Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 603(7899): 166-173, 2022 03.
Article in English | MEDLINE | ID: mdl-35197630

ABSTRACT

Combinations of anti-cancer drugs can overcome resistance and provide new treatments1,2. The number of possible drug combinations vastly exceeds what could be tested clinically. Efforts to systematically identify active combinations and the tissues and molecular contexts in which they are most effective could accelerate the development of combination treatments. Here we evaluate the potency and efficacy of 2,025 clinically relevant two-drug combinations, generating a dataset encompassing 125 molecularly characterized breast, colorectal and pancreatic cancer cell lines. We show that synergy between drugs is rare and highly context-dependent, and that combinations of targeted agents are most likely to be synergistic. We incorporate multi-omic molecular features to identify combination biomarkers and specify synergistic drug combinations and their active contexts, including in basal-like breast cancer, and microsatellite-stable or KRAS-mutant colon cancer. Our results show that irinotecan and CHEK1 inhibition have synergistic effects in microsatellite-stable or KRAS-TP53 double-mutant colon cancer cells, leading to apoptosis and suppression of tumour xenograft growth. This study identifies clinically relevant effective drug combinations in distinct molecular subpopulations and is a resource to guide rational efforts to develop combinatorial drug treatments.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Pancreatic Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Cell Proliferation , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Drug Combinations , Drug Synergism , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics
2.
Nature ; 568(7753): 511-516, 2019 04.
Article in English | MEDLINE | ID: mdl-30971826

ABSTRACT

Functional genomics approaches can overcome limitations-such as the lack of identification of robust targets and poor clinical efficacy-that hamper cancer drug development. Here we performed genome-scale CRISPR-Cas9 screens in 324 human cancer cell lines from 30 cancer types and developed a data-driven framework to prioritize candidates for cancer therapeutics. We integrated cell fitness effects with genomic biomarkers and target tractability for drug development to systematically prioritize new targets in defined tissues and genotypes. We verified one of our most promising dependencies, the Werner syndrome ATP-dependent helicase, as a synthetic lethal target in tumours from multiple cancer types with microsatellite instability. Our analysis provides a resource of cancer dependencies, generates a framework to prioritize cancer drug targets and suggests specific new targets. The principles described in this study can inform the initial stages of drug development by contributing to a new, diverse and more effective portfolio of cancer drug targets.


Subject(s)
CRISPR-Cas Systems/genetics , Drug Discovery/methods , Gene Editing , Molecular Targeted Therapy/methods , Neoplasms/genetics , Neoplasms/therapy , Animals , Biomarkers, Tumor/genetics , Cell Line, Tumor , Female , Genome, Human/genetics , Humans , Mice , Microsatellite Instability , Neoplasm Transplantation , Neoplasms/classification , Neoplasms/pathology , Organ Specificity , Reproducibility of Results , Synthetic Lethal Mutations/genetics , Werner Syndrome/genetics , Werner Syndrome Helicase/genetics
3.
Mol Ther ; 32(8): 2741-2761, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38894542

ABSTRACT

HER2 amplification occurs in approximately 5% of colorectal cancer (CRC) cases and is associated only partially with clinical response to combined human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR)-targeted treatment. An alternative approach based on adoptive cell therapy using T cells engineered with anti-HER2 chimeric antigen receptor (CAR) proved to be toxic due to on-target/off-tumor activity. Here we describe a combinatorial strategy to safely target HER2 amplification and carcinoembryonic antigen (CEA) expression in CRC using a synNotch-CAR-based artificial regulatory network. The natural killer (NK) cell line NK-92 was engineered with an anti-HER2 synNotch receptor driving the expression of a CAR against CEA only when engaged. After being transduced and sorted for HER2-driven CAR expression, cells were cloned. The clone with optimal performances in terms of specificity and amplitude of CAR induction demonstrated significant activity in vitro and in vivo specifically against HER2-amplified (HER2amp)/CEA+ CRC models, with no effects on cells with physiological HER2 levels. The HER2-synNotch/CEA-CAR-NK system provides an innovative, scalable, and safe off-the-shelf cell therapy approach with potential against HER2amp CRC resistant or partially responsive to HER2/EGFR blockade.


