 71: 102238, 2023 02.
Article in English | MEDLINE | ID: mdl-36423502

ABSTRACT

Bacteria encode a vast repertoire of diverse antiphage defense systems. Recent studies revealed that different defense systems are often encoded within the same genome, raising the question of their possible interactions in a cell. Here, we review the known synergies and coregulations of antiphage systems. The emerging complexities suggest a potential existence of an additional level of organization of antiviral defense in prokaryotes. We argue that this organization could be compared with immune systems of animals and plants. We discuss this concept and explore what it could mean in bacteria.


Subject(s)
Bacteriophages , Animals , Bacteriophages/genetics , Bacteria/genetics , Immune System
19.
Med Sci (Paris) ; 39(11): 862-868, 2023 Nov.
Article in French | MEDLINE | ID: mdl-38018930

ABSTRACT

Viruses are parasites that infect all living organisms, and bacteria are no exception. To defend themselves against their viruses (phages), bacteria have developed numerous and sophisticated defense mechanisms, our understanding of which is rapidly growing. In the 2000s, only a handful of mechanisms were known and only two of them seemed to be found in most bacteria. In 2018, a new key method based on genome analysis revealed that there were likely many others. Indeed, over the past five years, more than 150 new mechanisms have been discovered. It is now estimated that there are probably thousands. This remarkable diversity, paralleled with the tremendous viral diversity, is evident both in terms of possible combinations of systems in bacterial genomes and in molecular mechanisms. One of the most surprising observations emerging from the exploration of this diversity is the discovery of striking similarities between certain bacterial defense systems and antiviral systems in humans, as well as plant (and eukaryotes in general) immune systems. Contrary to the previously accepted paradigm, organisms as diverse as fungi, plants, bacteria and humans share certain molecular strategies to fight viral infections, suggesting that an underestimated part of eukaryotic antiviral immunity could have evolved from bacterial antiviral defense systems.


Title: Immunité bactérienne : à la découverte d'un nouveau monde. Abstract: Les virus sont des parasites qui infectent tous les organismes vivants, et les bactéries n'y font pas exception. Pour se défendre contre leurs virus (les bactériophages ou phages), les bactéries se sont dotées d'un éventail de mécanismes élaborés, dont la découverte et la compréhension sont en pleine expansion. Dans les années 2000, seuls quelques systèmes de défense étaient connus et deux semblaient présents chez la plupart des bactéries. En 2018, une nouvelle méthode fondée sur l'analyse des génomes a révélé l'existence potentielle de nombreux autres. Plus de 150 nouveaux systèmes anti-phages ont été découverts au cours des cinq dernières années. On estime maintenant qu'il en existe probablement des milliers. Cette formidable diversité, qui est à mettre en parallèle avec la considérable diversité virale, s'exprime tant en termes de combinaisons de systèmes possibles dans les génomes bactériens que de mécanismes moléculaires. Une des observations les plus surprenantes qui émerge est la découverte de similarités entre certains systèmes de défense bactériens et des mécanismes antiviraux eucaryotes. Contrairement au paradigme jusqu'alors en place, des organismes aussi différents que des champignons, des plantes, des bactéries ou des êtres humains partagent certaines stratégies moléculaires pour combattre des infections virales, suggérant qu'une part sous-estimée de l'immunité antivirale eucaryote a directement évolué à partir des systèmes de défense bactériens.


Subject(s)
Bacteriophages , Virus Diseases , Viruses , Humans , Bacteria , Viruses/genetics , Bacteriophages/genetics
20.
Trends Microbiol ; 30(6): 513-514, 2022 06.
Article in English | MEDLINE | ID: mdl-35469710

ABSTRACT

Bacteria have been shown to harbor a growing arsenal of various defense systems against phages. Maguin et al. have uncovered how two of the most frequent defense systems interact: the clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) system recycles by-products of the restriction-modification (RM) system to increase bacterial defense in the long run.


Subject(s)
Bacteriophages , CRISPR-Cas Systems , Bacteria/genetics , Bacteriophages/genetics
SELECTION OF CITATIONS
SEARCH DETAIL