Subject(s)
Colorectal Neoplasms , Receptor, ErbB-2 , Receptors, Chimeric Antigen , Xenograft Model Antitumor Assays , Colorectal Neoplasms/therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Humans , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Animals , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Mice , Cell Line, Tumor , Carcinoembryonic Antigen/immunology , Carcinoembryonic Antigen/genetics , Gene Amplification , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Immunotherapy/methods , Immunotherapy, Adoptive/methods , Disease Models, Animal , Female
4.
Bioinformatics ; 39(5)2023 05 04.
Article in English | MEDLINE | ID: mdl-37079732

ABSTRACT

MOTIVATION: The transition from evaluating a single time point to examining the entire dynamic evolution of a system is possible only in the presence of the proper framework. The strong variability of dynamic evolution makes the definition of an explanatory procedure for data fitting and clustering challenging. RESULTS: We developed CONNECTOR, a data-driven framework able to analyze and inspect longitudinal data in a straightforward and revealing way. When used to analyze tumor growth kinetics over time in 1599 patient-derived xenograft growth curves from ovarian and colorectal cancers, CONNECTOR allowed the aggregation of time-series data through an unsupervised approach in informative clusters. We give a new perspective of mechanism interpretation, specifically, we define novel model aggregations and we identify unanticipated molecular associations with response to clinically approved therapies. AVAILABILITY AND IMPLEMENTATION: CONNECTOR is freely available under GNU GPL license at https://qbioturin.github.io/connector and https://doi.org/10.17504/protocols.io.8epv56e74g1b/v1.


Subject(s)
Software , Humans , Animals , Cluster Analysis , Time Factors , Disease Models, Animal , Risk Assessment
5.
BMC Genomics ; 23(1): 156, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35193494

ABSTRACT

BACKGROUND: Patient-derived xenografts (PDX) mice models play an important role in preclinical trials and personalized medicine. Sharing data on the models is highly valuable for numerous reasons - ethical, economical, research cross validation etc. The EurOPDX Consortium was established 8 years ago to share such information and avoid duplicating efforts in developing new PDX mice models and unify approaches to support preclinical research. EurOPDX Data Portal is the unified data sharing platform adopted by the Consortium. MAIN BODY: In this paper we describe the main features of the EurOPDX Data Portal ( https://dataportal.europdx.eu/ ), its architecture and possible utilization by researchers who look for PDX mice models for their research. The Portal offers a catalogue of European models accessible on a cooperative basis. The models are searchable by metadata, and a detailed view provides molecular profiles (gene expression, mutation, copy number alteration) and treatment studies. The Portal displays the data in multiple tools (PDX Finder, cBioPortal, and GenomeCruzer in future), which are populated from a common database displaying strictly mutually consistent views. (SHORT) CONCLUSION: EurOPDX Data Portal is an entry point to the EurOPDX Research Infrastructure offering PDX mice models for collaborative research, (meta)data describing their features and deep molecular data analysis according to users' interests.


Subject(s)
Neoplasms , Animals , Heterografts , Humans , Information Dissemination , Mice , Neoplasms/genetics , Precision Medicine , Xenograft Model Antitumor Assays
6.
Nat Rev Mol Cell Biol ; 11(12): 834-48, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21102609

ABSTRACT

The MET tyrosine kinase receptor (also known as the HGF receptor) promotes tissue remodelling, which underlies developmental morphogenesis, wound repair, organ homeostasis and cancer metastasis, by integrating growth, survival and migration cues in response to environmental stimuli or cell-autonomous perturbations. The versatility of MET-mediated biological responses is sustained by qualitative and quantitative signal modulation. Qualitative mechanisms include the engagement of dedicated signal transducers and the subcellular compartmentalization of MET signalling pathways, whereas quantitative regulation involves MET partnering with adaptor amplifiers or being degraded through the shedding of its extracellular domain or through intracellular ubiquitylation. Controlled activation of MET signalling can be exploited in regenerative medicine, whereas MET inhibition might slow down tumour progression.


Subject(s)
Animal Structures/physiology , Growth and Development/genetics , Neoplasms/genetics , Proto-Oncogene Proteins c-met/physiology , Regeneration/genetics , Animal Structures/metabolism , Animals , Growth and Development/physiology , Humans , Models, Biological , Models, Molecular , Neoplasms/etiology , Proto-Oncogene Proteins c-met/chemistry , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Regeneration/physiology , Signal Transduction/genetics , Signal Transduction/physiology
7.
Birth ; 49(1): 147-158, 2022 03.
Article in English | MEDLINE | ID: mdl-34549453

ABSTRACT

BACKGROUND: Medical guidelines recommend vaginal delivery for low-risk twin pregnancies because cesareans increase the probability of maternal morbidity and mortality. Yet, vaginal delivery rates for twins are considerably lower than for comparable singletons. One explanation for this disparity argues that greater risk associated with twins warrants increased surgical intervention. An alternative explanation is that twin deliveries are more likely to deviate from protocols that advise vaginal birth. METHODS: Using the 2017 Natality Detail File (N = 3,197,401), we measured alignment of vaginal birth and trial of labor (TOL) with the American College of Obstetricians and Gynecologists' guidelines for twin and singleton no-indicated-risk births. We calculated predicted probabilities for the population and by maternal race/ethnicity to assess whether low rates of vaginal births among twins are explained by associated risk factors, or by deviations from recommended delivery methods. RESULTS: Overall, 31.2% of twins were born vaginally compared with 79.4% of singletons. Controlling for indicated risks, the predicted probability of vaginal birth for twins was 0.49 and 0.85 for singletons. The predicted probability of TOL for twins was 0.18 and 0.47 for singletons. Maternal race/ethnicity was only weakly associated with mode of delivery. These findings indicate that no-indicated-risk twin pregnancies, across maternal racial/ethnic categories, have lower probabilities of vaginal birth and TOL than would be expected with widespread adherence to current guidelines. CONCLUSIONS: Given the life-threatening consequences that may result from unnecessary surgical procedures, our findings highlight the need for further research to illuminate medical and nonmedical mechanisms driving nonadherence to clinical guidelines for twin births.


Subject(s)
Pregnancy, Twin , Trial of Labor , Delivery, Obstetric , Female , Humans , Pregnancy , Pregnancy Outcome , Risk Factors , Twins , United States
8.
BMC Bioinformatics ; 22(1): 360, 2021 Jul 03.
Article in English | MEDLINE | ID: mdl-34217219

ABSTRACT

BACKGROUND: Tumors are composed by a number of cancer cell subpopulations (subclones), characterized by a distinguishable set of mutations. This phenomenon, known as intra-tumor heterogeneity (ITH), may be studied using Copy Number Aberrations (CNAs). Nowadays ITH can be assessed at the highest possible resolution using single-cell DNA (scDNA) sequencing technology. Additionally, single-cell CNA (scCNA) profiles from multiple samples of the same tumor can in principle be exploited to study the spatial distribution of subclones within a tumor mass. However, since the technology required to generate large scDNA sequencing datasets is relatively recent, dedicated analytical approaches are still lacking. RESULTS: We present PhyliCS, the first tool which exploits scCNA data from multiple samples from the same tumor to estimate whether the different clones of a tumor are well mixed or spatially separated. Starting from the CNA data produced with third party instruments, it computes a score, the Spatial Heterogeneity score, aimed at distinguishing spatially intermixed cell populations from spatially segregated ones. Additionally, it provides functionalities to facilitate scDNA analysis, such as feature selection and dimensionality reduction methods, visualization tools and a flexible clustering module. CONCLUSIONS: PhyliCS represents a valuable instrument to explore the extent of spatial heterogeneity in multi-regional tumour sampling, exploiting the potential of scCNA data.


Subject(s)
DNA Copy Number Variations , Neoplasms , Cluster Analysis , Genetic Heterogeneity , Humans , Sequence Analysis, DNA , Single-Cell Analysis
9.
Nature ; 526(7572): 263-7, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26416732

ABSTRACT

Colorectal cancer is the third most common cancer worldwide, with 1.2 million patients diagnosed annually. In late-stage colorectal cancer, the most commonly used targeted therapies are the monoclonal antibodies cetuximab and panitumumab, which prevent epidermal growth factor receptor (EGFR) activation. Recent studies have identified alterations in KRAS and other genes as likely mechanisms of primary and secondary resistance to anti-EGFR antibody therapy. Despite these efforts, additional mechanisms of resistance to EGFR blockade are thought to be present in colorectal cancer and little is known about determinants of sensitivity to this therapy. To examine the effect of somatic genetic changes in colorectal cancer on response to anti-EGFR antibody therapy, here we perform complete exome sequence and copy number analyses of 129 patient-derived tumour grafts and targeted genomic analyses of 55 patient tumours, all of which were KRAS wild-type. We analysed the response of tumours to anti-EGFR antibody blockade in tumour graft models and in clinical settings and functionally linked therapeutic responses to mutational data. In addition to previously identified genes, we detected mutations in ERBB2, EGFR, FGFR1, PDGFRA, and MAP2K1 as potential mechanisms of primary resistance to this therapy. Novel alterations in the ectodomain of EGFR were identified in patients with acquired resistance to EGFR blockade. Amplifications and sequence changes in the tyrosine kinase receptor adaptor gene IRS2 were identified in tumours with increased sensitivity to anti-EGFR therapy. Therapeutic resistance to EGFR blockade could be overcome in tumour graft models through combinatorial therapies targeting actionable genes. These analyses provide a systematic approach to evaluating response to targeted therapies in human cancer, highlight new mechanisms of responsiveness to anti-EGFR therapies, and delineate new avenues for intervention in managing colorectal cancer.


Subject(s)
Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , Genome, Human/genetics , Genomics , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cetuximab/pharmacology , Cetuximab/therapeutic use , Colorectal Neoplasms/metabolism , DNA Copy Number Variations/genetics , ErbB Receptors/chemistry , ErbB Receptors/genetics , Exome/genetics , Female , Humans , Insulin Receptor Substrate Proteins/genetics , MAP Kinase Kinase 1/genetics , Mice , Molecular Targeted Therapy , Mutation/genetics , Panitumumab , Proto-Oncogene Proteins p21(ras)/genetics , Receptor, ErbB-2/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Xenograft Model Antitumor Assays
10.
Int J Cancer ; 147(10): 2891-2901, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32700762

ABSTRACT

Antibodies targeting the human epidermal growth factor receptor (EGFR) are used for the treatment of RAS wild-type metastatic colorectal cancer. A significant proportion of patients remains unresponsive to this therapy. Here, we performed a reverse-phase protein array-based (phospho)protein analysis of 63 KRAS, NRAS, BRAF and PIK3CA wild-type metastatic CRC tumours. Responses of tumours to anti-EGFR therapy with cetuximab were recorded in patient-derived xenograft (PDX) models. Unsupervised hierarchical clustering of pretreatment tumour tissue identified three clusters, of which Cluster C3 was exclusively composed of responders. Clusters C1 and C2 exhibited mixed responses. None of the three protein clusters exhibited a significant correlation with transcriptome-based subtypes. Analysis of protein signatures across all PDXs identified 14 markers that discriminated cetuximab-sensitive and cetuximab-resistant tumours: PDK1 (S241), caspase-8, Shc (Y317), Stat3 (Y705), p27, GSK-3ß (S9), HER3, PKC-α (S657), EGFR (Y1068), Akt (S473), S6 ribosomal protein (S240/244), HER3 (Y1289), NF-κB-p65 (S536) and Gab-1 (Y627). Least absolute shrinkage and selection operator and binominal logistic regression analysis delivered refined protein signatures for predicting response to cetuximab. (Phospo-)protein analysis of matched pretreated and posttreated models furthermore showed significant reduction of Gab-1 (Y627) and GSK-3ß (S9) exclusively in responding models, suggesting novel targets for treatment.


Subject(s)
Cetuximab/administration & dosage , Colorectal Neoplasms/drug therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/secondary , Phosphoproteins/metabolism , Proteomics/methods , Animals , Cell Proliferation/drug effects , Cetuximab/pharmacology , Class I Phosphatidylinositol 3-Kinases/genetics , Cluster Analysis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Female , GTP Phosphohydrolases/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Membrane Proteins/genetics , Mice , Phosphoproteins/drug effects , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Unsupervised Machine Learning , Xenograft Model Antitumor Assays
11.
Mol Syst Biol ; 15(4): e8250, 2019 04 12.
Article in English | MEDLINE | ID: mdl-30979792

ABSTRACT

Identifying hyperactive kinases in cancer is crucial for individualized treatment with specific inhibitors. Kinase activity can be discerned from global protein phosphorylation profiles obtained with mass spectrometry-based phosphoproteomics. A major challenge is to relate such profiles to specific hyperactive kinases fueling growth/progression of individual tumors. Hitherto, the focus has been on phosphorylation of either kinases or their substrates. Here, we combined label-free kinase-centric and substrate-centric information in an Integrative Inferred Kinase Activity (INKA) analysis. This multipronged, stringent analysis enables ranking of kinase activity and visualization of kinase-substrate networks in a single biological sample. To demonstrate utility, we analyzed (i) cancer cell lines with known oncogenes, (ii) cell lines in a differential setting (wild-type versus mutant, +/- drug), (iii) pre- and on-treatment tumor needle biopsies, (iv) cancer cell panel with available drug sensitivity data, and (v) patient-derived tumor xenografts with INKA-guided drug selection and testing. These analyses show superior performance of INKA over its components and substrate-based single-sample tool KARP, and underscore target potential of high-ranking kinases, encouraging further exploration of INKA's functional and clinical value.


Subject(s)
Neoplasms/enzymology , Phosphotransferases/analysis , Proteomics/methods , Systems Biology/methods , Cell Line, Tumor , Enzyme Activation , Humans , K562 Cells , Mass Spectrometry , Phosphoproteins/analysis
12.
BMC Biol ; 14: 5, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26787475

ABSTRACT

BACKGROUND: Tankyrases are poly(adenosine diphosphate)-ribose polymerases that contribute to biological processes as diverse as modulation of Wnt signaling, telomere maintenance, vesicle trafficking, and microtubule-dependent spindle pole assembly during mitosis. At interphase, polarized reshaping of the microtubule network fosters oriented cell migration. This is attained by association of adenomatous polyposis coli with the plus end of microtubules at the cortex of cell membrane protrusions and microtubule-based centrosome reorientation towards the migrating front. RESULTS: Here we report a new function for tankyrases, namely, regulation of directional cell locomotion. Using a panel of lung cancer cell lines as a model system, we found that abrogation of tankyrase activity by two different, structurally unrelated small-molecule inhibitors (one introduced and characterized here for the first time) or by RNA interference-based genetic silencing weakened cell migration, invasion, and directional movement induced by the motogenic cytokine hepatocyte growth factor. Mechanistically, the anti-invasive outcome of tankyrase inhibition could be ascribed to sequential deterioration of the distinct events that govern cell directional sensing. In particular, tankyrase blockade negatively impacted (1) microtubule dynamic instability; (2) adenomatous polyposis coli plasma membrane targeting; and (3) centrosome reorientation. CONCLUSIONS: Collectively, these findings uncover an unanticipated role for tankyrases in influencing at multiple levels the interphase dynamics of the microtubule network and the subcellular distribution of related polarity signals. These results encourage the further exploration of tankyrase inhibitors as therapeutic tools to oppose dissemination and metastasis of cancer cells.


Subject(s)
Cell Movement/drug effects , Enzyme Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung/drug effects , Tankyrases/antagonists & inhibitors , Cell Line, Tumor , Enzyme Inhibitors/chemistry , Humans , Lung/metabolism , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Microtubules/metabolism , Microtubules/pathology , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , RNA Interference , Tankyrases/genetics , Tankyrases/metabolism
13.
Lancet Oncol ; 17(6): 738-746, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27108243

ABSTRACT

BACKGROUND: We previously found that dual HER2 blockade with trastuzumab and lapatinib led to inhibition of tumour growth in patient-derived xenografts of HER2-amplified metastatic colorectal cancer. In this study, we aimed to assess the antitumour activity of trastuzumab and lapatinib in patients with HER2-positive colorectal cancer. METHODS: HERACLES was a proof-of-concept, multicentre, open-label, phase 2 trial done at four Italian academic cancer centres. We enrolled adult patients with KRAS exon 2 (codons 12 and 13) wild-type and HER2-positive metastatic colorectal cancer refractory to standard of care (including cetuximab or panitumumab), an Eastern Cooperative Oncology Group performance status of 0 or 1, and at least one measurable lesion. We defined HER2 positivity in tumour samples by use of immunohistochemistry and fluorescence in-situ hybridisation in accordance with our previously validated colorectal cancer-specific diagnostic criteria. Eligible patients received intravenous trastuzumab at 4 mg/kg loading dose followed by 2 mg/kg once per week, and oral lapatinib at 1000 mg per day until evidence of disease progression. The primary endpoint was the proportion of patients achieving an objective response (defined as complete response or partial response), which was assessed by independent central review in the intention-to-treat population. This trial is registered with EudraCT, number 2012-002128-33. FINDINGS: Between Aug 27, 2012, and May 15, 2015, we screened 914 patients with KRAS exon 2 (codons 12 and 13) wild-type metastatic colorectal cancer and identified 48 (5%) patients with HER2-positive tumours, although two died before enrolment. Of these patients, 27 were eligible for the trial. All were evaluable for response. At the time of data cutoff on Oct 15, 2015, with a median follow-up of 94 weeks (IQR 51-127), eight (30%, 95% CI 14-50) of 27 patients had achieved an objective response, with one patient (4%, 95% CI -3 to 11) achieving a complete response, and seven (26%, 95% CI 9-43) achieving partial responses; 12 (44%, 95% CI 25-63) patients had stable disease. Six (22%) of 27 patients had grade 3 adverse events, which consisted of fatigue in four patients, skin rash in one patient, and increased bilirubin concentration in one patient. No grade 4 or 5 adverse events were reported. We detected no drug-related serious adverse events. INTERPRETATION: The combination of trastuzumab and lapatinib is active and well tolerated in treatment-refractory patients with HER2-positive metastatic colorectal cancer. FUNDING: Associazione Italiana Ricerca Cancro (AIRC), Fondazione Oncologia Niguarda Onlus, and Roche.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Molecular Targeted Therapy , Neoplasm Recurrence, Local/drug therapy , Proto-Oncogene Proteins p21(ras)/genetics , Receptor, ErbB-2/antagonists & inhibitors , Adult , Aged , Biomarkers, Tumor , Codon/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , Follow-Up Studies , Humans , Immunoenzyme Techniques , Lapatinib , Male , Middle Aged , Neoplasm Metastasis , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Prognosis , Quinazolines/administration & dosage , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Salvage Therapy , Survival Rate , Trastuzumab/administration & dosage
15.
Br J Haematol ; 164(6): 841-50, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24450886

ABSTRACT

Abnormal activation of MET/HGF (Hepatocyte Growth Factor) pathway has been described in several tumours and increased HGF plasmatic levels have been detected in patients with aggressive multiple myeloma (MM). MET and HGF mRNA expression was investigated in 105 samples of purified plasma cells derived from newly diagnosed MM patients treated with bortezomib-based induction therapy. Gene expression was compared with response to therapy and clinical outcome. MET gene copy number was also evaluated. MET mRNA expression was higher in CD138(+) than in CD138(-) cells (median 76·90 vs. 11·24; P = 0·0009). Low MET mRNA expression characterized patients with better response (complete response or very good partial response) compared to other patients (median 56·10 vs. 134·83; P = 0·0006). After a median follow-up of 50 months, patients with high MET mRNA expression displayed a worse progression-free survival (PFS; P = 0·0029) and overall survival (OS; P = 0·0023) compared to those with low MET mRNA levels. Patients with both high MET mRNA expression and high ß2-microglobulin level (>5·5 mg/l) had further worse median PFS (P < 0·0001) and OS (P < 0·0001). Patients carrying 4 MET gene copies (8 out of 82, 9·8%) also had a short PFS. High MET mRNA expression identifies patients with dismal PFS and OS and the combination with high ß2-microglobulin further characterizes patients with worse outcome.


Subject(s)
Hepatocyte Growth Factor/metabolism , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Female , Hepatocyte Growth Factor/biosynthesis , Hepatocyte Growth Factor/blood , Hepatocyte Growth Factor/genetics , Humans , Male , Middle Aged , Multiple Myeloma/genetics , Multiple Myeloma/therapy , Prognosis , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
BMC Cancer ; 14: 918, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25479910

ABSTRACT

BACKGROUND: Standard chemotherapy in unresectable biliary tract carcinoma (BTC) patients is based on gemcitabine combined with platinum derivatives. However, primary or acquired resistance is inevitable and no second-line chemotherapy is demonstrated to be effective. Thus, there is an urgent need to identify new alternative (chemo)therapy approaches. METHODS: We evaluated the mechanism of action of ET-743 in preclinical models of BTC. Six BTC cell lines (TFK-1, EGI-1, TGBC1, WITT, KMCH, HuH28), two primary cell cultures derived from BTC patients, the EGI-1 and a new established BTC patient-derived xenografts, were used as preclinical models to investigate the anti-tumor activity of ET-743 in vitro and in vivo. Gene expression profiling was also analyzed upon ET-743 treatment in in vivo models. RESULTS: We found that ET-743 inhibited cell growth of BTC cell lines and primary cultures (IC50 ranging from 0.37 to 3.08 nM) preferentially inducing apoptosis and activation of the complex DNA damage-repair proteins (p-ATM, p-p53 and p-Histone H2A.x) in vitro. In EGI-1 and patient-derived xenografts, ET-743 induced tumor growth delay and reduction of vasculogenesis. In vivo ET-743 induced a deregulation of genes involved in cell adhesion, stress-related response, and in pathways involved in cholangiocarcinogenesis, such as the IL-6, Sonic Hedgehog and Wnt signaling pathways. CONCLUSIONS: These results suggest that ET-743 could represent an alternative chemotherapy for BTC treatment and encourage the development of clinical trials in BTC patients resistant to standard chemotherapy.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Biliary Tract Neoplasms/drug therapy , Dioxoles/pharmacology , Tetrahydroisoquinolines/pharmacology , Animals , Apoptosis/drug effects , Ataxia Telangiectasia Mutated Proteins/metabolism , Biliary Tract Neoplasms/blood supply , Biliary Tract Neoplasms/genetics , Cell Adhesion/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/genetics , DNA Repair/drug effects , Drug Screening Assays, Antitumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Histones/metabolism , Humans , Interleukin-6/genetics , Mice , Mice, Inbred NOD , Neovascularization, Pathologic/drug therapy , Phosphorylation , Trabectedin , Tumor Suppressor Protein p53/metabolism , Wnt Signaling Pathway/drug effects
18.
Soc Sci Med ; 348: 116825, 2024 May.
Article in English | MEDLINE | ID: mdl-38569286

ABSTRACT

Research examining the "contraceptive paradox" has illuminated how contraception can be a source of empowerment for some and oppression for others. This study advances theorizing of the contraceptive paradox by illustrating how 45 young women experience contraception as both liberating and constraining due to a confluence of biomedicalization processes, gender inequality, and neoliberal feminism. Drawing on focus group data, we find that the biomedicalization of pregnancy prevention and neoliberal feminist discourse, in combination with experiences of social and economic privilege and gender inequality in fertility work, shape participants' interpretation of contraceptive technology as a key resource for individually liberating themselves from undesired pregnancy. At the same time, their experiences indicate prescription contraception plays an oppressive role in their lives. In addition to blaming themselves and their bodies for negative contraceptive side effects, participants take for granted that assuming sole responsibility for contraceptive use in their relationships with men is the price they must pay to feel free. The findings indicate that addressing a social problem using an individualized biomedical solution obscures the power that structural inequalities exert over pregnancy-capable people, including relatively privileged young women. As an expression of biopower, these dynamics prompted participants to emphasize distributive justice over social justice, foreclosing their engagement in collective action.


Subject(s)
Feminism , Focus Groups , Humans , Female , Pregnancy , Young Adult , Contraception/psychology , Contraception/methods , Adult , Medicalization , Universities , Adolescent , Students/psychology , Students/statistics & numerical data , Contraception Behavior/psychology , Qualitative Research , Politics
19.
Nat Commun ; 15(1): 7495, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39209908

ABSTRACT

The breadth and depth at which cancer models are interrogated contribute to the successful clinical translation of drug discovery efforts. In colorectal cancer (CRC), model availability is limited by a dearth of large-scale collections of patient-derived xenografts (PDXs) and paired tumoroids from metastatic disease, where experimental therapies are typically tested. Here we introduce XENTURION, an open-science resource offering a platform of 128 PDX models from patients with metastatic CRC, along with matched PDX-derived tumoroids. Multidimensional omics analyses indicate that tumoroids retain extensive molecular fidelity with parental PDXs. A tumoroid-based trial with the anti-EGFR antibody cetuximab reveals variable sensitivities that are consistent with clinical response biomarkers, mirror tumor growth changes in matched PDXs, and recapitulate EGFR genetic deletion outcomes. Inhibition of adaptive signals upregulated by EGFR blockade increases the magnitude of cetuximab response. These findings illustrate the potential of large living biobanks, providing avenues for molecularly informed preclinical research in oncology.


Subject(s)
Cetuximab , Colorectal Neoplasms , ErbB Receptors , Xenograft Model Antitumor Assays , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Animals , Cetuximab/therapeutic use , Cetuximab/pharmacology , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Mice , Female , Neoplasm Metastasis , Male
20.
Genome Med ; 16(1): 118, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39385243

ABSTRACT

BACKGROUND: Liquid biopsy based on cell-free DNA (cfDNA) analysis holds significant promise as a minimally invasive approach for the diagnosis, genotyping, and monitoring of solid malignancies. Human tumors release cfDNA in the bloodstream through a combination of events, including cell death, active and passive release. However, the precise mechanisms leading to cfDNA shedding remain to be characterized. Addressing this question in patients is confounded by several factors, such as tumor burden extent, anatomical and vasculature barriers, and release of nucleic acids from normal cells. In this work, we exploited cancer models to dissect basic mechanisms of DNA release. METHODS: We measured cell loss ratio, doubling time, and cfDNA release in the supernatant of a colorectal cancer (CRC) cell line collection (N = 76) representative of the molecular subtypes previously identified in cancer patients. Association analyses between quantitative parameters of cfDNA release, cell proliferation, and molecular features were evaluated. Functional experiments were performed to test the impact of modulating DNA methylation on cfDNA release. RESULTS: Higher levels of supernatant cfDNA were significantly associated with slower cell cycling and increased cell death. In addition, a higher cfDNA shedding was found in non-CpG Island Methylator Phenotype (CIMP) models. These results indicate a positive correlation between lower methylation and increased cfDNA levels. To explore this further, we exploited methylation microarrays to identify a subset of probes significantly associated with cfDNA shedding and derive a methylation signature capable of discriminating high from low cfDNA releasers. We applied this signature to an independent set of 176 CRC cell lines and patient derived organoids to select 14 models predicted to be low or high releasers. The methylation profile successfully predicted the amount of cfDNA released in the supernatant. At the functional level, genetic ablation of DNA methyl-transferases increased chromatin accessibility and DNA fragmentation, leading to increased cfDNA release in isogenic CRC cell lines. Furthermore, in vitro treatment of five low releaser CRC cells with a demethylating agent was able to induce a significant increase in cfDNA shedding. CONCLUSIONS: Methylation status of cancer cell lines contributes to the variability of cfDNA shedding in vitro. Changes in methylation pattern are associated with cfDNA release levels and might be exploited to increase sensitivity of liquid biopsy assays.


Subject(s)
Cell-Free Nucleic Acids , Colorectal Neoplasms , DNA Demethylation , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cell-Free Nucleic Acids/genetics , Cell Line, Tumor , DNA Methylation , Cell Proliferation , CpG Islands , Biomarkers, Tumor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL